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Abstract

With twisted boundary conditions on the quark fields, we study nucleon matrix elements of the axial current utilizing twisted
heavy baryon chiral perturbation theory. One can explore the momentum transfer dependence of the axial form factors more
easily than by using ordinary lattice quantized momenta alone. As examples, we derive expressions for the nucleon axial radius
and pseudoscalar form factor.

0 2005 Elsevier B.VOpen access under CC BY license.
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1. Introduction

Lattice QCD calculations will provide first principles determination of low-energy hadronic properties. This
low-energy region of QCD is the regime of strong interactions, where perturbation theory fails and the quark and
gluon degrees of freedom are confined into color neutral hadronic states. Advances in lattice QCD have largely
come from exploiting the features of numerically approximating the theory on a discrete lattice in a finite volume.
As such, there is freedom to manipulate lattice quantities, so that the QCD answer is recovered in the continuum
and infinite volume limits.

A mutable feature of finite volume simulations is the choice of boundary conditions satisfied by the fields.
Periodic boundary conditions are usually assumed as a matter of convenience, as they lead to fields and hence
observables which are single valued. Observables are determined, howeves-fnatnix elements and hence
only the action need be single valued for physical quantities to be well defined. The generator of any symmetry
of the action can also be used to specify boundary conditions. In particular symmetries involving flavor generators
lead to so-called twisted boundary conditions on the quark fields. The appearance of twisted boundary conditions
is not new. They have been considered in various contexts over the[$ea€§ Recently there has been renewed
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interest in utilizing twisted boundary conditions in lattice QCD simulatidris-15] This interest stems from the
realization that the restriction to lattice quantized momenta can be bypassed by employing twisted quark fields.

In this work, we consider the nucleon axial transition form factors. On a given lattice, the available momentum
transfer is quantized, and on current lattices one has integer multiples of about a few hundred MeV. While chiral
perturbation theoryPT) predicts the momentum transfer dependence of these form factors, both the quark masses
and lattice momenta must be brought down so that one enters the effective theory’s range of applicability. Another
difficulty encountered with a coarse sampling of the momentum transfer on a fixed lattice is the determination of
radii and moments which are only accessible in the near-forward iffiitese issues can be circumvented with
twisted quarks.

Before specializing to the case of the nucleon axial matrix elements below, we begin with a more general
observation about single particle matrix elements of flavor-changing opefaftiesse matrix elements have the
form (H'(P")|O|H(P)). Here the operato® changes the flavor composition of the hadi@ninto that of H’,
and we assume at least one of the states is not flavor neutral. The above matrix element can be decomposed int
various form factors which depend on the momentum transfer. Let the size of the latfice kach of the spatial
directions. On the lattice, the momentum transfes P’ — P is quantizedg = 27n/L, for n € Z3, when one
imposes periodic boundary conditions on the quark fields. To smoothly access the momentum transfer dependence
of the transition form factors, one is forced to vary the lattice size and hence generate new gauge confidurations.
Imposing twisted boundary conditions on the valence quark fields, such that different flavors are independently
rotated in phase at the boundary, one finds an induced momentum transfatr/L + §0 /L, wheresé is the
difference in twist angles of the flavors changed. Thus with twisted boundary conditions on the valence quarks, the
momentum transfer can be continuously varied and one can access off diagonal matrix elements, even at zero lattice
momentum transfer = 0. For such matrix elements, one can work in the near forward limit without utilizing a
box with one very long side, and without performing a momentum extrapolation.

In the following section (Sectiof), we focus on the nucleon axial matrix elements. Here we extend our mo-
mentum transfer observation above to the case of the neutron—proton axial correlation function. Next in3Section
we develop partially twisted baryopPT for lattice calculations in which the valence (and ghost) quarks satisfy
twisted boundary conditions, while the sea quarks remain periodic. This effective theory can be used at finite vol-
ume to ascertain the corrections to nucleon matrix elements due to twisting. As an application, we calculate the
axial radius and pseudoscalar form factor of the nucleon in Sedtiand summarize our findings in Sectibn

2. Nucleon axial transition

Let us now focus specifically on the nucleon axial matrix elements and make our introductory observation more
concrete. For simplicity, here and below we work in the isospin limit, and consider the neutron and proton to be
degenerate. We also frame our discussion using continuum operators. The relevant flavor-changing operator for

1 To sample smaller values of the momentum transfer, one could work with lattices that are much longer in only one spatial direction. With
such lattices, however, working with sufficiently small lattice spacings and quark masses is well beyond the reach of current simulations.

2 A similar observation can also be made for particle to vacuum transition matrix elements. For a generic pseutdosealdrave
schematically(0|.A|H (P)) = ify P, where A is the spatial part of the axial-vector current. With twisted boundary conditions and for a
flavor non-diagonal stat®l, one can access the decay constgptat zero lattice momentum. While one could have easily deduced the decay
constant by working in the rest frame and using the time-component of the current, the above observation provides a novel check on using
twisted quarks.

31n principle, one could use the dynamically generated quark mass dependence of the initial and final state hadron masses to explore the
momentum transfer dependence of such form factors, assuming that these hadrons are non-degenerate. This does not give one direct contre
over the momentum transfer probed, moreover, the procedure is complicated by the additional need for chiral extrapolation.
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the nucleon axial transition 9, (x) = i (x)y, ysd (x). The Euclidean time, axial correlation function has the form

(Po)OL (NP Q)= e P (0P (x. O, (x. 1) (0. 0)(0). 1)

x,x’

where the sums are over all lattice sites labeled pwyhile A (x, r) andP(x, t) are interpolating fields for the neu-

tron and proton, respectively. On the left-hand side of the equation, the subscripts on the interpolating fields denote
the spatial momentum. In writing this correlation function, we have assumed that> 0, and for simplicity

have chosen the final state to be at rest. As is standard, the ground state nucleons will be filtered out in the limit of
large Euclidean time separatiars> ¢ >> 0, and the nucleon axial matrix element can be isolated by taking a ratio

of the three-point and two-point functions weighted with the appropriate kinematic factor.

Due to the periodicity of the fields, the initial-state momentum is quantRed 2zn/L, and the available
momentum transfer probed on a given set of gauge configurations is hence coarsely grained for current lattice
sizes. To circumvent this restriction, we replace the interpolating fields built from periodic quark fields with new
interpolating fields formed from twisted quark fields. We shall use the same notation for these fields used above:
N(x,t) andP(x, r). The precise form of the twisting will be spelled out later in Sec8ott suffices to note that
each valence quark flavor independently suffers a discontinuous change of phase at the lattice boundary, and we
denoted” and#? as the twisting angles for andd quarks, respectively.

To implement the twisted boundary conditions, one uses modified fields that are periodic but couplgdxo a
gauge field. For the quarks, one calculates their propagators in this background gadg@fieldere each flavor’s
twisting angle acts as an induced charge. For the baryons, we can formally separate off the kinematic effects of
twisting by defining the periodic interpolating fields

N, 1) =e BNYN (x, 1), Px,t)=e ' BP*P(x, 1), 2

where B s = (0" + 209)/L and Bp = (20" + 0¢)/L are the effectivd/ (1) charges of the neutron and proton,
respectively. Using these periodic fields, one then calculates the various Wick contractions in terms of modified
quark propagators.

In order to determine the axial correlation function, one must perform the Wick contractions when the axial
operator is insertefi To do so, one inserts the similarly modified axial-vector operé)l;gpfx) which is defined in
terms of periodic quark fields with effectivé(1) charges. This operator is related to the twisted quark axial-vector
operator via

@M(x) :eii(odfau)'x/L(’)M(x). 3)

The calculation of Wick contractions then proceeds without any extraneous position-dependent phase factors. To
obtain the correlation function using twisted fields on the lattice, one hence determines

Ze—iP~x/<0|75(x’ [)@M(x/, t/)./\:/(O, 0)10)

x,x’

=Y e Br D T PEBAX O P (x, 1) O (x 1) (0, 0)[0) = (P (1) O, (1 )N p 4 B, (0)). @

x,x’

where in the subsequent steps we have rewritten the lattice correlation function to expose that the initial and final
states have been boosted. The momentum transfered to the final state is effqctivélyf — ¢ — 27n)/L and
remains non-zero even at zero lattice momentum, i.e., whe.

While the momentum transfer in such matrix elements can varied continuously, twisting produces long-range
flavor symmetry breaking interactions that modify the physics we seek to explore. On the lattice, twisting thus

4 Notice there are no self-contractions of the operélgix).



B.C. Tiburz / Physics Letters B 617 (2005) 4048 43

introduces modified finite volume corrections that can be determined using chiral effective thgéfid® this
end, we develop partially twisted heavy baryon chiral perturbation theory and apply it to the nucleon axial matrix
elements. We ultimately address two simple examples that do not have sizable finite volume corrections.

3. Partially twisted baryon chiral perturbation theory

To address the consequences of twisting in lattice calculations of baryon properties, we construct the underlying
effective theory in the baryon sector. First we detail the partially twisted boundary conditions employed and then
proceed to include these effects in heavy bary®T. The quark part of the partially quenched QCD Lagrangian is

6

L= 0/Gp-mo)ox. )

jok=1

The six quark fields transform in the fundamental representation of the g&t@iR) group and appear in the
vectorQ" = (u,d, j,1,ii,d). In addition to the: andd quarks, we have added ghost quaikendd, which cancel
the closed valence loops, and two sea qugrkad!. In the isospin limit, the quark mass matrix 88 (4|2) reads
mg = diag(my, my,mj,m;, my, my), so that QCD is recovered in the limit; — m,. We require that the quark
fields satisfy twisted boundary conditions, namely

O(x + Lé,) = exp(itf T*) Q(x), (6)
whereeé, is a unit vector in the'th spatial direction and the block diagonal form of the supermatii¢eis
T¢ =diag(T“,0, T%). )

Here T¢ are the elements of th€ (2) algebra. In the isospin limit, any generator can be chosen for the twists,
although we choose to preserve electric charge conservation and accordingly Tésta¢he Cartan subalgebra.
Notice in Eq.(7) the sea quarks remain periodic at the boundary. Consequently the twist angles can be changed
without necessitating the generation of new gauge configurations and the fermionic determinant, which arises
solely from the sea sector, is not affected by the twisting.

Redefining the quark fields a@&(x) = VT(x) Q(x), whereV (x) = exp(i#® - xT¢/L), we can write the partially
quenched QCD Lagrangian as

6
L= 0/p—mo);0n. ()
k=1
where allQ fields satisfy periodic boundary conditions, and the effect of twisting has the form of a gauge field:
DL =D, +iB,, whereB = 0°T“/L, and By = 0. It will be easier to treat the twisting in the flavor basis of the
valence and ghost sectors rather than in the generator basis, thus wé%iitite- diag#”, ¢, 0, 0, 6“, 6%), and
similarly for B,, = diag(B", BZ’ 0,0, BY, Bd)

In the meson sector of partially quench,eE’T (PQ(PT) [16-20] the coset field~, which satisfies twisted
boundary conditions, can be traded in for the figldlefined byX (x) = VT(x) X (x) V (x), which is periodic at the
boundary[14]. In terms of this field, the Lagrangian of R@T appears as
L= 2 st(D* £ D, =) + ast(m], £ + £Tmg) 9)

) Iz 0 Q)
The action of the covariant derivative* is specified byD* ¥ = 9* £ + i[BH, X].

To include baryons into P£PT, one uses rank three flavor tengd@rH. The spin% baryons are described by the
70-dimensional supermultipleg’/*, while the spin% baryons are described by thé4-dimensional supermultiplet
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Zijk [22]. The baryon flavor tensors are, however, twisted at the boundary of the lattice rth gpatial direction,
both tensors satisfy boundary conditions of the form

Biji(x + &, L) = (=)' (0t nn) e (o107 ( ie;lTa)jj,(eie'{lTa)kk,Bi/j/k/ (x)

_ (einT“)ii(eiGﬁ'T“)jj (eie;lTa)kkBijk(x)s (10)
where thep’s are the grading factors &J(4/2). In the last line, we used the diagonality of the Cartan generators.

Thus we define new tensolé/ andfﬁjk both having the form

i’

Biji(x) = Vi )V )V () Bijie(x). (11)
These baryon fields satisfy periodic boundary conditions and their free Lagrangian has the form
L =i(Bv-DB)+ 20" BBM,) + 285 BM . B) + 20 E2(BB) st M)
—i(T v DTH) + AT, TH) + 2y TUT M TH) = 25P(T T stiM ), (12)

where the mass operator is defineddy; = 3(ETmoé" + Emoé), with & = V£, and the covariant derivative
acts on and7,, fields in the same manner

[DuB(x)]7 = 8,87 (x) —i (B, + Bj + BX)B7*(x). (13)

The connection of the low-energy constants appearing ifE)to those ofSU(2) xPT is described ifi22].
With twisted boundary conditions, the leading order Y interaction Lagrangian between the baryons and
mesons now appears as

£=20(BS"BA,) +28(BS" A,B) + 21 (T, S" A, T") + \/gc[(i/ivé) +(BA'T,)], (14)

where the twisted axial-vector meson field is definedAsy= 5(ED#&" — £TD#&). The familiar low-energy

constants 08U (2) can be identified as follow22]: g4 = %oz — %ﬂ, gan = —C, andgaa = H. Notice there is an
extra free parameter in the R@T interaction Lagrangian compared to thayéfT.

4. Nucleon axial radius and pseudoscalar form factor

The axial current matrix elements of baryons have been studied extensively in chiral effective theories and
many investigations have now been tailored in an attempt to describe the numerical approximations in lattice
QCD calculations, se22—-31] Determination of the nucleon axial charge has been the goal of numerous lattice
investigations, for exampl@2-43] The nucleon axial form factors have been calculategRiT [44,45], but have
not been investigated on the lattice. Here we consider the nucleon axial form factors in partially wR3te\d/e
detail how the axial radius and pseudoscalar form factor can be accessed, even at zero lattice momentum.

In partially quenched QCD, the iso-vector axial-vector current is definelg'f)y: QyHys(7%/2) Q. The choice
of supermatriceg® is not uniqug46], even when one imposes the conditiorzéte= 0. One should choose a form
of the supermatrices that maintains the cancellation of valence and ghost quark loops with an operator insertion
[47]. For the flavor changing contributions we consider below, however, these operator self-contractions automat-
ically vanish. Thus regardless of the form chosen in extendindghe only disconnected quark contributions are
those from the gauge configurations. For our calculation we require the actigfff' of only the valence sector,
and specify the upper 2 2 block of 7¢ to be the usual Pauli isospin matrices= (1, 7). Henceforth we restrict
our attention to the operatdrg’” = 151“ + iJ52“ = uy"ysd. The non-vanishing nucleon matrix element of this
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operator is the neutron to proton axial transition, which we decompose into two form factors

2

(p(P’)|J5+”|n<P))=ﬁ(P’)[zsmA(qz)+ 94 SZGP(qz)i|M(P), (15)
(2My)

whereg* = (P’ — P)* is the four-momentum transfer. Abovg, (¢2) is the axial form factor and; p(¢2) is

the induced pseudoscalar form factor. The nucleon axial char@e (§), and in the chiral limitG4(0) = ga.
Kinematically one can probe zero momentum transfer because in the isospin limit the proton and neutron are
degenerate on the lattice, as the electromagnetic mass difference is absent. We define the ax@ yédiosthe

small momentum transfer expansion of the axial form factor

2
Gag?) = Ga@ + L frf)+--. (16)

Clearly to access the pseudoscalar form factor and axial radius, one needs momentum transfer between the initia
and final states.
In partially twistedy PT, the form of the leading-order baryon axial curréﬁf‘ is

JE = 2a(BS" BT + 28(BS" £ B) + 2H(T, 8"+ T") + @c[(iu#é) + (BETTM)], (17)

where the full chiral structure of the axial-vector current can be obtained under the replaéé‘mer% (ETTHE+
£71ET). To find contributions to the axial radius and pseudoscalar form factor, we must consider tree-level contri-
butions of which there is the pion pole term and local interaction terms. The latter are derived conveniently from
the Lagrangian. LeFj(“ be the field-strength tensor of the external axial field. In untwisted, one has the
dimension-six interaction term contained in the Lagrangian
L= ZXA (NS, t+N)3, FL, (18)
X

that leads to a contributioéh]g”‘ to the axial current at next-to-leading order

sigt = 24 280" (NS, N) — 03 (NS t*N)]. (19)
X

In partially twistedy PT the analogous next-to-leading order axial current reads

SIFH = A—li{zna[ﬁfﬁb“(ésvé#) — D3(BS"B*)] + 20 [ D" D" (BS, 7 B) - D*(Bs*+*B)]|.  (20)

The relation ofi 4 to the PQ(PT parameters can be found from matching—= %na — %nﬂ.
Also, the terms of the axial current in E(L7) can be combined with those of the interaction Lagrangian in

Eq. (14) to generate loop contributions to the axial radius and pseudoscalar form factor. These two observables,
however, are rather special in heavy baryd®T, because tree-level terms dominate over pion loop contributions.
This is because the axial current is inserted on the baryon lines and generatestéi"msf,, rather than terms
~ qz/qu5 present in electromagnetic form factors, for example. Thus these quantities are largely insensitive to
the long-range effects introduced by twisting. Subsequently twisting can be used to produce momentum transfer
between nucleon states without sizable finite volume corrections. In calculating these quantities, we find

2, bna m2 mé
<rA> A2 |:1 O<A2 K W)}’ (21)

N
2 2 2
gA 2np s 4> My q°
G r(g? :(ZMN)2(4— )[1+o<— g "¢ 9 (22)
( ) g% —m2 A)Z( )2( A)Z( Mlz\, Mlz\,
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where the recoil correctionsx(M,;z) can be determined at the one-loop lej26], while the equally sizable
chiral correctionsd A;Z) enter at two loop$48]. Abovem, is an abbreviation for the meson masses ofPQ.
Because these B@T results are determined at tree-level, sea quark masses do not appear and the dependence ot
the parameters, andng enters only through the combinatiéna — %nﬁ =n4. Inthis way, the partially quenched
results maintain the Adler—Dothan relation for the pseudoscalar form fd&pr
In writing Egs.(15), (21), and (22)we have used a compact notation for the momehtnd P’, which have
the form

2 22
Pﬂ:(/M,%+<%”+BN) ,%nﬁLBN)’ (23)

2 2 om
P = <\/M§, n (”Tm +B7>) , Tm +B7>), (24)

as well as for the momentum transfer, whiclyfs~ (0, P’ — P) in the non-relativistic limi We have chosen the
above notation to be consistent with Sectirinally let us spell out our results and the resulting form of @§)
at zero lattice momentum, i.en, = n = 0. To this end we definBj‘:+ = (Bp — By\)* = (B* — BY)*, which is the
inducedU (1) charge of ther ™ field due to twisting. At zero lattice momentum, we have

(p(0)]J5"|n(0)) = ﬁ(O){ZS“ [GA(O) —~ %(rf,)gg} + BJ’TL+B7T+S|:287A2 + }(ri):| }M(O), (25)
B2, +m5 3

where we have use@‘f‘) as a replacement for the quantity in Eg1). This form makes transparent how varying
the twisting parameters of the quarks can lead to a determination of the axial radius and pseudoscalar form factor.
We remark that these determinations suffer additional finite volume corrections but these do not occur until higher
orders in the heavy baryon and chiral expansions. The simplicity of these results, moreover, can be used as a
consistency check on the chiral extrapolation. For example, if one sees valence or sea quark mass dependence ¢
the axial radius greater than mi/MI%, x 100%, then one is certainly not in the chiral regime. The same is true
of the sea quark mass dependence of the pseudoscalar form factor, which has, however, dramatic behavior as
function of the valence quark masses.

5. Summary

For hadronic matrix elements of flavor changing operators, twisted valence quarks produce momentum transfer
between the initial and final states. Thus such form factors’ momentum transfer dependence can be explored with-
out the additional generation of gauge configurations. Moreover the near forward limit can be explored to extract
radii, etc., without necessitating a box with a very long side and subsequent momentum extrapolation. There are,
however, modified finite volume corrections to these form factors arising from twisted boundary conditions. For
large enough volumes and below particle production thresholds, these corrections are exponentially small. We de-
velop partially twisted baryon PT as a means to address the extrapolation of lattice QCD calculations employing
twisted valence quarks. We pursue two simple examples, the nucleon axial radius and pseudoscalar form factor.
These quantities do not receive finite volume corrections until higher orders in the chiral expansion, thus providing
a clean test case for the utilization of the induced momentum transfer from twisted quarks. Moreover, the applica-
bility of xPT in the baryon sector can be tested due to the simple quark mass dependence predicted at leading orde

5 Here we have neglected ti® dependence of the proton and neutron masses that is dynamically generated from finite volume effects.
These effects lead t,, — M), # 0 even in the isospin limit, but the difference introduced is beyond the order we are working.
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for these observables. Lastly confrontation with experimental data (which is ample for these observables) presents
an essential test of lattice techniques.
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