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Abstract. The aim of the present article is to show how parallel programs can be derived from 

functional specifications. Each program consists of the parallel composition of a number of 

instances of a single parameterised process. The formulation of parameterised invariants is the 

central issue in the derivations. 

introduction 

TWO small parallel programs are derived from functional specifications in the 
style of the series Small Programming Exercises of this journal. The first exercise 
is a parallel program computing all partial sums of a given array. The second exercise 
is a typical example of a class of “segment” problems, a parallel program computing 
the maximum length of any right-maximal segment. 

As the use of invariants has proved to be fruitful in sequential programming 
[2,3], and nothing seems to prohibit the extension of their use to parallel program- 
ming [ 1,8], we will use invariants to derive our programs. 

Here, a parallel program consists of p, 0 <p, instances of a single parameterised 
process. Each instance is identified by a number 9, 0~ 9 <p. Instance 9 of the 
parameterised process (or process 9 for short) establishes an instance of the local 
postcondition which itself is also parameterised by 9. The conjunction of these 
postconditions implies the postcondition of the parallel program. From the local 
postcondition a parameterised local invariant is derived, much as in sequential 
programming. 

In general, a process needs to communicate with other processes. Which values 
are communicated ‘ly a process can be deduced easily fio;rl the Do-,ct ii- v rq;sntsz 

Other examples of this approach can be found in [5,&S]. The parallel programs 
we end up with are not systolic (like in [I]), because the pwgrams consist of p 

instances of a single parameterised process. Furthermore, tP = parallelism arises from 
concurrent operations on distributed data. Before presenting the two exercises we 
will introduce the notation used in this paper. 

The notation is borrowed from [7], and is based on Dijkstra’s guarded command 
language 123. We have extend4 the notation with primitives to express parallef 
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compccition and communication. The construct 

denotes the parallel composition of p instances of the parameterised process S. If 
the range of process number y is omitted, then it is 0~ y < p. 

Communication between processes is explicit and is established by sending and 
receiving messages via point-to-point channels like in CSP [4]. The statement q!e 
denotes the sending of the value of expression Q is process q. Receiving a va’rue s 

from proce;is g is denoted by q7.r. in contrast to CSP, we oniy require that the 
messages sent along a channel arrive in the sending order and that no messages get 

lost. 
We do not use shared variables in our programs. Each program variable is local 

to a single process. This is not reflected in the variable names but it will be clear 

from the context which process is meant. 

1. First exercise: Parallel partial sums 

A simple parallel program that computes the partial sums of an array $ of length 
n is given. The arrays involved are distributed across the p processes. We choose 
the following distribution: array elementJ( i), 0 s i < n, is assigned to process i mod p. 

The introduction of this “cyclic” distribution as part of the problem prohibits, 
in our view, a clear operational picture of a parallel solution. We will demonstrate 
that the derivation is straightforward and that it relies entirely on the use of 
parameterised invariants. The choice of the communication network will also be 
part of the derivation. 

We start with a functional specification of the parallel composition of p instances 
of a parameterised process. 

I[p,n:inf;{O<p A nmodp=O] 
f(i:OS i(n): array of int; 

I[h(j:Osj< n):arravof int; 

parq:Osq<p:S($rap 
{R:(Aj:O~j~n:h(j)=(Zi:O~i~j:f(i)))) L 

31 

II 

The restriction n mod p = 0 in the functionat specification is introduced for the sake 
of simplicity. A similar derivation can be given if n mod p # 0. The parameterised 
process to be designed is S( 9). Every process will manipulate the elements of arrays 
Sand h that are local to it, and will establish a local postcondition. The conjunction 
of all local postconditions will imply the postcondition R of the program. 
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All array elements of -1’ and h with indices i, i mod p = 9, are local to process 9. 
This cyclic distribution and the postcondition R suggest the following local post- 
condition R( 9) for process 9. 

R(q): (Aj:Oc_j<n A jmodp=q:h(j)=sum(j)) where 
sunt(j)=(~i:O~igj:.f(i))forallO~j<n 

We rewrite the local postcondition to simplify its range. 

R(9): (Aj:O~,j<m:Jm(_~*p+q)=sum(j*p+q)) where 
11; = n div p 

This formulation can be used to find an invariant P(9). 

P(q): O~kknr A (Aj:Osj<k:h(j*p+q)=sum(j*p+q)) 

The invariant P(9) is found in the normal way by replacing the constant m in the 
postcondition R( 9) by a variable k. Every process will initialise its k by setting it 
to zero, and progress will be made by incrementing k by one. The resulting process 
body is a loop with k f m as guard. Consider P(q)( k := k -)- l), i.e., P (9) with k 
replaced by k + 1: 

P(q)(k:= k+l) 
=Osk+lsrn h (Aj:O6j<k+I:h(j*p+q)=sum(j*p+q)) 

e (split of j = k, calculus, definition P( 9)) 
k fm A P(9) II h(k*p+q)=sum(k*p+q) 

From this littie calculation it follows that the value of sum( k * p + 9) has to be 
computed. We now rewrite sum( k * p + 9) as a sum of p terms, taking into account 

the distribution of _f, and isolating the expressions local to process 9. 

sum(k *p+9) 
= {definition sum} 

(Zi:Os is k *p+9:.f(i)) 
= {split of i = k * p + 9, calculus} 

(~x:Obx<p 
:(Xi:O~i<k*p+q A imodp=x:f(i)))+ 

.f(k * p+9) 
= {definition psum (see below)} 

(Zx:Wx<p:psum(k *p+q,x))+f(k *p+@ 
= ;range splitting x ==z 9, x = 9, 9 < x} 

(IL~:O~x<9:psum(k*p+9,x)H-psum~k*p+9,9)+ 
(ZSx:q<x<p:psum(k *p+q,x))+f(k*p+q) 

= {definition prev, next (see below)] 
prev(k*p+939)+psum(k*p+-9,9)+ 

.f(k*p+q)+nexf(k*p+q,y) 

Where, for 0 s 6 < n, 
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psum(b,q)=(Zi:O~iCb A imodp=q:./li)) 

prev(b,g)=(Zx:O~x<q:psum(b,x)) 
nexf(b,q)=(~x:q<x<p:psldm(h,x)) 

In this way, sum( k * p + 9) is written as a local sum (referring only to array elements 

local to process 9) and tu3 global sums prev and rtexr (referring to array elements 
that are not available in process 9). The local sum psum( k * p + 9,9) +f( k * p + 9) 
can be computed easily. Two arrays h0 and hl are introduced in which the 
accumulated partial sums of the first 9 processes and the accumulated partial sums 
of the last p - 9 - 1 processes are stored. 

RO(9): (Aj:O~j<m:hOfj*p+9)=prev(j*p+9,9)) 
Rl(9): (Aj:O~jcm:hl(j*p+q)=nexf(j*p+9,9)) 

The structure of S(9) is 

I[s, k:int; hO,kl(j:O~j<n):arrayof int; 

SOt9kSl(q) WO(9) A W9)l 
; s, k := 0,O 
;dok#m-, 

{s=psum(k*p+q,q) A P(9)) 
h(k*p+9):=hO(k*p+q)+s+f(k*p+q)+hl(k*p+q) 

;s,k:=s+f(k*p+q),k+l 
od 

II 

In the program we have separated the local computation part from the global 
computation part (SO( 9); Sl( 9)). The global computation will consist of one or 
more communication phases. In this way, a clear distinction in the derivation is 
achieved. We will now focus on the construction of a program that establishes 
RO(9). An invariant is derived just as for R(9): 

PO(q): Osksm /\ (Aj:O~j<k:hO(j*p+q)=prev(j*p+q,q)) 
PO(q)(k:= k+ 1) 

=Osk+l<m I\ 

(Aj:O~j<k+l:hO(j*p+q)=prev(j*p+9,9)) 
C- {split of j = k, calculus, definition PO} 

k#m A PO(q) II hO(k*p+q)=prev(k*p+q,q) 

The value of prev( k * p + 9,9) has to be computed. From the definition of prep the 
following property is obtained: 

prev(k * p+9,9) 
= {O<k<m) 

prev((k-l)*p+q,q)+(Zx:Oaxcq:f(k*p+x)) 

Hint: use the definitions for preo and psum, the empty sum convention and some 
elementary calculus. Note that prev(( - 1) * p + 9,9) = 0. 



Two small parallel programming exercises 163 

Summing 9 arrsy elements of the first 9 processes is needed in order to restore 
PO(q). This can be done using a chain communication nework and designing a 
communication process that uses this chain. In a chain communication network, 
process 9 can communicate with processes 9 + 1 and 9 - 1, if they exist. The resulting 
program for SO(q) is 

I[ f, t, k : int; 

r, k :== 0,o 

;d;i,k#m+ 

b=prev((k-l)*p+9,9) A PO(~)} 
ifq=O+t:=ODgsO+(g-l)?tfi 

{t=(~x:O~x<9:f(k*p+x))} 

(r+f(k*p+q)=(Tx:O~x<9+1:f(k*p+x))} 
;ifq<p-l-,(9+1)! t+f(k*p+g) 

Oq=p-l+skip 
fi 

;hO(k*p+9):=r+t 
; t, k := r+t,k+l 

od 

II 

The communication process establishing R l( 9) is similar to SO( 9), and is not given. 

Note that the processes SO(q) and Sl( 9) can be executed in parallel. We have 
chosen to record all values of prev and next in the arrays h0 and h 1, respectively. 
This simplifies the derivation by having a global computation part and a local 
computation part. So much for the derivation of parameterised process SO(q). 

The communications in SO(9 j and Sl( 9) are done in two pipes of length p of 
opposite directions (from process 0 to p - 1 and vice versa). Hence, the communica- 
tion network used is a chain. The number of messages communicated in each pipe 
is m = n div p, all communications are sent one after another, and it takes O(p) 
communications to reach the end of a pipe. The time complexity of SO(q) and 
Sl(9) is O(n/p+p) and the memory usage is O(n/p). The overall complexity of 
the parallel program is equal to the complexity of a process instance S(9), which 
is 0( n/p + p). For p = 1, S reduces to a sequential program, and time complexity 
is O(6) for p = h. Thus, under the condition p G h, S shows a Iitzar soeedup. 

The derivabit- -: of the parallel program was carried o3t 3r: 59 assumption of a 
cyclic distribution. Explicit use of the properties of this distribstior: Y.-- made, 
yielding a parallel program consisting of a communication phase and a computation 
phase. If we would have made use of a distribution that assigns consecutive segments 
to processes, another parallel program would have been obtained whose time 

complexity is the same. 
In the derivation, it was essential to separate the local expressions that can be 

computed within a process from the global terms. This “isolation” technique is the 



lesson to be learned from t!% exercise. in the following exercise we will apply this 

technique ag2Iz 

2. Second exercise: A parallel segment problem 

problem. Given is an array _f‘ of length 
length of any right-maximal segment. 
processes is not specified a priori. The 
is also left open. 

This exercise is inspired by [ 7, Exercise 273. It is a typical example of a segment 
n. The problem is to compute the maximum 
The distribution of the array .f’ across the p 
specification of the communication network 

I[p, n:inl; (OCps n) 
$(i:Os i< n):atrayof hl; 

parq:OSq<p: 

i[r: in!; 

S(9) 

((I#0 ” 
r= (mars i&OS is j<n A less(i,j,_f(j)):j-i+l)) 

II 

rap 

II 

For 0~ i s j s n and any integer _v: 

fess( i, j,y) = (Ak:id<j:f(k)< r) s 

In the postcondition of St 9) it is stated that process 9 = 0 has a local variable r 
whose value equals the maximal length of a right-maximal segment, i.e. a segment 
for which the predicate Ie.ss holds. In contrast to the previous exercise nothing is 
said about the distribution of $ across the p processes. This means that we cannot 
directly formulate a local postcondition in terms of variables local to a process. 
Instead, we will first generalise the expression for r and then derive a suitable 
distribution for J 

For O<as bsn, 

fm(a, b)=(max i,j:a s&j<6 A fess(i,jJ(j)):j-i++) 

We will split up the computation of rm for two consecutive seg.ir:snl$ :u, 0) and 
[ 6, c) into computations for each of these segments and one computation for the 
continuation segment specified below. The expressions for [a, 6) and [b, c) are local, 
in the sense that they only refer to either [a, 6) or [b, c). For the continuation 
segment, the expression is global, but it will appear feasible to divide it into local 
subexpressions. The expression rm( a, c 1 for a non-empty segment [Q, c) off can 
be rewritten as follows. 
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Let Osa<b<csn, then 

Ma, c) = rm( Q, h) max 

( rl( n, h, n8( b, c)) + kd( b, c)) max rm( b, c) 

where 

(0) 

Here, 
We 

given 

rrn(dq 

m(b, c)=(max i:haiq:c:.f(i)) 

hd(b,c)=(maxi:b~i<c A m(b,c)=J(i):i-b+l) 
rl(u, b, y) = (max i:a s i< 5 A less{& b,y):b-i) 

we take the maximum of the empty set for rm, hd and tC to be zero. 
will give an informal explanation of the above formulas, a proof of (0) is 
later. Consider two consecutive non-empty segments. The expression for 
c) is split up into expressions for the segments [a, b) and [ 5, c), and in one 

expression for the continuation segment. The continuation segment consists of a 
tail segment (ending in _fch - 1)) and a head segment (starting in f(b)), is itself 
right-maximal, and has maximal length. The head segment is also right-maximal. 
Clearly, the maximum to the right of the head segment must be the maximum of 
the segment [b, c). The longest right-maximal head segment is given by hd(5, c) 
and it ends in element _f( kd( b, c) + b - 1) = m( 5. c). This longest right-maximal head 
segment can be extended further to the left if the elements in the tail segment are 
smaller than or equal to m( 5, c). The longest right-maximal tail segment relative to 
m( 5, c) is given by tI( a, b, m( b, c)). Hence, the length of the longest right-maximal 
continuation segment is fI( Q, 5, m(b, c)) + hd( b, c). 

It is straightforward to see that the following formulas also hold: 

m( u, c) = m( a, b) max m( 5, c) 
hd(u,c)=hd(il,b) ifm(u,c)#m(b,c) 
hd(u,c)=b-u+M(b,c) ifm(u,c)=m(b,c) 

A short proof of the formula for rm is given. 

(1) 

Proof. The following properties are used in the proof: 

less(u,c,y)=less(u, 5,~) A less(b,c,y) foranyy 
_f(hd(b,c)+b-l)=m(b,c) 
less(5, hd(b, c)+b- l), m(5, c)) holds 
less( 5, 5, m( 5, c)) holds 
(mak._i=F-Zj<c A less(b,j,m(b,c)):j-h+l)=C!!Xfc) 

rm(u, c) 
= (definition rm} 

(2) 
(3) 
(4) 
(5) 
(6) 

(maxi,j:u=GSj<c A less(i,j,f(j)):j-i+l) 
= {range splitting, definition rm} 

rm(u, 5) max 

(maxi,j:uSiSb A bSj<c A less(i,_jJ(j)):j-i+l)max 

rm(b, c) 



On the one hand, 

(maxi,j:aSiSh n bSj<c h less(i,j,flj)) 
:j-i+l) 

= (property (2)) 
(max i, j:a S is h n le.vs(i, bJ( j)) A 

hSj<c A less(b,jJ(j)) 
:j-i+l) 

2 {takej=hd(b,c)+b-l,hencebsj<c,properties(3),(4)) 
(maxi:a<idb A ks.51i,b,m(bq c)):hd(b,c)+b-i) 

= {calculus split of i = b, property (S), definition fl) 

rr’(a, b, m( b, c))+ hd(b, c) 

On the other hand, 

(maxi,j:asisb A bsj<c A les.s(i,j,J(j)):j-i+l) 
s ((~j:b~j<c:f(j)~m(b,c)) 

(maxi,j:a<isb A bsj<c c\ les.s(i,j,m(b,c)) 
:j-i+l) 

= (property (2), calculus} 
(maxi,j:a<i<b A baj<c n 

fes.T(i, b, m(b, c)) A le.s.s(b, j, m(b, c)) 
:(b-i)+(j-b+1)j 

= (calculus} 
(maxi:acisb A less(i,b,m(b,c)):b-i)+ 
(maxj:b<j<c A kw(b,j,m(b,c)):j-b+l) 

= {split of i = b, property (5), definition rl, property (6)) 

tl(a, b, m(b, c))+ Mb, c) Cl 

Two things follow: a suitable distribution of the array f across the p processes 
and the program text. The decomposition of rm suggests that each process 9 be 
given a segment of the array J: For the distribution of the array f we use a function 
I, I: (O..p} -+ (O..n), I is strictly increasing, I(0) = 0, and I( p) = n. Process 9 has segment 
f( i : l(q) s i < I( 9 + 1)) as a local variable. To avoid excessive indexing with I in the 
expressions for rm, hd3 11 and m, the process numbers are used as indices, so 
rm(9,9+ 8) stands for rm(1(9), I(9+ 1)). 

We reformulate the expression for m( a, c) in terms of local and global V-T-+ +v- 
for every process 9 by taking a = f(9), b=I(9+1) and c=/(p) in X&: 

First, every process computes its local rm, hd and m (referring to [l(9), I(9 + 1))). 
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With these values, the global expressions hd( 9 + 1, p) and m( 9 + 1, p) can be evalu- 
ated. Then each process uses m( 9 + 1, p) to compute tl( 9V 9 + 1, m( 9 + 1 ;p)). Finally, 
by repeated application of the above formula, the global expressions rm( 9, p) can 

be evaluated. 
We wilt give the program text and the complexity. In the complexity estimates, 

it is assumed that n mod p = 0 and that I(9) = 9 * (n/p), 0s 9 s p. 
The structure of S(9) is 

11 s, t, sn, tn, u : int ; 

SO(q) 

( r=rm(q,q+l) A s= hd(9,9+1) A t=m(q,q+l)j 

; Sl(9) 

1 sn=hd(q+l,p) I\ tn=m(9+l,p)) 

; =(q) 

(u= t&j, 9+ 1, tn)) 
; S3(q) 
( r = dq, p)) 

II 

The process invariant of SO( 9) is 

PO(q): l(q)~k~l(q+l) A r=tm(k,l(q+l)) A s=hd(k,l(q+l)) 

SO(q) has complexity O( I( 9 + 1) - I( 9)) = 0( n/p). The program text of SO( 9) is 

I[ k : int; 

k, r,s:=1(9+1),0,0(1(9)<1(9+1) A PO(q)} 
;dokzl(q)+ 

k:=k-1 

; if_f(k)a_f(k+s)-,s:= s+l 
Of-(k)>j-(k+s)+s:= 1 
fi 

; r:= rmax s(PO(9)) 
od{sH} 

; =f,I(q)+s-1) 

{ r=m(q,q+l) A s=hd(q,q+l) A t=m(9,9+l?j 

II 

Using the formulas (l), process 9, 9 <p - 1, can compute Wq,p! and m(q, P), 

provided that hd( 9 + 1, p) and m( 9 + 1, p) are given. This results in a chain communi- 

cation network. Process 9+ 1,9 <p - 1, communicates h&q+ 1, p) and m(q+ 1, P) 

to process 9. For 9 = p - !, hd(q+l,p)=hd(l(p),l(p))=O, and m(q+l,p)= 



mu(p), I(p))= --‘X. The complexity of Sl ( y 1 is CM p I. The program text of Sl( q ) is: 

[hO, hl:int; 
ifq=p-l~sn:=O;r,l:=-x 

O9”p-l-+(9+I)?sfI,rn 

fi 

1 sn=hd(9+1,p) A m=nr(q*l.~!j 

;iffaf~~{m(cllP)=m(4fl,PI) 

ho:= I(q+ l)-I(q)+sn;hl:= tn 

af~m3(110(~,p)fm(gd-l.p)) 

ho:= s; h 1-= t 

fi 

(hO=hd(9& A hl =m(9,p)) 

;iCpO+(q- l)!hO, hl 
Oq=O+skip 

fi 

II 

S2( 9) is again a sequential process. The process invariant of S2( 1) is 

E?(9): I(9)< ks Q-t 1) A u = W(q), k fn) 

S2( 9) has complexity 0( n/p). The program text of K?(9) is 

IV - : inf; 

k, u:= i(q),o(t’2((1)) 
;dok#I(q+l)+ 

if~(k)~fn~u:=u+lOJ(k)>rn-*u:=Ofi 

; k:= k+i (PZ(q)) 
d 

II 

Finally, process 9, 9 < p - 1, can compute rm( 9, p), provided that rm(9 + 1, p) is 
given. Again, this leads to a chain communication network. Process 9 + 1, 9 < p - 1, 
communicates rm( 9 + 1, p) to process 9. For 9 = p - 1, rm( p, p) = 0. The complexity 

of S3(9) is Q(p). 

I[ h : int; 
ifq=p-l+.r?:= O~q<p--l+(q+l)?hfi 

(h=Wq+l,p)I 
;r :=rmax(u+sn)maxh 

1 r = rm(9, pH 
;if9~0+(9-1)!rO9=0-4ipfi 

II 
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Adding the complexities of processes SO( 9 ), S1(9), S2( 9) and S3( 9), we conclude 
that the complexity of S is O(rt/p +p). For p = 1, S reduces to a sequential program, 
and for p = &, S has complexity O( &). Thus, under the condition p G fi, S shows 

a linear speedup. 

3. Final remarks 

In this paper the formal development of two small parallel programs has been 

presented. Both programs consist of the parallel composition of p instances of a 

parameterised process. The first program computes the partial sums of a given array 
-1: Right at the start of the derivation, it is decided to distribute j’ in a cyclic way 
across the /, process instances. This decision heavily influenced the derivation and 
the resulting program text. It has appeared to be difficult to postpone the choice of 
the distribution of .f and to produce a program text that is independent of the 
distribution for this example program. 

The second parallel program computes the maximum length of any right-maximal 
segment. The choice of the distribution of the array is made at a later point in the 
derivation and it follows naturally from the problem analysis. The distribution is 
parameterised with a distribution function I, which is also present in the final program 
text. It is possible to give similar derivations for segment problems like the Plateau 
Problem (see [3, p. 2031) and the maximal sum of any segment of an array. 

Both programs are developed employing predicate calculus in the usual way. As 
in the sequential programming we use invariants, but we have parameterised the 
invariants with the process number 9. The communication processes are trivial and 
their specifications follow directly from the problem analysis. In both programs we 
compute repeatedly an expression by taking the sum or maximum of p terms using 
a chain network. The complexities of the two parallel programs can be reduced 
ftirther from 0( n/p +p) to 0( n/p + log p) if we compute the sum or maximum of 
these terms using another communication network. 
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