
Science of Computer Programming 15 (1990) 159-169

North-Holland
159

TWO SMALL PARALLEL PROGRAMMING EXERCISES

L.D.J.C. LOYENS and J.G.G. VAN DE VORST
Konin fii~~c/‘Sh fll-Lcphorurorium, Ams:erdam (Shell Research 6. V.),
P.O. Box _to,t, 100,f AA Amxrerdum, Netherlands

ReT:ised June 1990

Abstract. The aim of the present article is to show how parallel programs can be derived from

functional specifications. Each program consists of the parallel composition of a number of

instances of a single parameterised process. The formulation of parameterised invariants is the

central issue in the derivations.

introduction

TWO small parallel programs are derived from functional specifications in the
style of the series Small Programming Exercises of this journal. The first exercise
is a parallel program computing all partial sums of a given array. The second exercise
is a typical example of a class of “segment” problems, a parallel program computing
the maximum length of any right-maximal segment.

As the use of invariants has proved to be fruitful in sequential programming
[2,3], and nothing seems to prohibit the extension of their use to parallel program-
ming [1,8], we will use invariants to derive our programs.

Here, a parallel program consists of p, 0 <p, instances of a single parameterised
process. Each instance is identified by a number 9, 0~ 9 <p. Instance 9 of the
parameterised process (or process 9 for short) establishes an instance of the local
postcondition which itself is also parameterised by 9. The conjunction of these
postconditions implies the postcondition of the parallel program. From the local
postcondition a parameterised local invariant is derived, much as in sequential
programming.

In general, a process needs to communicate with other processes. Which values
are communicated ‘ly a process can be deduced easily fio;rl the Do-,ct ii- v rq;sntsz

Other examples of this approach can be found in [5,&S]. The parallel programs
we end up with are not systolic (like in [I]), because the pwgrams consist of p

instances of a single parameterised process. Furthermore, tP = parallelism arises from
concurrent operations on distributed data. Before presenting the two exercises we
will introduce the notation used in this paper.

The notation is borrowed from [7], and is based on Dijkstra’s guarded command
language 123. We have extend4 the notation with primitives to express parallef

0167~6423/90/$3.50 @ 1990-43sevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82309398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

compccition and communication. The construct

denotes the parallel composition of p instances of the parameterised process S. If
the range of process number y is omitted, then it is 0~ y < p.

Communication between processes is explicit and is established by sending and
receiving messages via point-to-point channels like in CSP [4]. The statement q!e
denotes the sending of the value of expression Q is process q. Receiving a va’rue s

from proce;is g is denoted by q7.r. in contrast to CSP, we oniy require that the
messages sent along a channel arrive in the sending order and that no messages get

lost.
We do not use shared variables in our programs. Each program variable is local

to a single process. This is not reflected in the variable names but it will be clear

from the context which process is meant.

1. First exercise: Parallel partial sums

A simple parallel program that computes the partial sums of an array $ of length
n is given. The arrays involved are distributed across the p processes. We choose
the following distribution: array elementJ(i), 0 s i < n, is assigned to process i mod p.

The introduction of this “cyclic” distribution as part of the problem prohibits,
in our view, a clear operational picture of a parallel solution. We will demonstrate
that the derivation is straightforward and that it relies entirely on the use of
parameterised invariants. The choice of the communication network will also be
part of the derivation.

We start with a functional specification of the parallel composition of p instances
of a parameterised process.

I[p,n:inf;{O<p A nmodp=O]
f(i:OS i(n): array of int;

I[h(j:Osj< n):arravof int;

parq:Osq<p:S($rap
{R:(Aj:O~j~n:h(j)=(Zi:O~i~j:f(i)))) L

31

II

The restriction n mod p = 0 in the functionat specification is introduced for the sake
of simplicity. A similar derivation can be given if n mod p # 0. The parameterised
process to be designed is S(9). Every process will manipulate the elements of arrays
Sand h that are local to it, and will establish a local postcondition. The conjunction
of all local postconditions will imply the postcondition R of the program.

161

All array elements of -1’ and h with indices i, i mod p = 9, are local to process 9.
This cyclic distribution and the postcondition R suggest the following local post-
condition R(9) for process 9.

R(q): (Aj:Oc_j<n A jmodp=q:h(j)=sum(j)) where
sunt(j)=(~i:O~igj:.f(i))forallO~j<n

We rewrite the local postcondition to simplify its range.

R(9): (Aj:O~,j<m:Jm(_~*p+q)=sum(j*p+q)) where
11; = n div p

This formulation can be used to find an invariant P(9).

P(q): O~kknr A (Aj:Osj<k:h(j*p+q)=sum(j*p+q))

The invariant P(9) is found in the normal way by replacing the constant m in the
postcondition R(9) by a variable k. Every process will initialise its k by setting it
to zero, and progress will be made by incrementing k by one. The resulting process
body is a loop with k f m as guard. Consider P(q)(k := k -)- l), i.e., P (9) with k
replaced by k + 1:

P(q)(k:= k+l)
=Osk+lsrn h (Aj:O6j<k+I:h(j*p+q)=sum(j*p+q))

e (split of j = k, calculus, definition P(9))
k fm A P(9) II h(k*p+q)=sum(k*p+q)

From this littie calculation it follows that the value of sum(k * p + 9) has to be
computed. We now rewrite sum(k * p + 9) as a sum of p terms, taking into account

the distribution of _f, and isolating the expressions local to process 9.

sum(k *p+9)
= {definition sum}

(Zi:Os is k *p+9:.f(i))
= {split of i = k * p + 9, calculus}

(~x:Obx<p
:(Xi:O~i<k*p+q A imodp=x:f(i)))+

.f(k * p+9)
= {definition psum (see below)}

(Zx:Wx<p:psum(k *p+q,x))+f(k *p+@
= ;range splitting x ==z 9, x = 9, 9 < x}

(IL~:O~x<9:psum(k*p+9,x)H-psum~k*p+9,9)+
(ZSx:q<x<p:psum(k *p+q,x))+f(k*p+q)

= {definition prev, next (see below)]
prev(k*p+939)+psum(k*p+-9,9)+

.f(k*p+q)+nexf(k*p+q,y)

Where, for 0 s 6 < n,

162 L.D.J.C. Loyens, J.G.G. van de VOW

psum(b,q)=(Zi:O~iCb A imodp=q:./li))

prev(b,g)=(Zx:O~x<q:psum(b,x))
nexf(b,q)=(~x:q<x<p:psldm(h,x))

In this way, sum(k * p + 9) is written as a local sum (referring only to array elements

local to process 9) and tu3 global sums prev and rtexr (referring to array elements
that are not available in process 9). The local sum psum(k * p + 9,9) +f(k * p + 9)
can be computed easily. Two arrays h0 and hl are introduced in which the
accumulated partial sums of the first 9 processes and the accumulated partial sums
of the last p - 9 - 1 processes are stored.

RO(9): (Aj:O~j<m:hOfj*p+9)=prev(j*p+9,9))
Rl(9): (Aj:O~jcm:hl(j*p+q)=nexf(j*p+9,9))

The structure of S(9) is

I[s, k:int; hO,kl(j:O~j<n):arrayof int;

SOt9kSl(q) WO(9) A W9)l
; s, k := 0,O
;dok#m-,

{s=psum(k*p+q,q) A P(9))
h(k*p+9):=hO(k*p+q)+s+f(k*p+q)+hl(k*p+q)

;s,k:=s+f(k*p+q),k+l
od

II

In the program we have separated the local computation part from the global
computation part (SO(9); Sl(9)). The global computation will consist of one or
more communication phases. In this way, a clear distinction in the derivation is
achieved. We will now focus on the construction of a program that establishes
RO(9). An invariant is derived just as for R(9):

PO(q): Osksm /\ (Aj:O~j<k:hO(j*p+q)=prev(j*p+q,q))
PO(q)(k:= k+ 1)

=Osk+l<m I\

(Aj:O~j<k+l:hO(j*p+q)=prev(j*p+9,9))
C- {split of j = k, calculus, definition PO}

k#m A PO(q) II hO(k*p+q)=prev(k*p+q,q)

The value of prev(k * p + 9,9) has to be computed. From the definition of prep the
following property is obtained:

prev(k * p+9,9)
= {O<k<m)

prev((k-l)*p+q,q)+(Zx:Oaxcq:f(k*p+x))

Hint: use the definitions for preo and psum, the empty sum convention and some
elementary calculus. Note that prev((- 1) * p + 9,9) = 0.

Two small parallel programming exercises 163

Summing 9 arrsy elements of the first 9 processes is needed in order to restore
PO(q). This can be done using a chain communication nework and designing a
communication process that uses this chain. In a chain communication network,
process 9 can communicate with processes 9 + 1 and 9 - 1, if they exist. The resulting
program for SO(q) is

I[f, t, k : int;

r, k :== 0,o

;d;i,k#m+

b=prev((k-l)*p+9,9) A PO(~)}
ifq=O+t:=ODgsO+(g-l)?tfi

{t=(~x:O~x<9:f(k*p+x))}

(r+f(k*p+q)=(Tx:O~x<9+1:f(k*p+x))}
;ifq<p-l-,(9+1)! t+f(k*p+g)

Oq=p-l+skip
fi

;hO(k*p+9):=r+t
; t, k := r+t,k+l

od

II

The communication process establishing R l(9) is similar to SO(9), and is not given.

Note that the processes SO(q) and Sl(9) can be executed in parallel. We have
chosen to record all values of prev and next in the arrays h0 and h 1, respectively.
This simplifies the derivation by having a global computation part and a local
computation part. So much for the derivation of parameterised process SO(q).

The communications in SO(9 j and Sl(9) are done in two pipes of length p of
opposite directions (from process 0 to p - 1 and vice versa). Hence, the communica-
tion network used is a chain. The number of messages communicated in each pipe
is m = n div p, all communications are sent one after another, and it takes O(p)
communications to reach the end of a pipe. The time complexity of SO(q) and
Sl(9) is O(n/p+p) and the memory usage is O(n/p). The overall complexity of
the parallel program is equal to the complexity of a process instance S(9), which
is 0(n/p + p). For p = 1, S reduces to a sequential program, and time complexity
is O(6) for p = h. Thus, under the condition p G h, S shows a Iitzar soeedup.

The derivabit- -: of the parallel program was carried o3t 3r: 59 assumption of a
cyclic distribution. Explicit use of the properties of this distribstior: Y.-- made,
yielding a parallel program consisting of a communication phase and a computation
phase. If we would have made use of a distribution that assigns consecutive segments
to processes, another parallel program would have been obtained whose time

complexity is the same.
In the derivation, it was essential to separate the local expressions that can be

computed within a process from the global terms. This “isolation” technique is the

lesson to be learned from t!% exercise. in the following exercise we will apply this

technique ag2Iz

2. Second exercise: A parallel segment problem

problem. Given is an array _f‘ of length
length of any right-maximal segment.
processes is not specified a priori. The
is also left open.

This exercise is inspired by [7, Exercise 273. It is a typical example of a segment
n. The problem is to compute the maximum
The distribution of the array .f’ across the p
specification of the communication network

I[p, n:inl; (OCps n)
$(i:Os i< n):atrayof hl;

parq:OSq<p:

i[r: in!;

S(9)

((I#0 ”
r= (mars i&OS is j<n A less(i,j,_f(j)):j-i+l))

II

rap

II

For 0~ i s j s n and any integer _v:

fess(i, j,y) = (Ak:id<j:f(k)< r) s

In the postcondition of St 9) it is stated that process 9 = 0 has a local variable r
whose value equals the maximal length of a right-maximal segment, i.e. a segment
for which the predicate Ie.ss holds. In contrast to the previous exercise nothing is
said about the distribution of $ across the p processes. This means that we cannot
directly formulate a local postcondition in terms of variables local to a process.
Instead, we will first generalise the expression for r and then derive a suitable
distribution for J

For O<as bsn,

fm(a, b)=(max i,j:a s&j<6 A fess(i,jJ(j)):j-i++)

We will split up the computation of rm for two consecutive seg.ir:snl$:u, 0) and
[6, c) into computations for each of these segments and one computation for the
continuation segment specified below. The expressions for [a, 6) and [b, c) are local,
in the sense that they only refer to either [a, 6) or [b, c). For the continuation
segment, the expression is global, but it will appear feasible to divide it into local
subexpressions. The expression rm(a, c 1 for a non-empty segment [Q, c) off can
be rewritten as follows.

Two small parallel programming e-x-twines 165

Let Osa<b<csn, then

Ma, c) = rm(Q, h) max

(rl(n, h, n8(b, c)) + kd(b, c)) max rm(b, c)

where

(0)

Here,
We

given

rrn(dq

m(b, c)=(max i:haiq:c:.f(i))

hd(b,c)=(maxi:b~i<c A m(b,c)=J(i):i-b+l)
rl(u, b, y) = (max i:a s i< 5 A less{& b,y):b-i)

we take the maximum of the empty set for rm, hd and tC to be zero.
will give an informal explanation of the above formulas, a proof of (0) is
later. Consider two consecutive non-empty segments. The expression for
c) is split up into expressions for the segments [a, b) and [5, c), and in one

expression for the continuation segment. The continuation segment consists of a
tail segment (ending in _fch - 1)) and a head segment (starting in f(b)), is itself
right-maximal, and has maximal length. The head segment is also right-maximal.
Clearly, the maximum to the right of the head segment must be the maximum of
the segment [b, c). The longest right-maximal head segment is given by hd(5, c)
and it ends in element _f(kd(b, c) + b - 1) = m(5. c). This longest right-maximal head
segment can be extended further to the left if the elements in the tail segment are
smaller than or equal to m(5, c). The longest right-maximal tail segment relative to
m(5, c) is given by tI(a, b, m(b, c)). Hence, the length of the longest right-maximal
continuation segment is fI(Q, 5, m(b, c)) + hd(b, c).

It is straightforward to see that the following formulas also hold:

m(u, c) = m(a, b) max m(5, c)
hd(u,c)=hd(il,b) ifm(u,c)#m(b,c)
hd(u,c)=b-u+M(b,c) ifm(u,c)=m(b,c)

A short proof of the formula for rm is given.

(1)

Proof. The following properties are used in the proof:

less(u,c,y)=less(u, 5,~) A less(b,c,y) foranyy
_f(hd(b,c)+b-l)=m(b,c)
less(5, hd(b, c)+b- l), m(5, c)) holds
less(5, 5, m(5, c)) holds
(mak._i=F-Zj<c A less(b,j,m(b,c)):j-h+l)=C!!Xfc)

rm(u, c)
= (definition rm}

(2)
(3)
(4)
(5)
(6)

(maxi,j:u=GSj<c A less(i,j,f(j)):j-i+l)
= {range splitting, definition rm}

rm(u, 5) max

(maxi,j:uSiSb A bSj<c A less(i,_jJ(j)):j-i+l)max

rm(b, c)

On the one hand,

(maxi,j:aSiSh n bSj<c h less(i,j,flj))
:j-i+l)

= (property (2))
(max i, j:a S is h n le.vs(i, bJ(j)) A

hSj<c A less(b,jJ(j))
:j-i+l)

2 {takej=hd(b,c)+b-l,hencebsj<c,properties(3),(4))
(maxi:a<idb A ks.51i,b,m(bq c)):hd(b,c)+b-i)

= {calculus split of i = b, property (S), definition fl)

rr’(a, b, m(b, c))+ hd(b, c)

On the other hand,

(maxi,j:asisb A bsj<c A les.s(i,j,J(j)):j-i+l)
s ((~j:b~j<c:f(j)~m(b,c))

(maxi,j:a<isb A bsj<c c\ les.s(i,j,m(b,c))
:j-i+l)

= (property (2), calculus}
(maxi,j:a<i<b A baj<c n

fes.T(i, b, m(b, c)) A le.s.s(b, j, m(b, c))
:(b-i)+(j-b+1)j

= (calculus}
(maxi:acisb A less(i,b,m(b,c)):b-i)+
(maxj:b<j<c A kw(b,j,m(b,c)):j-b+l)

= {split of i = b, property (5), definition rl, property (6))

tl(a, b, m(b, c))+ Mb, c) Cl

Two things follow: a suitable distribution of the array f across the p processes
and the program text. The decomposition of rm suggests that each process 9 be
given a segment of the array J: For the distribution of the array f we use a function
I, I: (O..p} -+ (O..n), I is strictly increasing, I(0) = 0, and I(p) = n. Process 9 has segment
f(i : l(q) s i < I(9 + 1)) as a local variable. To avoid excessive indexing with I in the
expressions for rm, hd3 11 and m, the process numbers are used as indices, so
rm(9,9+ 8) stands for rm(1(9), I(9+ 1)).

We reformulate the expression for m(a, c) in terms of local and global V-T-+ +v-
for every process 9 by taking a = f(9), b=I(9+1) and c=/(p) in X&:

First, every process computes its local rm, hd and m (referring to [l(9), I(9 + 1))).

Two small parallel programming exercises 167

With these values, the global expressions hd(9 + 1, p) and m(9 + 1, p) can be evalu-
ated. Then each process uses m(9 + 1, p) to compute tl(9V 9 + 1, m(9 + 1 ;p)). Finally,
by repeated application of the above formula, the global expressions rm(9, p) can

be evaluated.
We wilt give the program text and the complexity. In the complexity estimates,

it is assumed that n mod p = 0 and that I(9) = 9 * (n/p), 0s 9 s p.
The structure of S(9) is

11 s, t, sn, tn, u : int ;

SO(q)

(r=rm(q,q+l) A s= hd(9,9+1) A t=m(q,q+l)j

; Sl(9)

1 sn=hd(q+l,p) I\ tn=m(9+l,p))

; =(q)

(u= t&j, 9+ 1, tn))
; S3(q)
(r = dq, p))

II

The process invariant of SO(9) is

PO(q): l(q)~k~l(q+l) A r=tm(k,l(q+l)) A s=hd(k,l(q+l))

SO(q) has complexity O(I(9 + 1) - I(9)) = 0(n/p). The program text of SO(9) is

I[k : int;

k, r,s:=1(9+1),0,0(1(9)<1(9+1) A PO(q)}
;dokzl(q)+

k:=k-1

; if_f(k)a_f(k+s)-,s:= s+l
Of-(k)>j-(k+s)+s:= 1
fi

; r:= rmax s(PO(9))
od{sH}

; =f,I(q)+s-1)

{ r=m(q,q+l) A s=hd(q,q+l) A t=m(9,9+l?j

II

Using the formulas (l), process 9, 9 <p - 1, can compute Wq,p! and m(q, P),

provided that hd(9 + 1, p) and m(9 + 1, p) are given. This results in a chain communi-

cation network. Process 9+ 1,9 <p - 1, communicates h&q+ 1, p) and m(q+ 1, P)

to process 9. For 9 = p - !, hd(q+l,p)=hd(l(p),l(p))=O, and m(q+l,p)=

mu(p), I(p))= --‘X. The complexity of Sl (y 1 is CM p I. The program text of Sl(q) is:

[hO, hl:int;
ifq=p-l~sn:=O;r,l:=-x

O9”p-l-+(9+I)?sfI,rn

fi

1 sn=hd(9+1,p) A m=nr(q*l.~!j

;iffaf~~{m(cllP)=m(4fl,PI)

ho:= I(q+ l)-I(q)+sn;hl:= tn

af~m3(110(~,p)fm(gd-l.p))

ho:= s; h 1-= t

fi

(hO=hd(9& A hl =m(9,p))

;iCpO+(q- l)!hO, hl
Oq=O+skip

fi

II

S2(9) is again a sequential process. The process invariant of S2(1) is

E?(9): I(9)< ks Q-t 1) A u = W(q), k fn)

S2(9) has complexity 0(n/p). The program text of K?(9) is

IV - : inf;

k, u:= i(q),o(t’2((1))
;dok#I(q+l)+

if~(k)~fn~u:=u+lOJ(k)>rn-*u:=Ofi

; k:= k+i (PZ(q))
d

II

Finally, process 9, 9 < p - 1, can compute rm(9, p), provided that rm(9 + 1, p) is
given. Again, this leads to a chain communication network. Process 9 + 1, 9 < p - 1,
communicates rm(9 + 1, p) to process 9. For 9 = p - 1, rm(p, p) = 0. The complexity

of S3(9) is Q(p).

I[h : int;
ifq=p-l+.r?:= O~q<p--l+(q+l)?hfi

(h=Wq+l,p)I
;r :=rmax(u+sn)maxh

1 r = rm(9, pH
;if9~0+(9-1)!rO9=0-4ipfi

II

Two small parallel programming esarcises 169

Adding the complexities of processes SO(9), S1(9), S2(9) and S3(9), we conclude
that the complexity of S is O(rt/p +p). For p = 1, S reduces to a sequential program,
and for p = &, S has complexity O(&). Thus, under the condition p G fi, S shows

a linear speedup.

3. Final remarks

In this paper the formal development of two small parallel programs has been

presented. Both programs consist of the parallel composition of p instances of a

parameterised process. The first program computes the partial sums of a given array
-1: Right at the start of the derivation, it is decided to distribute j’ in a cyclic way
across the /, process instances. This decision heavily influenced the derivation and
the resulting program text. It has appeared to be difficult to postpone the choice of
the distribution of .f and to produce a program text that is independent of the
distribution for this example program.

The second parallel program computes the maximum length of any right-maximal
segment. The choice of the distribution of the array is made at a later point in the
derivation and it follows naturally from the problem analysis. The distribution is
parameterised with a distribution function I, which is also present in the final program
text. It is possible to give similar derivations for segment problems like the Plateau
Problem (see [3, p. 2031) and the maximal sum of any segment of an array.

Both programs are developed employing predicate calculus in the usual way. As
in the sequential programming we use invariants, but we have parameterised the
invariants with the process number 9. The communication processes are trivial and
their specifications follow directly from the problem analysis. In both programs we
compute repeatedly an expression by taking the sum or maximum of p terms using
a chain network. The complexities of the two parallel programs can be reduced
ftirther from 0(n/p +p) to 0(n/p + log p) if we compute the sum or maximum of
these terms using another communication network.

References

[I] K.M. Chandy and J. Misra, Systolic algorithms as programs, Distribured Compur. 1 (1986) 177- 183.

[2] E.W.D. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood C!‘&, NJ. 1976).

[31 0. Gri zs. 71-2 Science of Programming (Springer, New Yorrc, !?I! !.
[4) C.A.R. Hoare, Communicuring Sequential Processes (Prentice-Hall International, LonGon, 1985).

[S] L.D.J.C. Loyens, Parallel programming techniques for ilinear algebra. In; karurwr <dJ?tipufi??g 19%‘,

Lecture Notes in Computer Science 384 (Springer, New York, 1989) 32-43.

[6] L.D.J.C. Loyens and R.H. Bisseling, The formal construction of a parallel triangular system solver,

in: J.L.A. van de Snepscheut, ed., Mathematics qf Program Construction, Lecture Notes in Computer

Science 3% (Springer, New York, 1989) 325-334.

i7] M. Rem, Small programming exercises 11, Sci. Compur. Programming (6 (1986) 313-318.

[8] J.L,A. van de Snepscheut, A derivation of a distributed implementation of Warshall’s algorithm, Sci.
Cornput. Programming 7 (1986) 55-60.

[9] J.G.G. van de Vorst, The formal development of a parallel program performing LU-decomposition,
Acfa Inform. 26 (1988) l-17. *

