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A B S T R A C T

Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques currently avail-
able, with applications in fields ranging from synthetic chemistry to clinical diagnosis. Due to the size
and cost of high-field spectrometers, NMR is generally considered to be ill-suited for industrial environ-
ments and field work. This conventional wisdom is currently being challenged through the development
of NMR systems that are smaller, cheaper, more robust and portable. Despite remarkable progress in this
area, potential applications are often limited by low sensitivity. Hyperpolarisation techniques have the
potential to overcome this limitation and revolutionise the use of compact NMR. This review describes
the state-of-the-art in NMR hyperpolarisation and presents promising examples of its application to compact
NMR. Both the benefits and challenges associated with the different hyperpolarisation approaches are
discussed and applications where these technologies have the potential to make a significant impact are
highlighted.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy and Magnet-
ic Resonance Imaging (MRI) are powerful analytical tools with
diverse applications across all of the physical and medical sci-
ences. The power of NMR lies in the range of information available
and its ability to probe structure and dynamics on length scales

from the molecular to the macroscopic, and on timescales from
picoseconds to days. While NMR benefits from a rich information
content, it suffers from a low inherent sensitivity when compared
to other standard analytical techniques such as mass spectrom-
etry. The signal in an NMR experiment arises from a population
imbalance across a set of nuclear spin states that are very close in
energy relative to the available thermal energy at all tempera-
tures above a few mK. The energy difference is dominated by the
Zeeman effect, whereby the spin angular momentum of a nucleus
with a non-zero magnetic moment (i.e. with spin quantum number
I > 0 ), is quantised along the axis of an external magnetic field, B0.
This quantisation leads to a set of 2 1I + possible nuclear spin
states. Each energy level is associated with a quantum number m
(m I I I I∈ − − + −{ }, ,1 1… ) and has energy E m Bm = − γ � 0 , where the
gyromagnetic ratio, γ , is a fundamental property of the nucleus
and � is Plank’s constant divided by 2π. The NMR signal is direct-
ly proportional to the normalised population difference between
the Zeeman energy levels, also called the polarisation, P, which
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can be calculated for a given temperature, T, and field strength, B0,

using Boltzmann statistics. For spins with I = 1
2 , such as protons

(1H) and 13C, P n n n n B kT= ⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟
= ( )−

− −1
2

1
2

1
2

1
2

0 2tanh γ � , where

n E kTm m= −( )exp is the Boltzmann population of each energy
level at thermal equilibrium. This corresponds to a polarisation of
only 3 ppm/T for protons at 298 K (see Fig. 1). The quest for im-
proved sensitivity is one of the key driving forces for the move in
modern NMR spectroscopy towards higher and higher fields, with
1 GHz (23.5 T) NMR spectrometers now available [1,2]. While
there are clear advantages to working in strong magnetic fields,
the size and cost of these high-field NMR spectrometers render
them unsuitable for many applications, particularly in industrial
and other non-laboratory environments. Consequently, there has
been a concerted effort in recent years to develop compact NMR
systems that are sufficiently small, portable, and robust to be
suitable for outside of the lab use [3]. These compact NMR instru-
ments can be used to acquire high-resolution NMR spectra [4], to
measure bulk physical properties such as NMR relaxation and
molecular self-diffusion rates [5], and to perform magnetic reso-
nance imaging (MRI) experiments [6]. Example applications include:
well logging and rock core analysis in the oil and gas industry
[7–9], in situ analysis of sea ice in Antarctica [10], probing under-
ground water aquifers [11], quality control in the food industry
[5], non-destructive testing of cultural heritage artefacts [12], and
reaction monitoring and control [4,13,14].

The term compact NMR encompasses a wide variety of NMR
devices ranging in size frommicrocoils to benchtop instruments [3].
These devices can be broadly divided into two groups based on the
strength of the magnetic field employed for NMR signal detection.
In the first group are systems that operate in the field range of
0 04 20. T T≤ ≤B (1H Larmor frequency of 2–85 MHz). These instru-
ments are typically based on permanent magnets and can in some
cases achieve a spectral resolution of 20 ppb [4]. This class of
intermediate-field portable NMR devices includes high-resolution
systems capable of measuring chemical shift and J coupling infor-
mation, in amanner analogous to high-field laboratory devices [4,13],
and lower-resolution systems, sometimes referred to as time-
domain (TD) NMR spectrometers, that are used to measure NMR
relaxation and molecular diffusion rates [5]. MRI experiments using
permanent-magnet based compact devices are also possible [6].

The second group of compact NMR devices operates below 0.04
T (<2 MHz 1H frequency) and typically employs either an electro-
magnet or the highly homogeneous Earth’s magnetic field
( BE ≈ 50 μT ) for NMR signal detection. The incorporation of high-
sensitivity detection methods, such as atomic magnetometers [15]
or superconducting quantum interference devices (SQUIDs) [16], has

expanded the range of NMR detection fields down to the so-called
ultra-low field (B0 < 50 μT) [17] and zero-field (B0 < 1 nT) [18] regimes.
While at the upper end of this range of NMR detection fields
(B0 ≥ 0.01 T) some chemical shift information can be extracted from
the NMR spectra [19], the key parameters measured with these in-
struments are J coupling constants (primarily heteronuclear), and
NMR relaxation andmolecular self-diffusion rates. This class of low-
field NMR systems has also been used for MRI applications, where
SQUID detectors provide sufficient sensitivity to achieve in vivoMRI
in the microtesla regime [20].

As discussed above, the Achilles heel of magnetic resonance is
its low inherent sensitivity, a direct consequence of the low nuclear
polarisation at thermal equilibrium. This challenge is particularly
relevant to the case of compact NMR, where the detection fields are
oftenmuch lower than standard laboratory NMR spectrometers (see
Fig. 1b and c). The NMR signal can be amplified by increasing the
nuclear polarisation beyond that dictated by the Boltzmann distri-
bution in the detection field. This approach is called hyperpolarisation
and will be the focus of this review. The effectiveness of a given
hyperpolarisation technique can be quantified either in terms of an
enhancement factor or the level of polarisation. The enhancement
factor is calculated as the ratio of the NMR signal observed with
and without the use of hyperpolarisation under the given experi-
mental conditions (e.g detection field and temperature). The
polarisation is calculated as the product of the enhancement factor
and the equilibrium nuclear polarisation at that detection field and
temperature. Polarisation levels are often the most useful way to
compare the efficiency of different hyperpolarisation methods
because they are independent of the detection conditions. There-
fore in this review, polarisation levels are quoted wherever possible.

It should be noted that NMR (and MRI) sensitivity also depends
on the nuclear resonance frequency (the Larmor frequency, ω0),
which is linearly proportional to the detection field, B0. The precise
relationship between the observed signal-to-noise ratio (SNR) and
the Larmor frequency depends on the method of detection. For the
case of room temperature inductive detection where the domi-
nant source of noise comes from the detection coil, NMR sensitivity
is proportional to ω0

5 4( ) . Interestingly, it has been shown that for
hyperpolarised samples, the frequency dependence becomes ω0

1 2( ) ,
indicating that hyperpolarisationmethods have the potential to boost
the sensitivity of compact NMR devices beyond that dictated by the
polarisation level alone [21].

The idea of hyperpolarisation dates back to the very early days
of NMR, when Albert Overhauser recognised that the comparative-
ly high polarisation of an unpaired electron, which arises due to its
large gyromagnetic ratio ( γ γe H1 660≈ , see Fig. 1), could be trans-
ferred to nearby NMR-active nuclei by saturating the electron spin
resonance (ESR) transition of the conduction electrons in a metal
[22]. His prediction was verified experimentally by Carver and
Slichter, who observed NMR signal amplification for 7Li nuclei in
metallic lithium [23]. This hyperpolarisationmethod, called dynamic
nuclear polarisation (DNP), remains one of the most effective NMR
signal enhancement tools available today. For an interesting account
of the history of DNP and the recent renaissance of this technique
for biomedical applications, see the article by Slichter in Reports on
Progress in Physics [24].

NMR and MRI signal amplification has been demonstrated for
a wide range of nuclei (for example: 1H, 3He, 7Li, 13C, 15N, 19F, 31P, 83Kr
and 129Xe/131Xe) using many different NMR hyperpolarisation
methods including: brute-force polarisation [25], variations on the
original Overhauser DNP method, e.g. dissolution DNP (dDNP) [26]
and magic-angle-spinning (MAS) DNP [27], spin-exchange optical
pumping of noble gas nuclei (SEOP) [28], parahydrogen induced
polarisation (PHIP) [29,30], signal amplification by reversible ex-
change (SABRE) [31], chemically induced dynamic nuclear
polarisation (CIDNP) [32–34], and quantum-rotor induced

Fig. 1. Polarisation level as a function temperature for 13C nuclei (grey lines), 1H nuclei
(black lines) and unpaired electrons (dashed lines) with (a) B0 = 9.4 T, (b) B0 = 1 T,
and (c) B0 = 50 μT.
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polarisation [35,36]. In each case, the spin polarisation of the target
nuclei is enhanced through a transfer of spin order from another
species and/or a rapid change in experimental conditions (i.e. field
and/or temperature) between the polarisation and detection stages
of the magnetic resonance experiment. Table 1 summarises the
source of spin order and (if relevant) the polarisation transfer mech-
anism for each of the hyperpolarisation methods listed above.

One of the main driving forces behind the development of
hyperpolarisation techniques has been for biomedical applica-
tions, particularly for the development of hyperpolarised contrast
agents for in vivo MRI [26,37]. See the recent review by Nikolaou
et al. for an overview of the state-of-the-art in NMR hyperpolarisation
techniques for biomedicine [38]. In solid-state NMR spectroscopy,
hyperpolarisation has facilitated advances in areas such as the study
of membrane proteins [39] and of pharmaceutical formulations at
natural isotopic abundance [40].

The translation of the many hyperpolarisation methods from a
laboratory NMR or MRI instrument to a compact NMR device is con-
ceptually straight-forward, particularly since many of the
hyperpolarisation approaches physically separate the polarisation
and detection phases of the experiment. In these cases, the compact
NMR device can simply be substituted for the laboratory NMR or
MRI instrument during signal detection. Indeed the use of a compact
NMR device for signal detection often greatly simplifies the exper-
imental set-up and can benefit from advantages such as the longer
hyperpolarisation lifetimes at lower magnetic fields [41]. However,
when designing a hyperpolarisation approach for compact NMR it
is important to consider not only the NMR signal enhancements that
can be achieved but also the impact that the hyperpolarisation
method will have on the cost, size, complexity and portability of
the instrument. In most cases a compromise must be made between
the advantages of compact NMR (e.g. size and cost) and the level
of sensitivity enhancement that is required. Therefore the choice
of hyperpolarisation method is likely to be application specific. For
example, in many biomedical applications higher cost instrumen-
tationmay be acceptable as long as themaximum polarisation levels
(>10%) are achieved. However, in industrial process monitoring it
might be more advantageous to develop a technology that pro-
vides more modest signal enhancements (a couple orders of
magnitude) while keeping the overall cost and complexity of the
instrumentation low.

In this review, I focus on the hyperpolarisation techniques that
have already shown promise for use with compact NMR. These
include: brute-force hyperpolarisation, DNP, SEOP, PHIP, and SABRE.
Examples in the literature where these methods have been com-
bined with compact NMR to improve sensitivity will be highlighted.
The benefits and challenges associated with these methods, as well

as the applications where hyperpolarisation is most likely to have
a significant impact in the field of compact NMR, will be discussed.

2. Hyperpolarisation in compact NMR

2.1. Brute-force hyperpolarisation

One of the most commonly used signal enhancement methods
in compact NMR, particularly where the detection field is very low
(B0 < 40 mT), is the so-called brute-force approach, where the
polarisation of the NMR sample is carried out at a higher magnet-
ic field strength, Bp, and/or a lower temperature than the detection
stage of the experiment. Decoupling the polarisation and detec-
tion stages is advantageous because the polarisation field, Bp, need
only be homogeneous to a few percent, while the detection field,
B0, requires field homogeneities on the order of ppm. In the brute-
force approach, the pre-polarising field is often achieved by either
switching on a crude electromagnet [10] or by placing the sample
into a permanent magnet array [18,19,42]. The use of permanent
magnets for pre-polarisation has the advantage of relatively high
Bp field strengths (up to 2 T) and no duty-cycle limitations. However,
the sample needs to be transported between the polarisation and
detection fields. A pre-polarisation field generated electromagneti-
cally is easily switched on and off. However, the fields that can be
achieved with an electromagnet are typically limited to a few 10’s
of mT due resistive heating concerns. The relative advantages of pre-
polarisation in a permanent magnet array (Bp = 300 mT) and an
electromagnet (Bp = 18.7 mT) is illustrated by the Earth’s field (EF)
NMR spectra of water in Fig. 2a. A 10 fold increase in signal-to-
noise ratio (SNR) is observed for pre-polarisation in the 0.3 T
permanent magnet array compared to the electromagnet. This is
less than the predicted increase by a factor of 16 (the ratio of the
two pre-polarisation fields) due to polarisation loss during sample
transport in the case of the permanent magnet array.

The major advantage of brute-force polarisation is that no ex-
ogenous agent needs to be added to the sample, while the main
limitation is that the signal enhancement scales linearly with the
pre-polarisation field, Bp. Thus it is an attractive method for appli-
cations where the detection field is very low and doping the sample
is not possible. For example, pre-polarisation with an electromag-
net has been proposed for sensitivity enhancement in EF NMR
measurements of subsurface water aquifers [43].

Much higher enhancements can be achieved using the brute-
force approach if the polarisation stage is carried out at a very low
temperature. Hirsch et al. have demonstrated that if pre-polarisation
is carried out in a field of Bp = 14 T and at ~ 2.3 K, >0.1% 13C
polarisation can be observed in small-molecule metabolites such

Table 1
Summary of the polarisation source and transfer mechanism for a range of NMR hyperpolarisation methods

Hyperpolarisation method Source of nuclear spin order Polarisation transfer mechanism

Brute-force polarisation Thermal polarisation in high polarisation field and/or
at low temperature

N/A

Dynamic nuclear polarisation (DNP) unpaired electron Saturation of ESR transition; Overhauser effect, cross effect, solid
effect and/or thermal mixing

Spin-exchange optical pumping (SEOP) Optically pumped alkali metal vapour (e.g. Rb) Spin-exchange collisions between noble gas nuclei (e.g. 3He, 129Xe,
83Kr) and alkali metal

Parahydrogen-induced polarisation (PHIP) parahydrogen Spin-conserved hydrogenation of an unsaturated substrate

Signal amplification by reversible exchange
(SABRE)

parahydrogen Exchange reaction involving p-H2, catalyst and substrate; strong
J-coupling mediated coherent transfer to substrate.

Chemically-induced DNP (CIDNP) Spin correlated radical pair Nuclear-spin-selective recombination of radical pair mediated by
the hyperfine interaction.

Quantum-rotor-induced polarisation Rotationally hindered methyl groups at liquid helium
temperatures

Rapid sample dissolution; cross-relaxation via dipolar couplings
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at 1-13C-acetic acid and 1-13C-pyruvic acid, when the sample is rapidly
heated and then detected at 1 T and 303 K [25]. While the ob-
served polarisation levels are significant, the cost associated with
this high-field/low-temperature instrumentation is likely to be in-
compatible with routine compact NMR applications. However, as
will be discussed in more detail below, significant progress has been
made recently in the storage and transport of hyperpolarised agents
in the solid-state [44]. This work suggests that it may be possible
to carry-out the generation of the hyperpolarised species offsite
before transportation to the point of use, dramatically increasing
the versatility and affordability of this technique.

2.2. Dynamic Nuclear Polarisation (DNP)

In a dynamic nuclear polarisation (DNP) experiment, the rela-
tively high thermal polarisation of anunpaired electron is transferred
to surrounding nuclei via irradiation at or near the ESR transition
frequencyof the electron. Themechanism that drives this polarisation
transfer varies significantly depending on the experimental condi-
tions, such as whether it is done in the solid or liquid state, and the
source of the unpaired electrons [46]. For most applications, where
no endogenous free radicals are present, a stable radical must be
added to act as a source of hyperpolarisation. There are three main
experimental approaches to DNP. In magic-angle spinning (MAS)
DNP, the entire experiment is carried out in the solid-state at low
temperature (<150 K) [39], while Overhauser DNP experiments are
performed in solution [46]. IndissolutionDNP(dDNP), thepolarisation

stage occurs in the solid-state at very low temperatures (e.g. 1.2 K)
andmoderate field strengths (e.g. 3.4 T), where electron polarisation
is near 100%. Once polarised at low temperature, the agent is rapidly
dissolved and is either transferred into an NMR spectrometer for
detectionat ambient temperature [26] or injected into apatient inside
an MRI scanner and subsequently imaged [37].

In DNP the maximum achievable nuclear polarisation enhance-
ment is the ratio of the electron and the nuclear polarisations under
the given experimental conditions (i.e. field and temperature). In
most cases, the maximum enhancement is simply the ratio of the
electron and nuclear gyromagnetic ratios (~660 in the case of
protons) and so at room temperature only modest polarisation levels
can be achieved (see Fig. 1). However, in dDNP the observed en-
hancements are much larger (e.g. 36% 13C polarisation was observed
for an aqueous solution of [13C]urea [26].) This is because dDNP is
in effect a combination of low-temperature brute-force
hyperpolarisation of the electrons and subsequent polarisation trans-
fer to the nuclei via DNP. Large polarisation enhancements are also
possible for Overhauser DNP with nitroxide radicals in very low
fields, where the ESR transition is dominated by the hyperfine in-
teraction between the unpaired electron and the 14N nucleus of the
free radical. In this case, the electron polarisation is much larger than
would be generated by the Zeeman interaction alone [47–49]. Nev-
ertheless, the absolute level of 1H polarisation remains quite low
in this case (~1 ppm). In all DNP experiments, the maximum pos-
sible polarisation level is rarely observed in practice because the
efficiency of the transfer from the electrons to the nuclei depends
on many factors including: the extent of saturation of the electron
transition, the size of the interaction between the unpaired elec-
trons and the target nuclei, the mechanism of polarisation transfer,
and the NMR relaxation properties of the system [46]. In many DNP
applications, one of the key limiting factors is the saturation of the
ESR transition, which is often quite broad. This issue becomes in-
creasingly significant as the field (and hence the ESR transition
frequency) increases. Efficient high-field, solid-state MAS DNP has
only become feasible in recent years due to the work of Griffin and
co-workers, who introduced gyrotrons as a source of high-powered
microwaves at 100’s of GHz (i.e. the Larmor frequency of elec-
trons in high-field NMR spectrometers) [27]. In liquids, the
polarisation step of the DNP experiment is often carried out in a
lower field, where saturation is possible, and then the sample is
flowed into the high field for high-resolution detection [50]. Thus
Overhauser DNP is an attractive method for compact NMR, where
the lowmagnetic fields are a benefit rather than a limitation. In ad-
dition, liquid-state DNP is arguably the least demanding and costly
to implement in terms of instrumentation because no cryogenic tem-
peratures are required. However, room temperature Overhauser DNP
cannot achieve the near-unity levels of polarisation that are acces-
sible to the dDNP approach. Fig. 2b presents a comparison of 1H EF
NMR spectra of water doped with 1.5 mM 4-oxy-tempo acquired
using (top, grey) pre-polarisation at 18.7 mT, and (bottom, black)
Overhauser DNP in a field of 2.5 mT (124 MHz ESR irradiation fre-
quency). In this case, DNP provides a 14-fold SNR enhancement
relative to that observed using brute-force polarisation. This cor-
responds to a 1H polarisation level on the order of 1 ppm.

Overhauser DNP has been used for a number of applications in
compact NMR including NMR andMRI in μT tomT fields [49,51–53],
multi-dimensional Earth’s field NMR spectroscopy [48], field cycling
relaxometry [54], and indirect detection of ESR spectroscopy [55,56].
By contrast, compact NMR instrumentation with MAS DNP capa-
bilities is not currently available, despite the initial DNP experiments
having been carried out at low field [24]. A compact NMR instru-
ment equipped with a MAS probe for high-resolution solid-state
NMR spectroscopy has recently been demonstrated by Sorensen et al.
[57]. Therefore, this is an area where significant growth could be
seen in the coming years. A compact NMR device with MAS DNP

Fig. 2. Hyperpolarisation enables the detection of 1H and 129Xe NMR spectra in the
Earth’s magnetic field. (a) Brute-force hyperpolarisation of 500mL of water at Bp = 300
mT using a Halbach array (top, black), and at Bp = 18.7 mT using an electromagnet
(bottom, grey). (b) 100 mL aqueous solution of 4-oxy-tempo hyperpolarised with
brute-force at Bp = 18.7 mT (top, grey), and by Overhauser DNP at Bp = 2.5 mT (DNP
irradiation at 124 MHz) (bottom, black). (c) 1H EF NMR spectrum of toluene pre-
polarised at Bp = 18.7 mT (top, grey), and a 129Xe EF NMR spectrum of a 3% mixture
of 129Xe gas hyperpolarised to ~9% by stopped-flow SEOP (bottom). All spectra were
acquired using the Terranova Earth’s Field NMR device (Magritek Ltd, NZ) in (d). All
data was taken from the PhD thesis of M. Halse [45].
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capabilities could be particularly interesting for applications such
as surface studies of materials and for structural studies of small
molecules [58]. Dissolution DNP is a promising technique for the
generation of hyperpolarised agents for a range of biomedical
applications [37,38]. The most significant limitation of dissolution
DNP, as currently implemented, are cost and portability. As with the
low-temperature, brute-force approach, substantial additional in-
strumentation is required and so it is not feasible to combine a
compact NMR device with a dissolution DNP setup without sig-
nificantly compromising both the affordability and complexity of
the entire system. However methods for storing and transporting
hyperpolarised agents in the solid-state [44,59] may render dDNP
a viable option in the future, even for applications where instru-
ment cost and complexity are a significant concern.

2.3. Spin-exchange optical pumping (SEOP)

In a spin-exchange optical pumping (SEOP) experiment, the
angular momentum of laser photons is transferred to the elec-
trons of an alkali metal vapour (e.g. Rb) by exploiting the quantum
mechanical selection rules for angular momentum [28]. The resul-
tant high electron polarisation of the alkali metal vapour is
transferred to nuclei of a noble gas (e.g. 3He, 129Xe, 131Xe, or 83Kr)
through spin exchange collisions. The spin exchange is mediated
by Fermi contact hyperfine interactions between the alkali elec-
trons and noble gas nuclei [28]. In order to suppress the radiative
decay of the excited electrons and to promote the transfer of
polarisation to the noble gas nuclei, a partial pressure of a buffer
gas, typically N2, is added to the polarisation cell. Despite the fact
that SEOP is limited to the hyperpolarisation of noble gas nuclei,
it has many advantages. Specifically, near unity levels of polarisation
can be achieved and, if isolated and stored properly, the
hyperpolarisation of these gases can be maintained for periods from
hours to days [28,60]. The ability to generate the hyperpolarisation
offsite and then transport it to where it is to be used makes this an
attractive method for compact NMR. Fig. 2c presents a compari-
son of a 1H EF NMR spectrum of toluene (pre-polarised at 18.7 mT)
and a 129Xe EF NMR spectrum of a 3%mixture of 129Xe, hyperpolarised
by SEOP to ~9%. Despite the very low Larmor frequency of 129Xe in
the Earth’s field (756 Hz), very high resolution (<0.1 Hz) and SNR
are achieved in the 129Xe EF NMR spectrum.

The most prominent application of hyperpolarised gases is for
in vivoMRI, particularly of the lungs [61,62]. However, there are also
many other applications, where the large chemical shift range of

129Xe [63,64] and the relaxation properties of the quadrupolar 83Kr
nucleus [65], provide access to important chemical and structural
information or where the hyperpolarised 129Xe is used as a biosen-
sor [45]. Hyperpolarised noble gases have been used in compact NMR
for a range of applications including: MRI in the mT regime [66–70],
detection of 129Xe chemical shifts in the Earth’s magnetic field [71],
and NMR signal enhancement in μT to mT fields using the spin
polarisation-induced nuclear Overhauser effect (SPINOE) [72], in
which the noble gas hyperpolarisation is transferred to solvent nuclei
through the nuclear Overhauser effect [73]. Beyond low-field in vivo
imaging, hyperpolarised gases hold particular promise for compact
NMR investigations of materials, where the chemical shift of 129Xe
and relaxation properties of 83Kr can report on many important
chemical and morphological features of the system.

2.4. Hyperpolarisation using parahydrogen: PHIP and SABRE

Parahydrogen (p-H2) is the nuclear spin isomer of H2 that con-
tains a pair of protons that form a singlet spin state. This pure state
has no magnetic moment and so p-H2 does not give rise to a signal
in a standard NMR experiment [30]. However, as first predicted by
Bowers and Weitekamp in 1986, if a chemical reaction is used to
place the two 1H nuclei from p-H2 into chemically and/or magneti-
cally different environments in a product molecule, these former
p-H2 nuclei will produce highly enhanced NMR signals that are char-
acteristic of the product that is formed [29]. This method is
alternatively referred to as PASADENA (parahydrogen and synthe-
sis allow dramatically enhanced nuclear alignment) or parahydrogen-
induced polarisation (PHIP) and has been widely used in inorganic
and organic chemistry to investigate hydrogenation reactions and
for the detection of intermediates that are only present in very small
quantities [30]. PHIP is also of significant interest as a method for
generating hyperpolarised contrast agents for biomedical applica-
tions [74–76]. This can be achieved using either the traditional
hydrogenative PHIP approach [74–76] or the signal amplification
by reversible exchange (SABRE) [31] method. In SABRE, a revers-
ible exchange reaction involving p-H2, a transitionmetal catalyst and
the target substrate is used to catalytically transfer hyperpolarisation
from p-H2-derived protons to the substrate without the need for sub-
strate hydrogenation. The ability to generate highly polarised species
in solution, and without chemical alteration, has broadened the po-
tential applications of p-H2 hyperpolarisation, particularly in light
of the fact that the reversibility of the exchange reaction means that
continuous hyperpolarisation can be achieved [77,78].

Fig. 3. Thermally polarised (top, grey) and SABRE hyperpolarised (bottom, black) 1H NMR spectra of 4-amino-pyridine acquired with (a) 400 MHz (Bruker AVIII, 9.4 T) and
(b) 60 MHZ (1.4 T) NMR detection. (c) Photo of the 1.4 T compact NMR instrument (Nanalysis Corp., Canada). The sample was a 5 mm NMR tube containing 0.6 mL methanol-
d4, 2mg (3.1 μmol) of the pre-catalyst Ir(IMes)(COD)(Cl), and 20 equivalents (5.8mg) of the substrate (S = 4-amino-pyridine). The catalyst was activated to form [Ir(H)2(IMes)(S)3]Cl
by shaking the sample in the presence of a large excess of H2 [79]. For the SABRE experiments, the solution was put under 3 atm p-H2 pressure, shaken for 8 s in the fringe
field of the 400 MHz spectrometer (B < 10 G) and dropped into either the high-field (400 MHz) or low-field (60 MHz) NMR spectrometer for signal detection. Filled symbols
highlight the ortho (squares) and meta (circles) proton peaks for the free substrate and open symbols denote substrate molecules bound to the iridium catalyst.
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Fig. 3 demonstrates the use of SABRE hyperpolarisation for sen-
sitivity enhancement of a high-resolution compact NMR
spectrometer operating at 1.4 T (60 MHz) (Fig. 3c). A comparison
between the SABRE 1H NMR spectra of 4-amino-pyridine acquired
using a standard 400 MHz NMR spectrometer (Fig. 3a) and the
60 MHz benchtop instrument (Fig. 3b) illustrates that, while there
is a loss of resolution due to the reduction in chemical shift dis-
persion when going from 9.4 T to 1.4 T, the single-scan SNR of the
SABRE NMR spectra is similar for both instruments (1H polarisation
of ~1%) and there is sufficient resolution at 60 MHz to distinguish
the proton resonances corresponding to substrate molecules in free
solution and those bound to the polarisation transfer catalyst.

Both the original hydrogenative PHIP and the non-hydrogenative
SABRE approaches have been used to sensitise compact NMR ex-
periments for a range of applications. For example, PHIP and SABRE
signals have been detected in liquid-state NMR spectroscopy in the
zero-field regime [80,81], in the Earth’s magnetic field [82], in fields
of 5–50 mT [41,83,84], and in a field of 0.54 T using a time-
domain NMR spectrometer [85]. PHIP and SABRE hyperpolarised
liquids and gases have been imaged in mT fields [84,86,87], and
compact NMR instrumentation has been used to monitor the pro-
duction of p-H2 hyperpolarisation in fields of a few mT, where the
SABRE polarisation transfer is the most efficient [78,88]. In addi-
tion, the unique spin states generated by the p-H2-based
methodologies have been exploited to provide chemical specia-
tion information in mT fields that would otherwise be absent due
to limited chemical shift resolution [89,90].

There are many advantages of parahydrogen hyperpolarisation.
First, generating p-H2 is relatively cheap and easy. At room tem-
perature only 25% of H2 is the in para form, while the remaining
75% is orthohydrogen, the nuclear triplet spin isomer of H2. The pro-
portion of p-H2 can be increased by cooling H2 gas in the presence
of a catalyst that promotes conversion between the para and ortho
forms. At liquid nitrogen temperatures (77 K), H2 contains 50% p-H2

at thermal equilibrium, while at 20 K, the proportion of p-H2 in-
creases to > 99.9% [91]. In the absence of a catalyst, the para to ortho
conversion is very slow. Therefore, once enriched at low temper-
ature, the p-H2 gas can be heated to room temperature and stored
for periods from hours to days [30]. Therefore p-H2 can be gener-
ated off-site, stored and then transported to the point of use. Other
advantages of p-H2 hyperpolarisation include the large polarisation
levels that can be achieved (10% 1H polarisation [92] and 15N
polarisation [93] have been reported), the rapid build-up of
polarisation, which can be on the order of seconds, and the ability
to generate continuous polarisation [77]. The main challenge as-
sociated with PHIP and SABRE is the need for a chemical reaction
to unlock the p-H2-derived hyperpolarisation. In the PHIP case, an
unsaturated precursor and a hydrogenation catalyst is required. In
the SABRE case a transition metal catalyst needs to be added to
mediate the polarisation transfer from p-H2 to the substrate. The
nuclear spin states that result from p-H2 hyperpolarisation are more
complex than for NMR polarisation at thermal equilibrium. This is
both a challenge and an opportunity. The difficulty arises from the
fact that p-H2-derived 1H NMR signals often have an anti-phase char-
acter, which can lead to significant signal cancellation if resonances
are not well resolved. The advantage is due to the fact that these
unique spin states can be manipulated to provide additional chem-
ical information about the hyperpolarised molecules and can be
transferred to other more slowly-relaxing nuclei (e.g. 13C) or into
long-lived nuclear spin states [94] for storage and later detection.
Promising applications of p-H2 hyperpolarisation in compact NMR
include the generation of highly polarised species for μT to mTMRI,
with potential applications for medical diagnosis using a low-cost
MRI device, and for reaction monitoring and control, where p-H2

hyperpolarisation could be used to track the progress of a reac-
tion and also to detect species present at low concentration.

3. Conclusions and future outlook

Hyperpolarisation has been successfully combined with compact
NMR devices with fields ranging from < 1 nT up to 2 T to achieve
maximum polarisation levels on the order of 10% for a range of
nuclei, e.g. 1H, 13C, 15N, 19F, and 129Xe. While these experiments dem-
onstrate the potential of hyperpolarisation to sensitise compact NMR
and MRI, there remain several challenges, both with regards to the
hyperpolarisation techniques themselves and their integration with
compact NMR.

One of the advantages of NMR spectroscopy as an analytical tech-
nique, particularly for reaction monitoring, is that peak integrals can
be analysed to obtain quantitative information regarding the rela-
tive concentrations of species in solution. In hyperpolarised NMR,
the level of observed NMR signal may not vary with concentra-
tion in the sameway for all species due to factors such as polarisation
transfer efficiency and NMR relaxation. Establishing that
hyperpolarised NMR can produce quantitative information regard-
ing the relative concentration of species in solution will be a key
step to unlocking applications such as process control and reac-
tion monitoring.

Another important consideration is the lifetime of the
hyperpolarisation. By definition, hyperpolarisation is a non-
equilibrium distribution of nuclear spin populations and therefore
the system will return to equilibrium via NMR relaxation. In order
to use hyperpolarisation to improve NMR sensitivity it is impor-
tant to consider not only the extent to which the nuclear spins can
be polarised but also the lifetime of this hyperpolarisation. It should
be noted that in the SABRE approach an equilibrium can be reached
where a continuous level of polarisation is maintained [77,78].
However, the maximum polarisation that can be achieved in this
continuous mode will depend on the hyperpolarisation lifetime as
well as the efficiency of the underlying hyperpolarisation process.
One benefit of compact NMR is that hyperpolarisation lifetimes are
often longer at lower magnetic fields (i.e. at 1 T vs. 9.4 T). Never-
theless, there would be significant benefits to extending
hyperpolarisation lifetimes from the order of seconds to minutes
or even hours. One potential approach lies in the generation of so-
called long-lived states (LLS), whose lifetimes can reach 10’s of
minutes due to the symmetry properties of the spin system [95].
One example of this approach in high-field NMR is the use of a
hyperpolarised LLS, generated using dDNP, for detecting ligand
binding in drug screening applications [21].

The cost and complexity of hyperpolarisation instrumentation
is another challenge that needs to be considered. One potential so-
lution is to generate hyperpolarised agents offsite and then to
transport these species to the point of use. While this is a well-
known feature of hyperpolarised gases (e.g. 129Xe and p-H2), recent
reports suggest that storage and transport should also be possible
for hyperpolarised agents in the solid state. At a recent meeting on
hyperpolarisation in the Netherlands, Sami Jannin (EPFL, Switzer-
land) discussed the potential for the storage and transportation of
species hyperpolarised by dDNP, demonstrating a remarkable life-
time for hyperpolarised 1-13C-pyruvate of 29 hours when stored at
4.2 K and 6.7 T [59]. Hirsch et al. have also demonstrated the trans-
portation of brute-force hyperpolarised agents with transfer times
ranging from 5 minutes to 5 hours, depending on the storage field
and temperature [44]. If these ideas prove to be generally applica-
ble, it would revolutionise the waywe think about hyperpolarisation
and compact NMR, not only for species hyperpolarised by disso-
lution DNP and low-temperature brute-force methods but by the
other approaches as well.

In conclusion, NMR hyperpolarisation presents an exciting op-
portunity to address one of themost significant challenges associated
with compact NMR: low sensitivity. Currently available technolo-
gies, including brute-force hyperpolarisation, DNP, SEOP, PHIP, and
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SABRE, have been used with a wide range of compact NMR instru-
ments to achieve nuclear polarisation levels of up to 10’s of % for
a range of difference nuclei. Promising applications include low cost
NMR and MRI, compact MRI for biomedical applications using
hyperpolarised contrast agents and benchtop instrumentation for
the characterisation of porous materials and for reaction monitor-
ing and control. It is important to note that hyperpolarisation in NMR
continues to be a dynamic field of research, with several of themajor
breakthroughs highlighted in this review (e.g. dissolution DNP and
SABRE) having been made within the last 10–15 years. New devel-
opments in instrumentation and methods for both the generation
and storage of hyperpolarisation will only further advance the goal
of developing truly low-cost, high-sensitivity, portable NMR andMRI
devices suitable for a wide range of real-world applications.
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