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Abstract

In this paper, we have studied the separation for the following biharmonic differential operator:

Au = ��u + V (x)u(x), x ∈ Rn,

in the Hilbert space H = L2(Rn,H1) with the operator potential V (x) ∈ C1(Rn,L(H1)), where L(H1) is the space of all bounded

linear operators on the Hilbert space H1 and ��u is the biharmonic differential operator, while �u = ∑n
i=1

∂2u

∂x2
i

is the Laplace

operator in Rn. Moreover, we have studied the existence and uniqueness of the solution of the biharmonic differential equation

Au = ��u + V (x)u(x) = f (x)

in the Hilbert space H , where f (x) ∈ H .
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of separation for differential operator was first introduced by Everitt and Giertz [6,7]. They have
obtained the separation results for the Stürm–Liouville differential operator

Ay(x) = −y′′(x) + V (x)y(x), x ∈ R, (1)

in the space L2(R). They have studied the following question: What are the conditions on V (x) such that if
y(x) ∈ L2(R) and Ay(x) ∈ L2(R) imply both of y′′(x) and V (x)y(x) ∈ L2(R). More fundamental results of sep-
aration of differential operator were obtained by Everitt and Giertz [8,9]. A number of results concerning the property
referred to the separation of differential operators was discussed by Biomatov [2], Otelbaev [16], Zettle [20] and
Mohamed et al. [10–15]. The separation for the differential operators with the matrix potentials was first studied by
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Bergbaev [1]. Brown [3] has shown that certain properties of positive solutions of disconjugate second-order differ-
ential expressions imply the separation. Some separation criteria and inequalities associated with linear second-order
differential operators have been studied by Brown et al. [4,5]. Mohamed et al. [13] have studied the separation property
of the Stürm–Liouville differential operator

Ay(x) = −(
μ(x)y′)′ + V (x)y(x), x ∈ R, (2)

in the Hilbert space Hp(R) (p = 1,2), where V ∈ L(lp) is an operator potential which is a bounded linear operator
on lp and μ(x) ∈ C1(R) is a positive continuous function on R.

Mohamed et al. [11] have studied the separation property for the linear differential operator

Ay(x) = (−1)mD2my(x) + V (x)y(x), x ∈ R, (3)

in the Banach space Lp(R)l , where V (x) is an l × l positive hermitian matrix, D2m = d2m

dx2m is the classical differenti-
ation of order 2m.

Mohamed et al. [14] have studied the separation of the Schrödinger operator

Ay(x) = −�y(x) + V (x)y(x), x ∈ Rn, (4)

with the operator potential V (x) ∈ C1(Rn,L(H1)) in the Hilbert space L2(R
n,H1) and � = ∑n

i=1
∂2

∂x2
i

is the Laplace
operator in Rn.

Mohamed et al. [15] have studied the separation for the general second-order differential operator

Ay(x) = −
n∑

i,j=1

aij (x)D
j
i y(x) + V (x)y(x), x ∈ Rn, (5)

in the weighted Hilbert space L2,k(R
n,H1) with the operator potential V (x), where aij ∈ C2(Rn) and D

j
i = ∂2

∂xi∂xj
.

Zayed et al. [17] have obtained recent results on the separation of linear and nonlinear Schrödinger-type operators
with operator potentials in Banach spaces. Furthermore, Zayed et al. [18] have studied the separation of the elliptic
differential operator

Ay(x) = −
n∑

i,j=1

[
Di

(
Pij (x)Djy(x)

) − Pij (x)bi(x)bj (x)y(x)
] + V (x)y(x), (6)

in the weighted Hilbert space L2,k(R
n,H1) with the operator potential V (x) ∈ C1(Rn,L(H1)), where Pij (x)

and bi(x) are real-valued continuous functions while Di = ∂
∂xi

.
Recently, Zayed et al. [19] have studied the separation for the Laplace Beltrami differential operator in Hilbert

spaces and obtained recent results on it.
The main objective of the present paper is to study the separation for the following biharmonic differential operator:

Au = ��u + V (x)u(x), x ∈ Rn, (7)

in the Hilbert space H = L2(R
n,H1) with the operator potential V (x) ∈ C1(Rn,L(H1)) and ��u is the biharmonic

differential operator, while �u = ∑n
i=1

∂2u

∂x2
i

is the Laplace operator in Rn. We derive also the coercive estimate for

the operator (7). The existence and uniqueness of the solution of the biharmonic differential equation Au = ��u +
V (x)u(x) = f (x) in H is given.

2. Some notations

In this section we introduce the definitions that will be used in the subsequent section.
Let H1 be a separable Hilbert space with the norm ‖.‖1 and the scalar product 〈.,.〉1. We introduce the Hilbert

space H = L2(R
n,H1) of all vector functions u(x), x ∈ Rn equipped with the norm

‖u‖2 =
∫
n

∥∥u(x)
∥∥2

1 dx. (8)
R
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The symbol 〈u,v〉, where u,v ∈ H denotes the scalar product in the Hilbert space H which is defined by

〈u,v〉 =
∫
Rn

〈u,v〉1 dx. (9)

The space of all vector functions u(x), x ∈ Rn that have generalized derivatives Dαu(x), α � 2 such that u(x) and
Dαu(x) belong to H is denoted by W 2

2 (Rn,H1).
We say that the function u(x) ∈ W 2

2,loc(R
n,H1) if for all functions Q(x) ∈ C∞

0 (Rn), the vector functions

Q(x)u(x) ∈ W 2
2 (Rn,H1).

3. The main results

Definition 1. The biharmonic differential operator A of the form Au = ��u(x) + V (x)u(x), x ∈ Rn is said to be
separated in the Hilbert space H if the following statement holds: If u(x) ∈ H ∩W 2

2,loc(R
n,H1) and Au(x) ∈ H imply

both of ��u(x) and V (x)u(x) ∈ H .

The main results in this paper have been formulated as follows:

Theorem 1. If the following conditions are satisfied for all x ∈ Rn:∥∥∥∥V
−1/2
0

(
∂2V

∂x2
i

)
V −1V u

∥∥∥∥ � σ1‖V u‖ (10)

and ∥∥∥∥V
−1/2
0

∂V

∂xi

∂u

∂xi

∥∥∥∥ � σ2‖V u‖, (11)

where σ1 and σ2 are positive constants satisfying σ1 + 2σ2 < 2
n

while V0 = ReV , then the coercive estimate

‖V u‖ + ‖��u‖ +
∥∥∥∥∥

n∑
i=1

V
1/2
0

(
∂2u

∂x2
i

)∥∥∥∥∥ � N‖Au‖ (12)

is valid, where

N = 1 + 2

[
1 − n

2β
(σ1 + 2σ2)

]−1

+
[

1 − nβ

2
(σ1 + 2σ2)

]−1/2[
1 − n

2β
(σ1 + 2σ2)

]−1/2

(13)

is a constant independent on u(x) while β is given by

n

2
(σ1 + 2σ2) < β <

2

n(σ1 + 2σ2)
. (14)

That is, the biharmonic differential operator A given by (7) is separated in the Hilbert space H .

Proof. From the definition of the scalar product in H and by integrating by parts, we obtain〈
∂u

∂xi

, v

〉
= −

〈
u,

∂v

∂xi

〉
for all u,v ∈ C∞

0

(
Rn

)
and, consequently, we get

〈Au,V u〉 = 〈��u + V u,V u〉 = 〈��u,V u〉 + 〈V u,V u〉.
On setting �u = W(x), we have
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〈Au,V u〉 = 〈�W,V u〉 + 〈V u,V u〉

=
〈

n∑
i=1

∂2W

∂x2
i

, V u

〉
+ 〈V u,V u〉

= −
n∑

i=1

〈
∂W

∂xi

,
∂(V u)

∂xi

〉
+ 〈V u,V u〉

=
n∑

i=1

〈
W,

∂

∂xi

(
V

∂u

∂xi

)〉
+

n∑
i=1

〈
W,

∂

∂xi

(
u

∂V

∂xi

)〉
+ 〈V u,V u〉

=
〈

n∑
k=1

∂2u

∂x2
k

,

n∑
i=1

V
∂2u

∂x2
i

〉
+ 2

〈
n∑

k=1

∂2u

∂x2
k

,

n∑
i=1

∂V

∂xi

∂u

∂xi

〉
+

〈
n∑

k=1

∂2u

∂x2
k

,

n∑
i=1

u
∂2V

∂x2
i

〉
+ 〈V u,V u〉. (15)

Equating the real parts of both sides of (15), we obtain

Re〈Au,V u〉 =
〈

n∑
k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
1/2
0

∂2u

∂x2
i

〉
+ 2 Re

〈
n∑

k=1

V
1/2
0

∂u

∂x2
k

,

n∑
i=1

V
−1/2
0

∂V

∂xi

∂u

∂xi

〉

+ Re

〈
n∑

k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
−1/2
0

(
∂2V

∂x2
i

)
V −1V u

〉
+ 〈V u,V u〉. (16)

Since for complex number Z, we have

−|Z| � ReZ � |Z|, (17)

then on using the Cauchy–Schwartz inequality, we get

Re〈Au,V u〉 �
∣∣〈Au,V u〉∣∣ � ‖Au‖‖V u‖. (18)

Consequently, we deduce from (11), (17) and (18) that

Re

〈
n∑

k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
−1/2
0

∂V

∂xi

∂u

∂xi

〉
� −

∣∣∣∣∣
〈

n∑
k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
−1/2
0

∂V

∂xi

∂u

∂xi

〉∣∣∣∣∣
� −

∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

V
−1/2
0

∂V

∂xi

∂u

∂xi

∥∥∥∥∥
� −nσ2

∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥‖V u‖. (19)

It is well known [17] that for any β > 0 and for any y1, y2 ∈ Rn, we have

|y1||y2| � β

2
|y1|2 + 1

2β
|y2|2. (20)

From (19) and (20) we find that

Re

〈
n∑

k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
−1/2
0

∂V

∂xi

∂u

∂xi

〉
� −nσ2β

2

∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥
2

− nσ2

2β
‖V u‖2. (21)

Similarly, with the aid of (10), (17), (18) and (20) we can show that

Re

〈
n∑

k=1

V
1/2
0

∂2u

∂x2
k

,

n∑
i=1

V
−1/2
0

(
∂2V

∂x2
i

)
V −1V u

〉
� −nσ1β

2

∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥
2

− nσ1

2β
‖V u‖2. (22)
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From (16), (18), (21) and (22) we deduce that

[
1 − nβ

2
(σ1 + 2σ2)

]∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥
2

+
[

1 − n

2β
(σ1 + 2σ2)

]
‖V u‖2 � ‖Au‖‖V u‖. (23)

Choosing n
2 (σ1 + 2σ2) < β < 2

n(σ1+2σ2)
, we deduce from (23) that

‖V u‖ �
[

1 − n

2β
(σ1 + 2σ2)

]−1

‖Au‖ (24)

and ∥∥∥∥∥
n∑

k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥ �
[

1 − nβ

2
(σ1 + 2σ2)

]−1/2[
1 − n

2β
(σ1 + 2σ2)

]−1/2

‖Au‖. (25)

Since Au = ��u(x) + V (x)u(x), then we get

‖��u‖ � ‖Au‖ + ‖V u‖ �
{

1 +
[

1 − n

2β
(σ1 + 2σ2)

]−1}
‖Au‖. (26)

From (24)–(26) we have the coercive estimate

‖V u‖ + ‖��u‖ +
∥∥∥∥∥

n∑
k=1

V
1/2
0

∂2u

∂x2
k

∥∥∥∥∥ � N‖Au‖, (27)

where

N = 1 + 2

[
1 − n

2β
(σ1 + 2σ2)

]−1

+
[

1 − nβ

2
(σ1 + 2σ2)

]−1/2[
1 − n

2β
(σ1 + 2σ2)

]−1/2

(28)

is a constant independent on u(x).
That is the biharmonic differential operator A given by (7) is separated in the Hilbert space H . Hence the proof of

Theorem 1 is completed. �
Theorem 2. If the biharmonic differential operator A given by (7) is separated in the Hilbert space H and if there are
positive functions t (x) ∈ C1(Rn), ψ(x) ∈ C1(Rn) such that∥∥∥∥t−1(x)

(
∂t (x)

∂xi

)
V

−1/2
0

∥∥∥∥ � 2
√

ρ1, (29)∥∥∥∥ψ−1(x)

(
∂ψ(x)

∂xi

)
V

−1/2
0

∥∥∥∥ � 2
√

ρ2, (30)∥∥∥∥t1/2ψ1/2
(

∂u

∂xi

)∥∥∥∥ � 2
√

ρ3
∥∥t1/2ψ1/2V

1/2
0 u

∥∥, (31)

where 0 < ρ1 + ρ2 + ρ3 <
β
2n

, where β is defined by (20) and V0 = ReV . Then the biharmonic differential equation

Au = ��u + V (x)u(x) = f (x), (32)

where f (x) ∈ H has a unique solution in the Hilbert space H .

Proof. First, we prove that the homogeneous biharmonic differential equation

Au = ��u + V (x)u(x) = 0 (33)

has only the zero solution u(x) = 0 for all x ∈ Rn. To this end we assume that t (x) and ψ(x) are positive functions
belonging to C1(Rn). Then on setting �u(x) = W(x), we have
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〈V u, tψu〉 = 〈−��u, tψu〉

= −
n∑

i=1

〈
∂2W

∂x2
i

, tψu

〉

=
n∑

i=1

〈
∂W

∂xi

,
∂

∂xi

(tψu)

〉

and, consequently, we get

〈V u, tψu〉 =
n∑

i=1

〈
∂W

∂xi

, tψ
∂u

∂xi

〉
+

n∑
i=1

〈
∂W

∂xi

, tu
∂ψ

∂xi

〉
+

n∑
i=1

〈
∂W

∂xi

,ψu
∂t

∂xi

〉
. (34)

Equating the real parts of both sides of (34), we get

〈V0u, tψu〉 = 〈
t1/2ψ1/2V

1/2
0 u, t1/2ψ1/2V

1/2
0 u

〉
=

n∑
i=1

Re

〈
∂W

∂xi

, tψ
∂u

∂xi

〉
+

n∑
i=1

Re

〈
∂W

∂xi

, tu
∂ψ

∂xi

〉
+

n∑
i=1

Re

〈
∂W

∂xi

,ψu
∂t

∂xi

〉
. (35)

On the other hand, we find that

Re

〈
∂W

∂xi

,ψu
∂t

∂xi

〉
= Re

〈
t1/2ψ1/2 ∂W

∂xi

, t1/2ψ1/2
[
t−1

(
∂t

∂xi

)
V

−1/2
0

]
V

1/2
0 u

〉

�
∥∥∥∥t1/2ψ1/2 ∂W

∂xi

∥∥∥∥
∥∥∥∥t1/2ψ1/2

[
t−1

(
∂t

∂xi

)
V

−1/2
0

]
V

1/2
0 u

∥∥∥∥, (36)

Re

〈
∂W

∂xi

, tu
∂ψ

∂xi

〉
= Re

〈
t1/2ψ1/2

(
∂W

∂xi

)
, t1/2ψ1/2

[
ψ−1

(
∂ψ

∂xi

)
V

−1/2
0

]
V

1/2
0 u

〉

�
∥∥∥∥t1/2ψ1/2 ∂W

∂xi

∥∥∥∥
∥∥∥∥t1/2ψ1/2

[
ψ−1

(
∂ψ

∂xi

)
V

−1/2
0

]
V

1/2
0 u

∥∥∥∥ (37)

and

Re

〈
∂W

∂xi

, tψ
∂u

∂xi

〉
= Re

〈
t1/2ψ1/2

(
∂W

∂xi

)
, t1/2ψ1/2

(
∂u

∂xi

)〉

�
∥∥∥∥t1/2ψ1/2 ∂W

∂xi

∥∥∥∥
∥∥∥∥t1/2ψ1/2

(
∂u

∂xi

)∥∥∥∥. (38)

With the aid of (20) and (29)–(31) the inequalities (36)–(38) take the forms:

Re

〈
∂W

∂xi

, tψ
∂u

∂xi

〉
� β

2

∥∥∥∥t1/2ψ1/2
(

∂W

∂xi

)∥∥∥∥
2

+ 2

β
ρ3

∥∥t1/2ψ1/2V
1/2
0 u

∥∥2
, (39)

Re

〈
∂W

∂xi

, tu
∂ψ

∂xi

〉
� β

2

∥∥∥∥t1/2ψ1/2
(

∂W

∂xi

)∥∥∥∥
2

+ 2

β
ρ2

∥∥t1/2ψ1/2V
1/2
0 u

∥∥2 (40)

and

Re

〈
∂W

∂xi

,ψu
∂t

∂xi

〉
� β

2

∥∥∥∥t1/2ψ1/2
(

∂W

∂xi

)∥∥∥∥
2

+ 2

β
ρ1

∥∥t1/2ψ1/2V
1/2
0 u

∥∥2
. (41)

From (35) and (39)–(41) we have the following inequality:

[
1 − 2n

β
(ρ1 + ρ2 + ρ3)

]∥∥t1/2ψ1/2V
1/2
0 u

∥∥2 � 3β

2

n∑
i=1

∥∥∥∥t1/2ψ1/2
(

∂W

∂xi

)∥∥∥∥
2

. (42)
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By choosing W(x) to be a constant for all x ∈ Rn, then if 2n
β

(ρ1 + ρ2 + ρ3) < 1 we have

0 <

[
1 − 2n

β
(ρ1 + ρ2 + ρ3)

]∥∥t1/2ψ1/2V
1/2
0 u

∥∥2 � 0. (43)

From (8) and (43) we obtain

0 <

[
1 − 2n

β
(ρ1 + ρ2 + ρ3)

]∫
Rn

∥∥t1/2ψ1/2V
1/2
0 u

∥∥2
1 dx � 0. (44)

Now, the inequality (44) holds only for u(x) ≡ 0. This proves that u(x) = 0 is the only solution of Eq. (33).
Furthermore, it is easy to check that the linear manifold N = {f : Au = f for all u ∈ C∞

0 (Rn)} is dense everywhere
in H . So, we can construct the sequence of vector functions {yr} ∈ C∞

0 (Rn), where ‖yr‖ �= 0 for all r such that

‖Ayr − f ‖ → 0 as r → ∞ for all f ∈ H.

On using the coercive estimate (12), we find that

∥∥V (yp − yr)
∥∥ + ∥∥��(yp − yr)

∥∥ +
∥∥∥∥∥

n∑
i=1

V
1/2
0

∂2

∂x2
i

(yp − yr)

∥∥∥∥∥ � N
∥∥A(yp − yr)

∥∥,

where u = yp − yr , p, r = 1,2, . . . .

As p, r → ∞ we get the fundamental sequences {Vyr }, {��yr}, {∑n
i=1 V

1/2
0

∂2

∂x2
i

yr} in H . Then there exist vector

functions μ0,μ1,μ2 in H such that ‖Vyr − μ0‖, ‖��yr − μ1‖ and ‖∑n
i=1 V

1/2
0

∂2yr

∂x2
i

− μ2‖ → 0 as r → ∞.

Hence the sequences {Vyr}, {��yr} and {∑n
i=1 V

1/2
0

∂2yr

∂x2
i

} are bounded in H . This implies that as r → ∞,

yr → V −1μ0 = y, ��yr → ��y,

n∑
i=1

V
1/2
0

∂2yr

∂x2
i

→
n∑

i=1

V
1/2
0

∂2y

∂x2
i

.

Hence for a given f ∈ H there exists y ∈ H ∩ W 2
2,loc(R

n,H1) such that Ay = f .
Suppose that ỹ is another solution of the equation Au = f , then A(y − ỹ) = 0 but Au = 0 has only the zero

solution, then y = ỹ and the uniqueness is proved. Hence the proof of Theorem 2 is completed. �
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