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Abstract

With twisted boundary conditions on the quark fields, we study nucleon matrix elements of the axial current utilizing
heavy baryon chiral perturbation theory. One can explore the momentum transfer dependence of the axial form fac
easily than by using ordinary lattice quantized momenta alone. As examples, we derive expressions for the nucleon a
and pseudoscalar form factor.
 2005 Elsevier B.V.

PACS: 12.38.Gc

1. Introduction

Lattice QCD calculations will provide first principles determination of low-energy hadronic properties
low-energy region of QCD is the regime of strong interactions, where perturbation theory fails and the qu
gluon degrees of freedom are confined into color neutral hadronic states. Advances in lattice QCD have
come from exploiting the features of numerically approximating the theory on a discrete lattice in a finite v
As such, there is freedom to manipulate lattice quantities, so that the QCD answer is recovered in the co
and infinite volume limits.

A mutable feature of finite volume simulations is the choice of boundary conditions satisfied by the
Periodic boundary conditions are usually assumed as a matter of convenience, as they lead to fields a
observables which are single valued. Observables are determined, however, fromS-matrix elements and henc
only the action need be single valued for physical quantities to be well defined. The generator of any sy
of the action can also be used to specify boundary conditions. In particular symmetries involving flavor gen
lead to so-called twisted boundary conditions on the quark fields. The appearance of twisted boundary co
is not new. They have been considered in various contexts over the years[1–10]. Recently there has been renew
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interest in utilizing twisted boundary conditions in lattice QCD simulations[11–15]. This interest stems from th
realization that the restriction to lattice quantized momenta can be bypassed by employing twisted quark fi

In this work, we consider the nucleon axial transition form factors. On a given lattice, the available mom
transfer is quantized, and on current lattices one has integer multiples of about a few hundred MeV. Whi
perturbation theory (χPT) predicts the momentum transfer dependence of these form factors, both the quark
and lattice momenta must be brought down so that one enters the effective theory’s range of applicability.
difficulty encountered with a coarse sampling of the momentum transfer on a fixed lattice is the determin
radii and moments which are only accessible in the near-forward limit.1 These issues can be circumvented w
twisted quarks.

Before specializing to the case of the nucleon axial matrix elements below, we begin with a more
observation about single particle matrix elements of flavor-changing operators.2 These matrix elements have t
form 〈H ′(P ′)|O|H(P )〉. Here the operatorO changes the flavor composition of the hadronH into that ofH ′,
and we assume at least one of the states is not flavor neutral. The above matrix element can be decomp
various form factors which depend on the momentum transfer. Let the size of the lattice beL in each of the spatia
directions. On the lattice, the momentum transferq = P ′ − P is quantizedq = 2πn/L, for n ∈ Z

3, when one
imposes periodic boundary conditions on the quark fields. To smoothly access the momentum transfer de
of the transition form factors, one is forced to vary the lattice size and hence generate new gauge configu3

Imposing twisted boundary conditions on the valence quark fields, such that different flavors are indepe
rotated in phase at the boundary, one finds an induced momentum transferq = 2πn/L + δθ/L, whereδθ is the
difference in twist angles of the flavors changed. Thus with twisted boundary conditions on the valence qua
momentum transfer can be continuously varied and one can access off diagonal matrix elements, even at z
momentum transfern = 0. For such matrix elements, one can work in the near forward limit without utilizin
box with one very long side, and without performing a momentum extrapolation.

In the following section (Section2), we focus on the nucleon axial matrix elements. Here we extend our
mentum transfer observation above to the case of the neutron–proton axial correlation function. Next in S3,
we develop partially twisted baryonχPT for lattice calculations in which the valence (and ghost) quarks sa
twisted boundary conditions, while the sea quarks remain periodic. This effective theory can be used at fi
ume to ascertain the corrections to nucleon matrix elements due to twisting. As an application, we calcu
axial radius and pseudoscalar form factor of the nucleon in Section4, and summarize our findings in Section5.

2. Nucleon axial transition

Let us now focus specifically on the nucleon axial matrix elements and make our introductory observatio
concrete. For simplicity, here and below we work in the isospin limit, and consider the neutron and proto
degenerate. We also frame our discussion using continuum operators. The relevant flavor-changing ope

1 To sample smaller values of the momentum transfer, one could work with lattices that are much longer in only one spatial direct
such lattices, however, working with sufficiently small lattice spacings and quark masses is well beyond the reach of current simulati

2 A similar observation can also be made for particle to vacuum transition matrix elements. For a generic pseudoscalarH , we have
schematically〈0|A|H(P )〉 = ifH P , whereA is the spatial part of the axial-vector current. With twisted boundary conditions and
flavor non-diagonal stateH , one can access the decay constantfH at zero lattice momentum. While one could have easily deduced the d
constant by working in the rest frame and using the time-component of the current, the above observation provides a novel chec
twisted quarks.

3 In principle, one could use the dynamically generated quark mass dependence of the initial and final state hadron masses to
momentum transfer dependence of such form factors, assuming that these hadrons are non-degenerate. This does not give one d
over the momentum transfer probed, moreover, the procedure is complicated by the additional need for chiral extrapolation.
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the nucleon axial transition isOµ(x) = ū(x)γµγ5d(x). The Euclidean time, axial correlation function has the fo

(1)
〈
P0(t)Oµ(t ′)N̄P (0)

〉 = ∑
x,x′

e−iP ·x′ 〈0|P(x, t)Oµ(x′, t ′)N̄ (0,0)|0〉,

where the sums are over all lattice sites labeled byx, whileN (x, t) andP(x, t) are interpolating fields for the neu
tron and proton, respectively. On the left-hand side of the equation, the subscripts on the interpolating field
the spatial momentum. In writing this correlation function, we have assumed thatt > t ′ > 0, and for simplicity
have chosen the final state to be at rest. As is standard, the ground state nucleons will be filtered out in th
large Euclidean time separation,t � t ′ � 0, and the nucleon axial matrix element can be isolated by taking a
of the three-point and two-point functions weighted with the appropriate kinematic factor.

Due to the periodicity of the fields, the initial-state momentum is quantizedP = 2πn/L, and the available
momentum transfer probed on a given set of gauge configurations is hence coarsely grained for curre
sizes. To circumvent this restriction, we replace the interpolating fields built from periodic quark fields wit
interpolating fields formed from twisted quark fields. We shall use the same notation for these fields used
N (x, t) andP(x, t). The precise form of the twisting will be spelled out later in Section3. It suffices to note tha
each valence quark flavor independently suffers a discontinuous change of phase at the lattice boundar
denoteθu andθd as the twisting angles foru andd quarks, respectively.

To implement the twisted boundary conditions, one uses modified fields that are periodic but coupled toU(1)

gauge field. For the quarks, one calculates their propagators in this background gauge field[12], where each flavor’s
twisting angle acts as an induced charge. For the baryons, we can formally separate off the kinematic e
twisting by defining the periodic interpolating fields

(2)Ñ (x, t) = e−iBN ·xN (x, t), P̃(x, t) = e−iBP ·xP(x, t),

whereBN = (θu + 2θd)/L andBP = (2θu + θd)/L are the effectiveU(1) charges of the neutron and proto
respectively. Using these periodic fields, one then calculates the various Wick contractions in terms of m
quark propagators.

In order to determine the axial correlation function, one must perform the Wick contractions when th
operator is inserted.4 To do so, one inserts the similarly modified axial-vector operatorÕµ(x) which is defined in
terms of periodic quark fields with effectiveU(1) charges. This operator is related to the twisted quark axial-ve
operator via

(3)Õµ(x) = e−i(θd−θu)·x/LOµ(x).

The calculation of Wick contractions then proceeds without any extraneous position-dependent phase fa
obtain the correlation function using twisted fields on the lattice, one hence determines∑

x,x′
e−iP ·x′ 〈0|P̃(x, t)Õµ(x′, t ′) ¯̃N (0,0)|0〉

(4)=
∑
x,x′

e−iBP ·(x−x′)e−i(P+BN )·x′ 〈0|P(x, t)Oµ(x′, t ′)N̄ (0,0)|0〉 = 〈
PBP (t)Oµ(t ′)N̄P+BN (0)

〉
,

where in the subsequent steps we have rewritten the lattice correlation function to expose that the initial a
states have been boosted. The momentum transfered to the final state is effectivelyq = (θu − θd − 2πn)/L and
remains non-zero even at zero lattice momentum, i.e., whenn = 0.

While the momentum transfer in such matrix elements can varied continuously, twisting produces lon
flavor symmetry breaking interactions that modify the physics we seek to explore. On the lattice, twistin

4 Notice there are no self-contractions of the operatorO (x).
µ
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introduces modified finite volume corrections that can be determined using chiral effective theories[14]. To this
end, we develop partially twisted heavy baryon chiral perturbation theory and apply it to the nucleon axial
elements. We ultimately address two simple examples that do not have sizable finite volume corrections.

3. Partially twisted baryon chiral perturbation theory

To address the consequences of twisting in lattice calculations of baryon properties, we construct the un
effective theory in the baryon sector. First we detail the partially twisted boundary conditions employed a
proceed to include these effects in heavy baryonχPT. The quark part of the partially quenched QCD Lagrangia

(5)L=
6∑

j,k=1

Q̄j (i/D − mQ)kjQk.

The six quark fields transform in the fundamental representation of the gradedSU(4|2) group and appear in th
vectorQT = (u, d, j, l, ũ, d̃). In addition to theu andd quarks, we have added ghost quarksũ andd̃ , which cancel
the closed valence loops, and two sea quarksj andl. In the isospin limit, the quark mass matrix ofSU(4|2) reads
mQ = diag(mu,mu,mj ,mj ,mu,mu), so that QCD is recovered in the limitmj → mu. We require that the quar
fields satisfy twisted boundary conditions, namely

(6)Q(x + Lêr ) = exp
(
iθa

r T̄ a
)
Q(x),

whereêr is a unit vector in ther th spatial direction and the block diagonal form of the supermatricesT̄ a is

(7)T̄ a = diag
(
T a,0, T a

)
.

HereT a are the elements of theU(2) algebra. In the isospin limit, any generator can be chosen for the tw
although we choose to preserve electric charge conservation and accordingly restrictT a to the Cartan subalgebr
Notice in Eq.(7) the sea quarks remain periodic at the boundary. Consequently the twist angles can be
without necessitating the generation of new gauge configurations and the fermionic determinant, whic
solely from the sea sector, is not affected by the twisting.

Redefining the quark fields as̃Q(x) = V †(x)Q(x), whereV (x) = exp(iθa · xT̄ a/L), we can write the partially
quenched QCD Lagrangian as

(8)L=
6∑

j,k=1

¯̃
Qj(i/̃D − mQ)kj Q̃k,

where allQ̃ fields satisfy periodic boundary conditions, and the effect of twisting has the form of a gauge
D̃µ = Dµ + iBµ, whereB = θaT̄ a/L, andB0 = 0. It will be easier to treat the twisting in the flavor basis of
valence and ghost sectors rather than in the generator basis, thus we writeθaT̄ a = diag(θu, θd,0,0, θu, θd), and
similarly for Bµ = diag(Bu

µ,Bd
µ,0,0,Bu

µ,Bd
µ).

In the meson sector of partially quenchedχPT (PQχPT) [16–20], the coset fieldΣ , which satisfies twisted
boundary conditions, can be traded in for the fieldΣ̃ defined byΣ̃(x) = V †(x)Σ(x)V (x), which is periodic at the
boundary[14]. In terms of this field, the Lagrangian of PQχPT appears as

(9)L= f 2

8
str

(
D̃µΣ̃D̃µΣ̃†) + λstr

(
m

†
QΣ̃ + Σ̃†mQ

)
.

The action of the covariant derivativẽDµ is specified byD̃µΣ̃ = ∂µΣ̃ + i[Bµ, Σ̃].
To include baryons into PQχPT, one uses rank three flavor tensors[21]. The spin-12 baryons are described by th

70-dimensional supermultipletBijk , while the spin-3 baryons are described by the44-dimensional supermultiple
2
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µ [22]. The baryon flavor tensors are, however, twisted at the boundary of the lattice. In ther th spatial direction,

both tensors satisfy boundary conditions of the form

Bijk(x + êrL) = (−)
ηi′ (ηj +ηj ′ )+(ηi′+ηj ′ )(ηk+ηk′ )(eiθa

r T̄ a )
ii′

(
eiθa

r T̄ a )
jj ′

(
eiθa

r T̄ a )
kk′Bi′j ′k′

(x)

(10)= (
eiθa

r T̄ a )
ii

(
eiθa

r T̄ a )
jj

(
eiθa

r T̄ a )
kk
Bijk(x),

where theη’s are the grading factors ofSU(4|2). In the last line, we used the diagonality of the Cartan genera
Thus we define new tensors̃Bijk andT̃ ijk

µ both having the form

(11)B̃ijk(x) = V
†
ii (x)V

†
jj (x)V

†
kk(x)Bijk(x).

These baryon fields satisfy periodic boundary conditions and their free Lagrangian has the form

L= i(
¯̃Bv · D̃B̃) + 2α

(PQ)
M (

¯̃BB̃M̃+) + 2β
(PQ)
M (

¯̃BM̃+B̃) + 2σ
(PQ)
M (

¯̃BB̃)str(M̃+)

(12)− i
( ¯̃T µv · D̃T̃ µ

) + ∆
( ¯̃T µT̃ µ

) + 2γ
(PQ)
M

( ¯̃T µM̃+T̃ µ
) − 2σ̄

(PQ)
M (

¯̃T µT̃µ)str(M̃+),

where the mass operator is defined byM̃+ = 1
2(ξ̃†mQξ̃† + ξ̃mQξ̃), with ξ̃ =

√
Σ̃ , and the covariant derivativ

acts onB̃ andT̃µ fields in the same manner

(13)
[
D̃µB̃(x)

]ijk = ∂µB̃ijk(x) − i
(
Bi

µ + Bj
µ + Bk

µ

)
B̃ijk(x).

The connection of the low-energy constants appearing in Eq.(12) to those ofSU(2) χPT is described in[22].
With twisted boundary conditions, the leading order PQχPT interaction Lagrangian between the baryons

mesons now appears as

(14)L= 2α
( ¯̃BSµB̃Ãµ

) + 2β
( ¯̃BSµÃµB̃

) + 2H
( ¯̃T νS

µÃµT̃ ν
) +

√
3

2
C
[( ¯̃T νÃ

νB̃
) + ( ¯̃BÃν T̃ν

)]
,

where the twisted axial-vector meson field is defined byÃµ = i
2(ξ̃ D̃µξ̃† − ξ̃†D̃µξ̃ ). The familiar low-energy

constants ofSU(2) can be identified as follows[22]: gA = 2
3α − 1

3β, g∆N = −C, andg∆∆ = H. Notice there is an
extra free parameter in the PQχPT interaction Lagrangian compared to that ofχPT.

4. Nucleon axial radius and pseudoscalar form factor

The axial current matrix elements of baryons have been studied extensively in chiral effective theor
many investigations have now been tailored in an attempt to describe the numerical approximations i
QCD calculations, see[22–31]. Determination of the nucleon axial charge has been the goal of numerous
investigations, for example[32–43]. The nucleon axial form factors have been calculated inχPT [44,45], but have
not been investigated on the lattice. Here we consider the nucleon axial form factors in partially twistedχPT. We
detail how the axial radius and pseudoscalar form factor can be accessed, even at zero lattice momentum

In partially quenched QCD, the iso-vector axial-vector current is defined byJ
aµ
5 = Q̄γ µγ5(τ̄

a/2)Q. The choice
of supermatrices̄τa is not unique[46], even when one imposes the condition strτ̄ a = 0. One should choose a for
of the supermatrices that maintains the cancellation of valence and ghost quark loops with an operator
[47]. For the flavor changing contributions we consider below, however, these operator self-contractions a
ically vanish. Thus regardless of the form chosen in extendingτ̄ a , the only disconnected quark contributions a
those from the gauge configurations. For our calculation we require the action ofJ

aµ
5 in only the valence secto

and specify the upper 2× 2 block of τ̄ a to be the usual Pauli isospin matricesτa = (1,τ ). Henceforth we restric
our attention to the operatorJ+µ ≡ J

1µ + iJ
2µ = ūγ µγ d . The non-vanishing nucleon matrix element of t
5 5 5 5
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operator is the neutron to proton axial transition, which we decompose into two form factors

(15)
〈
p(P ′)

∣∣J+µ
5

∣∣n(P )
〉 = ū(P ′)

[
2SµGA

(
q2) + qµq · S

(2MN)2
GP

(
q2)]u(P ),

whereqµ = (P ′ − P)µ is the four-momentum transfer. AboveGA(q2) is the axial form factor andGP (q2) is
the induced pseudoscalar form factor. The nucleon axial charge isGA(0), and in the chiral limitGA(0) = gA.
Kinematically one can probe zero momentum transfer because in the isospin limit the proton and neu
degenerate on the lattice, as the electromagnetic mass difference is absent. We define the axial radius〈r2

A〉 from the
small momentum transfer expansion of the axial form factor

(16)GA

(
q2) = GA(0) + q2

6

〈
r2
A

〉 + · · · .

Clearly to access the pseudoscalar form factor and axial radius, one needs momentum transfer between
and final states.

In partially twistedχPT, the form of the leading-order baryon axial currentJ
+µ
5 is

(17)J
+µ
5 = 2α

( ¯̃BSµB̃τ̄+) + 2β
( ¯̃BSµτ̄+B̃

) + 2H
( ¯̃T νS

µτ̄+T̃ ν
) +

√
3

2
C
[( ¯̃T µτ̄+B̃

) + ( ¯̃Bτ̄+T̃ µ
)]

,

where the full chiral structure of the axial-vector current can be obtained under the replacementτ̄+ → 1
2(ξ̃†τ̄+ξ̃ +

ξ̃ τ̄+ξ̃†). To find contributions to the axial radius and pseudoscalar form factor, we must consider tree-leve
butions of which there is the pion pole term and local interaction terms. The latter are derived convenien
the Lagrangian. LetFµν

A be the field-strength tensor of the external axial field. In untwistedχPT, one has the
dimension-six interaction term contained in the Lagrangian

(18)L= 2nA

Λ2
χ

(
N̄Sµτ+N

)
∂νF

µν
A ,

that leads to a contributionδJ+µ
5 to the axial current at next-to-leading order

(19)δJ
+µ
5 = 2nA

Λ2
χ

[
∂µ∂ν

(
N̄Sντ

+N
) − ∂2(N̄Sµτ+N

)]
.

In partially twistedχPT the analogous next-to-leading order axial current reads

(20)δJ
+µ
5 = 1

Λ2
χ

{
2nα

[
D̃µD̃ν

( ¯̃BSνB̃τ̄+) − D̃2( ¯̃BSµB̃τ̄+)] + 2nβ

[
D̃µD̃ν

( ¯̃BSντ̄
+B̃

) − D̃2( ¯̃BSµτ̄+B̃
)]}

.

The relation ofnA to the PQχPT parameters can be found from matching,nA = 2
3nα − 1

3nβ .
Also, the terms of the axial current in Eq.(17) can be combined with those of the interaction Lagrangia

Eq. (14) to generate loop contributions to the axial radius and pseudoscalar form factor. These two obse
however, are rather special in heavy baryonχPT, because tree-level terms dominate over pion loop contribut
This is because the axial current is inserted on the baryon lines and generates terms∼ q2/M2

N , rather than terms
∼ q2/m2

φ present in electromagnetic form factors, for example. Thus these quantities are largely insens
the long-range effects introduced by twisting. Subsequently twisting can be used to produce momentum
between nucleon states without sizable finite volume corrections. In calculating these quantities, we find

(21)
〈
r2
A

〉 = 6nA

Λ2
χ

[
1+O

(
m2

φ

Λ2
χ

,
m2

φ

M2
N

)]
,

(22)GP

(
q2) = (2MN)2

(
gA

2 2
− 2nA

2

)[
1+O

(
m2

φ

2
,

q2

2
,

m2
φ

2
,

q2

2

)]
,

q − mπ Λχ Λχ Λχ MN MN
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where the recoil corrections (∝ M−2
N ) can be determined at the one-loop level[26], while the equally sizable

chiral corrections (∝ Λ−2
χ ) enter at two loops[48]. Abovemφ is an abbreviation for the meson masses of PQχPT.

Because these PQχPT results are determined at tree-level, sea quark masses do not appear and the depen
the parametersnα andnβ enters only through the combination2

3nα − 1
3nβ = nA. In this way, the partially quenche

results maintain the Adler–Dothan relation for the pseudoscalar form factor[49].
In writing Eqs.(15), (21), and (22), we have used a compact notation for the momentaP andP ′, which have

the form

(23)P µ =
(√

M2
N +

(
2πn

L
+ BN

)2

,
2πn

L
+ BN

)
,

(24)P ′µ =
(√

M2
N +

(
2πm

L
+ BP

)2

,
2πm

L
+ BP

)
,

as well as for the momentum transfer, which isqµ ≈ (0,P ′ − P ) in the non-relativistic limit.5 We have chosen th
above notation to be consistent with Section2. Finally let us spell out our results and the resulting form of Eq.(15)
at zero lattice momentum, i.e.,m = n = 0. To this end we defineBµ

π+ = (BP − BN )µ = (Bu − Bd)µ, which is the
inducedU(1) charge of theπ+ field due to twisting. At zero lattice momentum, we have

(25)
〈
p(0)

∣∣J+µ
5

∣∣n(0)
〉 = ū(0)

{
2Sµ

[
GA(0) − 1

6

〈
r2
A

〉
B2

π+

]
+ B

µ

π+Bπ+S

[
gA

B2
π+ + m2

π

+ 1

3

〈
r2
A

〉]}
u(0),

where we have used〈r2
A〉 as a replacement for the quantity in Eq.(21). This form makes transparent how varyi

the twisting parameters of the quarks can lead to a determination of the axial radius and pseudoscalar for
We remark that these determinations suffer additional finite volume corrections but these do not occur unt
orders in the heavy baryon and chiral expansions. The simplicity of these results, moreover, can be u
consistency check on the chiral extrapolation. For example, if one sees valence or sea quark mass depe
the axial radius greater than∼ m2

φ/M2
N × 100%, then one is certainly not in the chiral regime. The same is

of the sea quark mass dependence of the pseudoscalar form factor, which has, however, dramatic beh
function of the valence quark masses.

5. Summary

For hadronic matrix elements of flavor changing operators, twisted valence quarks produce momentum
between the initial and final states. Thus such form factors’ momentum transfer dependence can be explo
out the additional generation of gauge configurations. Moreover the near forward limit can be explored to
radii, etc., without necessitating a box with a very long side and subsequent momentum extrapolation. Th
however, modified finite volume corrections to these form factors arising from twisted boundary conditio
large enough volumes and below particle production thresholds, these corrections are exponentially smal
velop partially twisted baryonχPT as a means to address the extrapolation of lattice QCD calculations emp
twisted valence quarks. We pursue two simple examples, the nucleon axial radius and pseudoscalar for
These quantities do not receive finite volume corrections until higher orders in the chiral expansion, thus p
a clean test case for the utilization of the induced momentum transfer from twisted quarks. Moreover, the
bility of χPT in the baryon sector can be tested due to the simple quark mass dependence predicted at lea

5 Here we have neglected theB dependence of the proton and neutron masses that is dynamically generated from finite volume
These effects lead toM − M �= 0 even in the isospin limit, but the difference introduced is beyond the order we are working.
n p
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for these observables. Lastly confrontation with experimental data (which is ample for these observables)
an essential test of lattice techniques.

Acknowledgements

We thank Shailesh Chandrasekharan and Tom Mehen for numerous discussions, and Will Detmold f
ments on the manuscript. This work is supported in part by the US Department of Energy, Grant N
FG02-96ER40945, and we acknowledge the Institute for Nuclear Theory at the University of Washing
its hospitality during the completion of this work.

References

[1] D.J. Gross, Y. Kitazawa, Nucl. Phys. B 206 (1982) 440.
[2] A. Roberge, N. Weiss, Nucl. Phys. B 275 (1986) 734.
[3] U.J. Wiese, Nucl. Phys. B 375 (1992) 45.
[4] M. Luscher, S. Sint, R. Sommer, P. Weisz, Nucl. Phys. B 478 (1996) 365, hep-lat/9605038.
[5] A. Bucarelli, F. Palombi, R. Petronzio, A. Shindler, Nucl. Phys. B 552 (1999) 379, hep-lat/9808005.
[6] M. Guagnelli, et al., Zeuthen–Rome/ZeRo Collaboration, Nucl. Phys. B 664 (2003) 276, hep-lat/0303012.
[7] J. Kiskis, R. Narayanan, H. Neuberger, Phys. Rev. D 66 (2002) 025019, hep-lat/0203005.
[8] J. Kiskis, R. Narayanan, H. Neuberger, Phys. Lett. B 574 (2003) 65, hep-lat/0308033.
[9] C.-H. Kim, N.H. Christ, Nucl. Phys. B (Proc. Suppl.) 119 (2003) 365, hep-lat/0210003.

[10] C.-H. Kim, Nucl. Phys. B (Proc. Suppl.) 129 (2004) 197, hep-lat/0311003.
[11] P.F. Bedaque, Phys. Lett. B 593 (2004) 82, nucl-th/0402051.
[12] G.M. de Divitiis, R. Petronzio, N. Tantalo, Phys. Lett. B 595 (2004) 408, hep-lat/0405002.
[13] G.M. de Divitiis, N. Tantalo, hep-lat/0409154.
[14] C.T. Sachrajda, G. Villadoro, Phys. Lett. B 609 (2005) 73, hep-lat/0411033.
[15] P.F. Bedaque, J.-W. Chen, hep-lat/0412023.
[16] C.W. Bernard, M.F.L. Golterman, Phys. Rev. D 49 (1994) 486, hep-lat/9306005.
[17] S.R. Sharpe, Phys. Rev. D 56 (1997) 7052, hep-lat/9707018.
[18] M.F.L. Golterman, K.-C. Leung, Phys. Rev. D 57 (1998) 5703, hep-lat/9711033.
[19] S.R. Sharpe, N. Shoresh, Phys. Rev. D 62 (2000) 094503, hep-lat/0006017.
[20] S.R. Sharpe, N. Shoresh, Phys. Rev. D 64 (2001) 114510, hep-lat/0108003.
[21] J.N. Labrenz, S.R. Sharpe, Phys. Rev. D 54 (1996) 4595, hep-lat/9605034.
[22] S.R. Beane, M.J. Savage, Nucl. Phys. A 709 (2002) 319, hep-lat/0203003.
[23] J. Bijnens, H. Sonoda, M.B. Wise, Nucl. Phys. B 261 (1985) 185.
[24] E. Jenkins, A.V. Manohar, Phys. Lett. B 255 (1991) 558.
[25] E. Jenkins, A.V. Manohar, Phys. Lett. B 259 (1991) 353.
[26] B. Borasoy, Phys. Rev. D 59 (1999) 054021, hep-ph/9811411.
[27] M. Kim, S. Kim, Phys. Rev. D 58 (1998) 074509, hep-lat/9608091.
[28] J.-W. Chen, M.J. Savage, Phys. Rev. D 65 (2002) 094001, hep-lat/0111050.
[29] S.R. Beane, M.J. Savage, Phys. Rev. D 68 (2003) 114502, hep-lat/0306036.
[30] S.R. Beane, M.J. Savage, Phys. Rev. D 70 (2004) 074029, hep-ph/0404131.
[31] W. Detmold, M.J. Savage, Phys. Lett. B 599 (2004) 32, hep-lat/0407008.
[32] R.M. Woloshyn, K.F. Liu, Nucl. Phys. B 311 (1989) 527.
[33] G. Martinelli, C.T. Sachrajda, Nucl. Phys. B 316 (1989) 355.
[34] K.F. Liu, S.J. Dong, T. Draper, J.M. Wu, W. Wilcox, Phys. Rev. D 49 (1994) 4755, hep-lat/9305025.
[35] M. Fukugita, Y. Kuramashi, M. Okawa, A. Ukawa, Phys. Rev. Lett. 75 (1995) 2092, hep-lat/9501010.
[36] S.J. Dong, J.F. Lagae, K.F. Liu, Phys. Rev. Lett. 75 (1995) 2096, hep-ph/9502334.
[37] M. Gockeler, et al., Phys. Rev. D 53 (1996) 2317, hep-lat/9508004.
[38] S. Gusken, et al., TXL Collaboration, Phys. Rev. D 59 (1999) 114502.
[39] R. Horsley, UKQCD Collaboration, Nucl. Phys. B (Proc. Suppl.) 94 (2001) 307, hep-lat/0010059.
[40] D. Dolgov, et al., LHPC Collaboration, Phys. Rev. D 66 (2002) 034506, hep-lat/0201021.
[41] S. Sasaki, K. Orginos, S. Ohta, T. Blum, RBCK Collaboration, Phys. Rev. D 68 (2003) 054509, hep-lat/0306007.



48 B.C. Tiburzi / Physics Letters B 617 (2005) 40–48
[42] A.A. Khan, hep-lat/0409161.
[43] M. Gurtler, et al., hep-lat/0409164.
[44] V. Bernard, N. Kaiser, U.G. Meissner, Phys. Rev. D 50 (1994) 6899, hep-ph/9403351.
[45] V. Bernard, H.W. Fearing, T.R. Hemmert, U.G. Meissner, Nucl. Phys. A 635 (1998) 121, hep-ph/9801297.
[46] M. Golterman, E. Pallante, JHEP 0110 (2001) 037, hep-lat/0108010.
[47] B.C. Tiburzi, Phys. Rev. D 71 (2005) 054504, hep-lat/0412025.
[48] V. Bernard, N. Kaiser, U.-G. Meissner, Int. J. Mod. Phys. E 4 (1995) 193, hep-ph/9501384.
[49] S.L. Adler, Y. Dothan, Phys. Rev. 151 (1966) 1267.


	Flavor twisted boundary conditions and the nucleon axial current
	Introduction
	Nucleon axial transition
	Partially twisted baryon chiral perturbation theory
	Nucleon axial radius and pseudoscalar form factor
	Summary
	Acknowledgements
	References


