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Abstract

We consider classes of real-valued functions of Boolean variables de3ned by disjunctive analogues of the submodular
and supermodular functional inequalities, obtained by replacing in these inequalities addition by disjunction (max operator).
The disjunctive analogues of submodular and supermodular functions are completely characterized by the syntax of their
disjunctive normal forms. Classes of functions possessing combinations of these properties are also examined. A disjunctive
representation theory based on one of these combination classes exhibits syntactic and algorithmic analogies with classical
DNF theory.
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1. Preliminaries

We consider pseudo-Boolean functions, i.e. functions from some discrete hypercube Bn (where B= {0; 1}, and n¿ 1)
to the real numbers R. To emphasize n, we shall say that a function is n-ary. We recall that Bn is a distributive and
complemented (i.e. Boolean) lattice, whose partial order is de3ned by componentwise comparison. The lattice join and
meet of two vectors V , W in Bn are denoted by V ∨W and VW .

The set R being totally ordered, it is trivially a distributive lattice where the join and meet of two numbers is simply
their maximum and minimum, denoted by ∨ and ∧, respectively. Here in R we shall avoid using juxtaposition for meet,
as the product generally di=ers from the meet (unlike within B or in the Boolean ring Bn).
Pseudo-Boolean functions include Boolean functions (that may be identi3ed with those pseudo-Boolean functions whose

range is contained in {0; 1}), as well as various combinatorial set functions such as matroid rank functions (by representing
each argument set by its characteristic vector). Several classes of functions have been thoroughly investigated. The class
of monotone non-decreasing functions consists of those pseudo-Boolean functions f that satisfy the inequality

f(V )6f(V ∨W )

for all V;W in their domain. Similarly, f is monotone non-increasing if it always satis3es

f(V )¿f(V ∨W ):

A function f is submodular if for all V;W in its domain Bn

f(V ) + f(W )¿f(VW ) + f(V ∨W ) (1)
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and it is supermodular if it always satis3es

f(V ) + f(W )6f(VW ) + f(V ∨W ): (2)

The role played by those pseudo-Boolean functions (or set functions, using the alternative language of 3nite power sets
instead of Bn) which satisfy (1) and (2) is well-known (see e.g. Fujishige [8], LovHasz [11], Narayanan [12] and Topkis
[13].) On the other hand, in the context of Boolean functions, the disjunctive analogue of inequality (1), i.e., where +
is interpreted as the ∨ operator in B = {0; 1}, de3nes a class of Boolean functions in one-to-one correspondence with
3nite partial pre-orders (Ekin, Hammer and Peled [4]).

In this paper we are interested in extending to the full class of pseudo-Boolean functions, the disjunctive analogy of
the functional inequalities (1) and (2), i.e. the inequalities obtained by replacing in (1) and (2) addition (+) by join
(max; ∨), and to explore consequences of this formal analogy. The analogue classes so de3ned will be described in terms
of the disjunctive normal forms of their members.

Note that the set of pseudo-Boolean functions on a given domain Bn is partially ordered by

g6f g(V )6f(V ); for all V ∈Bn:

This partial order is in fact a distributive lattice, the join operation of which is also called disjunction.
A theory of implicants and disjunctive normal forms for pseudo-Boolean functions was proposed in [5], extending the

DNF theory of Boolean functions. The de3nition of variables x; y; x; : : : and complemented variables Ix; Iy; Iz; : : : remains
unaltered. However, in the pseudo-Boolean context, we de3ne a literal as a function of the form a + bx; b �= 0, where
a; b∈R and x is any variable. The literal a + bx is called positive or negative according to whether b is positive or
negative. An elementary conjunction is a function of the form

a+ bx̃1 · · · x̃m; (3)

where a; b∈R; b¿ 0 and each x̃i is a Boolean literal (i.e. a variable or a complemented variable). An elementary
disjunction is of the form

a+ b(x̃1 ∨ · · · ∨ x̃m):
An implicant of a pseudo-Boolean function f is an elementary conjunction g de3ned on the same domain, such that
g6f, and g is a prime implicant if g6 h implies g= h for all implicants h of f. Similarly, an implicatum of f is an
elementary disjunction g such that f6 g, and g is a prime implicatum if h6 g implies h = g for all implicata h of f.
A disjunctive normal form (DNF) of f is an expression of f as a join of implicants

f = g1 ∨ · · · ∨ gk ;
where all the gi have the same minimum value. (The minimum value of an elementary conjunction (3) is a.) The canonical
DNF of f is obtained if we take the join of all prime implicants of f (which are 3nite in number). For example, the
DNFs

(1 + 2xy) ∨ (1 + x Iy)

and

(1 + x) ∨ (1 + 2xy)

represent the same function on B2, and the latter DNF is canonical.
The canonical DNF can be computed by a pseudo-Boolean consensus algorithm starting from any given DNF. Extending

the Blake–Quine consensus procedure for Boolean functions, the following pseudo-Boolean algorithm consists in the
repeated application (in any order) of the two basic steps below, until none can be applied.

Absorption : If gi6 gj; i �= j, in the DNF g1 ∨ · · · ∨ gk , then remove gi from the join expression.
Consensus : If for some i �= j in g1 ∨ · · · ∨ gk

gi = a+ bx1x̃2 · · · x̃m;
gj = a+ c Ix1ỹ 2 · · · ỹ t ;

x̃2 · · · x̃mỹ 2 · · · ỹ t �= 0;

then adjoin g = a+ (b ∧ c)x̃2 · · · x̃mỹ 2 · · · ỹ t to g1 ∨ · · · ∨ gk to form g1 ∨ · · · ∨ gk ∨ g, provided that g� gj
for j = 1; : : : ; k.
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In [5] we have de3ned the dual of a pseudo-Boolean function f as

fd(V ) = 1− f( IV )

for all V ∈Bn, where IV is the complement of V in the Boolean lattice Bn. Dualization de3nes a dual order automorphism
of R(Bn), leaves all variables unchanged, and converts elementary conjunctions to elementary disjunctions and vice versa.

The dual notion to DNF is that of a conjunctive normal form (CNF): it is an expression of a pseudo-Boolean function
as a meet of implicata,

f = g1 ∧ · · · ∧ gk ;

where all the gi have the same maximum value. The canonical CNF is obtained if we take the meet of all prime implicata
of f (which are 3nite in number).

Let us 3nally recall that the undirected covering (Hasse) diagram of the lattice Bn endows the domain of each
pseudo-Boolean function with a graph structure. In this graph shortest paths (geodesics) between two vertices U;W
play a signi3cant role. A vertex V is geodesically between U and W if it lies on some geodesic connecting U and W .
A set S of vertices is geodesically convex (contains all V that are geodesically between any two vertices in the set) if
and only if S is a discrete subcube, i.e. the vertex set of some face of the solid cube spanned by Bn in Rn.

The early references to pseudo-Boolean function theory are [9,10]; a recent survey appears in [1]. For Boolean functions,
the DNF syntax for classes de3ned by certain functional inequalities and equations is studied in [3] where in particular,
disjunctive Boolean analogues of submodular and supermodular functions were examined. In the full pseudo-Boolean
context, the DNF syntax of monotone and Horn functions was described in [6].

The remainder of the paper is divided into two further sections. Section 2 contains results concerning characterizations
of disjunctive submodular and disjunctive supermodular functions. Section 3 discusses the representation of arbitrary
pseudo-Boolean functions as disjunctions of a particular type of functions studied in Section 2 (basic conjunction i.e.
conjunctive modular functions).

2. Characterizations

A pseudo-Boolean function f is called disjunctive submodular if it satis3es the inequality f(V ) ∨ f(W )¿f(VW ) ∨
f(V ∨W ) for any V;W ∈Bn, and it is called disjunctive supermodular if it satis3es f(V )∨f(W )6f(VW )∨f(V ∨W )
for any V;W ∈Bn. For brevity’s sake, we shall often omit the quali3er “disjunctive” when referring to these two properties,
as in the sequel we do not need to deal with the original, additive meaning of submodularity and supermodularity.

Lemma 1. The disjunction f1∨· · ·∨fm of disjunctive submodular (resp. supermodular) functions is disjunctive submodular
(resp. supermodular).

Proof. Let f1; : : : ; fm be submodular pseudo-Boolean functions, and let V;W ∈Bn.[∨
i

fi(V )

]
∨

[∨
i

fi(W )

]
=

∨
i

[fi(V ) ∨ fi(W )]¿
∨
i

[fi(VW ) ∨ fi(V ∨W )]

=

[∨
i

fi(VW )

]
∨

[∨
i

fi(V ∨W )

]
:

The proof for the case of supermodular functions is obtained in the same way, by simply reversing the inequalities.

Theorem 1. A pseudo-Boolean function f is disjunctive submodular if and only if it has a DNF in which every elementary
conjunction has at most one complemented and at most one uncomplemented variable.

Proof. A simple case analysis shows that every elementary conjunction of the stated form is submodular. Therefore any
DNF of the stated form, being a disjunction of submodular functions, is submodular (by Lemma 1).

For the converse, assume that the canonical DNF of a disjunctive submodular pseudo-Boolean function contains a prime
implicant of the form a+ bx1x2P or a+ b Ix1 Ix2P.
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Suppose a+ bx1x2P is a prime implicant. Then neither a+ bx1P nor a+ bx2P is an implicant. There are then vectors
V;W such that

v1 = 1 v2 = 0 P(V ) = 1 f(V )¡a+ b;

w1 = 0 w2 = 1 P(W ) = 1 f(W )¡a+ b:

But clearly f(V ∨W )¿ a+ b, contradicting submodularity.
For a+b Ix1 Ix2P the argument is similar with a+b Ix1P and a+b Ix2P as non-implicants, and f(VW )¿ a+b contradicting

submodularity.

Lemma 2. If h :R→ R is monotone non-decreasing, and the pseudo-Boolean function f :Bn → R is disjunctive super-
modular, then the composition h ◦ f is also disjunctive supermodular.

Proof. The result follows from the fact that R being a chain, h is a lattice endomorphism, i.e. for any real numbers y, z,

h(y ∨ z) = h(y) ∨ h(z):

Theorem 2. A pseudo-Boolean function f is disjunctive supermodular if and only if it is the disjunction of a monotone
non-decreasing and of a monotone non-increasing function.

Proof. It is easy to verify that every monotone non-decreasing, as well as every monotone non-increasing pseudo-Boolean
function is disjunctive supermodular. Their disjunction is then supermodular by virtue of Lemma 1.

Conversely, let us prove, by induction on the cardinality of the range of a supermodular function f, that f is the
disjunction of a monotone non-increasing and of a monotone non-decreasing function.

First, the claim is obviously true if f is constant.
Second, also, if the range of f consists of two numbers a and b, a¡b, consider the sets

P = {V ∈Bn :∀W ¿V; f(W ) = b};
N = {V ∈Bn :∀W 6V; f(W ) = b}:

Let the n-ary pseudo-Boolean functions f1 and f2 be de3ned by

f1(V ) = b for V ∈P; f1(V ) = a for V ∈ P;

f2(V ) = b for V ∈N; f1(V ) = a for V ∈ N:

Clearly f1 is monotone non-decreasing and f2 is monotone non-increasing. Obviously f1 ∨ f26f.
If there is a point V with f(V )= b and f1(V )=f2(V )= a, then V ∈ P∪N . It follows that there are points U;W such

that U6V 6W , and f(U ) = f(W ) = a. Let us denote by

V ′ = (U ∨ IV )W;

the relative complement of V in the interval [U;W ]. Then U = VV ′ and W = V ∨ V ′. Therefore, f(VV ′) = f(U ) = a
and f(V ∨ V ′) = f(W ) = a, while f(V ) = b, implying that f(V ) ∨ f(V ′) = b¿a, in contradiction with the assumed
supermodularity. Hence f1 ∨ f2¿f.

From the conclusions of the last two paragraphs it follows that f = f1 ∨ f2.
Third, if the range of f has at least 3 elements, let t be any element of the range of f such that minf¡ t¡maxf.

Let h and k be functions R→ R de3ned by

h(x) =

{
minf if x6 t;

x if t ¡ x

and

k(x) =

{
x if x6 t;

t if t ¡ x:

We have f = (h ◦ f) ∨ (k ◦ f).
Both h and k are monotone non-decreasing, therefore by Lemma 2 both h ◦ f and k ◦ f are supermodular. Since both

h ◦ f and k ◦ f have smaller ranges than f, the proof is completed by induction.
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An elementary disjunction was de3ned earlier as a disjunction of literals that are required to have the same maximum.
Disjunctions of literals without this restrictive requirement are characterized by the next lemma.

Let us call a pseudo-Boolean function f disjunctive or conjunctive modular if and only if it satis3es

f(VW ) ∨ f(V ∨W ) = f(V ) ∨ f(W ) (4)

or

f(VW ) ∧ f(V ∨W ) = f(V ) ∧ f(W ); (5)

respectively, for every V;W in the domain of f. The replacement in (5) of the equality “=” by “6” or by “¿” would
de3ne properties essentially dual to disjunctive submodularity and disjunctive supermodularity, respectively. Conjunctive
modularity can therefore be viewed as the combination of the duals of the two main properties 3rst considered in this
section. Also, as shown by Lemmas 3, 4 and Theorems 3, 4, conjunctive modularity is the dual of the property of
disjunctive modularity.

Lemma 3. A pseudo-Boolean function f is disjunctive modular if and only if it is a disjunction of literals.

Proof. The “if ” part follows from two observations:

(i) Every literal satis3es (4).
(ii) The set of pseudo-Boolean functions satisfying (4) is closed under disjunction.

For the “only if ” part, assume the validity of (4). By disjunctive submodularity, the canonical DNF of f is of the form

f = c0 +
∨
i

ciPi =
∨
i

(c0 + ciPi)

with every ci ¿ 0 and Pi of the form x, Iy, or x Iy. But by disjunctive supermodularity

f =
∨

(c0 + ciPi :Pi positive or negative)

and no c0 + cix Iy can be a prime implicant. This proves the lemma.

Lemma 4. A pseudo-Boolean function f is conjunctive modular if and only if it is a conjunction of literals.

Proof. The following relations are equivalent for any given vectors V;W :

f(VW ) ∧ f(V ∨W ) = f(V ) ∧ f(W );

[− f(VW )] ∨ [− f(V ∨W )] = [− f(V )] ∨ [− f(W )];

[1− f(VW )] ∨ [1− f(V ∨W )] = [1− f(V )] ∨ [1− f(W )];

fd(VW ) ∨ fd(V ∨W ) = fd( IV ) ∨ fd( IW );

fd( IV ∨ IW ) ∨ fd( IV IW ) = fd( IV ) ∨ fd( IW ):

By Lemma 3 this last equation is true for all V;W if and only if fd is a disjunction of literals. This is the case if and
only if f is a conjunction of literals.

Theorem 3 (Disjunctive modularity theorem). For any n-ary pseudo-Boolean function f the following are equivalent:

(a) f satis;es f(VW ) ∨ f(V ∨W ) = f(V ) ∨ f(W ) for all V;W ∈Bn;
(b) f is a disjunction of literals;
(c) the prime implicata of f are a1 + b1D1; : : : ; am + bmDm where a1 ¡ · · ·¡am and D1 ¿ · · ·¿Dm;
(d) if a vector V is geodesically between U;W (i.e. d(U; V ) + d(V;W ) = d(U;W ) in the Hamming metric) then

f(V )6f(U ) ∨ f(W );

(e) for each t ∈R the inverse image f−1(−∞; t] is a subcube of Bn.

Proof. The equivalence of (a) and (b) was seen in Lemma 3. The equivalence of (d) and (e) is obvious. From (d) it
is easy to deduce (a). Literals obviously satisfy condition (d). Also, the join of any two functions satisfying (d) satis3es
(d). Thus (b) implies (d). It follows that (a), (b), (d) and (e) are equivalent.
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Let us prove now the validity of the implication of (e) by (c). First, if t ¡ a1, the set f−1(←; t] being empty, the
implication holds. Second, if t¿maxf, then f−1(←; t] is the whole cube Bn. Finally, let a16 t ¡maxf, let i be
the largest index with ai6 t and let us suppose that there is a V in f−1(←; t] such that Di(V ) = 1. In that case
D1(V ) = · · ·= Di(V ) = 1 and

f(V ) =

[ ∧
j6i

(aj + bj)

]
∧

[ ∧
j¿i+1

(aj + bjDj(V ))

]

and since aj + bj = maxf, it follows that f(V )¿ (maxf) ∧ (
∧

j¿i+1 aj)¿ai, in contradiction with the assumption on
V . Hence, V ∈f−1(←; t] implies that V does not belong to the subcube of points where Di =1. On the other hand, if V
is a point with Di(V ) = 0, as ai + biDi is an implicatum of f, we have V ∈f−1(←; t]. Hence, f−1(←; t] is the subcube
of points for which Di = 0.

Conversely, assume (e). Let t1 ¡ · · ·¡tm be the range of f. Let Pi = {V ∈Bn :f(V )6 ti}; let Di be the Boolean
elementary disjunction such that D−1

i (0) =Pi, and let ai = ti, bi = tm− ti. Obviously each ai + biDi is an implicatum of f
and D1 ¿ · · ·¿Dm. To show (c), it is enough to establish that every implicatum h= a+ bD of f (where b¿ 0 and D
is a Boolean elementary disjunction) is an implicatum of one of the ai + biDi. For such an implicatum a+ bD, obviously
tm6 a + b and we can suppose that a¡ tm for otherwise the claim is obvious. From (e) it follows that f−1(−∞; a] is
a subcube, and in fact it must coincide with one of the Pi, namely with the Pi with the largest index i such that ti6 a.
For this i, also Di6D and thus ai + biDi6 a+ bD.

Remark. Condition (a) of Theorem 3 states that the dual of f is both disjunctive submodular and disjunctive supermodular.

Theorem 4 (Conjunctive modularity). For any n-ary pseudo-Boolean function f the following are equivalent:

(a) f satis;es f(VW ) ∧ f(V ∨W ) = f(V ) ∧ f(W ) for all V;W ∈Bn;
(b) f is a conjunction of literals;
(c) the prime implicants of f are c0 + c1P1; : : : ; c0 + cmPm where c1 ¡ · · ·¡cm and P1 ¿ · · ·¿Pm;
(d) if a vector V is geodesically between U;W then

f(V )¿f(U ) ∧ f(W );

(e) for each t ∈R the inverse image f−1[t;∞) is a subcube.

Proof. By duality from Theorem 3.

We shall call a pseudo-Boolean function a basic conjunction (respectively, disjunction) if it is a conjunction of literals
(respectively, disjunction of literals), and we shall say that it is positive, or negative, if the literals involved are all positive,
or negative.

Theorem 5. For any pseudo-Boolean function f the following are equivalent:

(i) f is disjunctive supermodular and fd is disjunctive submodular;
(ii) f is the disjunction of a positive basic conjunction and a negative basic conjunction.

Proof. Observe 3rst that the submodularity of the dual means that the following equivalent inequalities are valid:

fd(V ∨W ) ∨ fd(VW )6 fd(V ) ∨ fd(W );

−[(−fd(V ∨W )) ∧ (−fd(VW ))]6−[(−fd(V )) ∧ (−fd(W ))];

[(1− fd(V ∨W )) ∧ (1− fd(VW ))]¿ [1− fd(V )] ∧ [1− fd(W )];

[1− fd( IV ∨ IW )] ∧ [1− fd( IV IW )]¿ [1− fd( IV )] ∧ [1− fd( IW )];

[1− fd(VW )] ∧ [1− fd(V ∨W )]¿ [1− fd( IV )] ∧ [1− fd( IW )];

f(VW ) ∧ f(V ∨W )¿ f(V ) ∧ f(W ): (6)
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Assume (ii). Let f = p ∨ n, where p and n are a positive and a negative basic conjunction. Then f is supermodular
by Theorem 2. For the submodularity of the dual, we need to establish (6).

Case 1: If f(V ) = p(V ), f(W ) = p(W ) then by Theorem 4

f(VW )¿p(VW )¿p(VW ) ∧ p(V ∨W ) = p(V ) ∧ p(W ) = f(V ) ∧ f(W );

f(V ∨W )¿p(V ∨W )¿p(VW ) ∧ p(V ∨W ) = p(V ) ∧ p(W ) = f(V ) ∧ f(W )

and the two inequalities imply (6).

Case 2: If f(V ) = n(V ), f(W ) = n(W ), Theorem 4 applied to n instead of p shows that (6) holds.

Case 3: If f(V ) = p(V ), f(W ) = n(W ) then

f(V ∨W )¿p(V ∨W )¿p(V ) = f(V );

f(VW )¿ n(VW )¿ n(W ) = f(W );

implying (6).

Case 4: If f(V ) = n(V ), f(W ) = p(W ), an argument similar to that given in Case 3 shows that (6) holds.
Conversely, assume (i). From Theorem 2 it follows that

f = c + (p ∨ n); (7)

where c = minf, p is monotone non-decreasing with minimum 0, and n is monotone non-increasing with minimum 0.
We may choose p and n maximal, in the sense that if p′ ¿p is also monotone non-decreasing with minimum 0, we can
not substitute p′ for p in (7), and similarly for n.
We need to show only that both p and n are basic conjunctions, positivity and negativity follow from the fact that

p and n are nondecreasing and non-increasing, respectively. We do this for p, the proof is similar for n. In view of
condition (c) of Theorem 4, it suQces to show that for any two prime implicants c0 + ciPi and c0 + cjPj of p, either
Pi ¡Pj or Pj ¡Pi. Note that c0 = 0 because minp= 0.

Suppose we had neither Pi ¡Pj nor Pj ¡Pi. We shall derive a contradiction. We may assume that ci6 cj , and since
p is nondecreasing, we know that no complemented variables occur in Pi or Pj . Let P be the product of the Boolean
variables occurring both in Pi and in Pj . Let Vi be the smallest element of the lattice Bn such that Pi(Vi) = 1, and let Vj
be de3ned similarly for Pj . Then V = Vi ∧ Vj is the smallest element of Bn for which P(V ) = 1. By the submodularity of
fd,

f(V )¿f(Vi) ∧ f(Vj)¿ ci + c:

Further, observe that every W with P(W ) = 1 can be written as W =Wi ∧Wj where Pi(Wi) = Pj(Wj) = 1. Therefore, by
the submodularity of fd,

f(W )¿f(Wi) ∧ f(Wj)¿ ci + c:

Thus c + ciP6f and since ciP is not an implicant of p (ciPi being a prime implicant), p′ = p ∨ ciP would contradict
the maximality of p.

In the same vein, the following theorems characterize pseudo-Boolean functions f for which f and fd possess other
combinations of the supermodular-submodular pair of properties.

Theorem 6. For any pseudo-Boolean function f the following are equivalent:

(i) both f and fd are disjunctive supermodular;
(ii) f is monotone non-decreasing or monotone non-increasing.

Proof. Assume (ii). Since the dual of any monotone function is monotone and all monotone functions are supermodular,
(i) follows easily.
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Conversely, assume (i). Suppose that f is not monotone. We shall derive a contradiction. Non-monotonicity implies
the existence of u, v, w, t in Bn such that

U ¡V f(U )¿f(V );

W ¡T f(W )¡f(T ):

By the supermodularity of f

f(0) ∨ f(V ) = f(U ∧ IU ∧ V ) ∨ f(U ∨ ( IU ∧ V ))¿f(U ) ∨ f( IU ∧ V )¿f(U )

and thus f(0)¿f(U ), and for a similar reason f(T )6f(1).
On the other hand, the supermodularity of fd means, by an argument analogous to the one used at the beginning of

the proof of Theorem 5 to characterize functions with a submodular dual, that the inequality

f(V ∨W ) ∧ f(VW )6f(V ) ∧ f(W )

holds for all X , Y in Bn. Thus in particular

f(T ) ∧ f(0) = f(W ∨ IWT ) ∧ f(W IWT )6f(W ) ∧ f( IWT )6f(W )

and therefore f(0)6f(W ), and for a similar reason f(V )¿f(1).
We would now have simultaneously

f(0)¿f(U )¿f(V )¿f(1);

f(0)6f(W )¡f(T )6f(1):

and this is impossible.

The next two theorems will characterize those submodular functions for which the dual function is supermodular or
submodular, respectively.

Theorem 7. For a pseudo-Boolean function f the following conditions are equivalent:

(i) f is disjunctive submodular and fd is disjunctive supermodular;
(ii) f has a DNF

(a+ bq+q−) ∨ (a+ cr+r−) ∨ : : : ;
where q+; r+; : : : are positive literals or the constant 1, q−; r−; : : : are negative literals or the constant 1, and for
any two terms a+ bq+q− and a+ cr+r− in the DNF, a+min(b; c)q+r− is an implicant of f.

Proof. Note 3rst that the supermodularity of fd means that for all U;W ∈Bn

f(UW ) ∧ f(U ∨W )6f(U ) ∧ f(W )

which is true if and only if for all U; V ∈Bn

f(UW ) ∧ f(U ∨W )6f(U ) (8)

or, equivalently, if U6V 6W in Bn implies

f(U ) ∧ f(W )6f(V ): (9)

Assume (i). We shall prove that the canonical DNF of f satis3es the requirements of (ii). From Theorem 1 it follows
without diQculty that this canonical DNF is written as

(a+ bq+q−) ∨ (a+ cr+r−) ∨ : : : ;
where q+; r+; : : : are positive literals or the constant 1 function, q−; r−; : : : are negative literals or the constant 1 function.
Consider now two generic terms a+ bq+q− and a+ cr+r− of this DNF. Let us denote the function a+min(b; c)q+r− by
I . We need to show that I6f. If this were not true, there would exist a V = (v1; : : : ; vn) in Bn such that I(V )¿f(V ).
To derive a contradiction, assume that this is the case. Clearly, I(V ) = a+min(b; c) and thus

q+(V ) = r−(V ) = 1
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but both implicants a+ bq+q− and a+ cr+r− must have the value a on V , i.e.

q+q−(V ) = q+(V )q−(V ) = 0;

r+r−(V ) = r+(V )r−(V ) = 0

and it now follows that

q−(V ) = r+(V ) = 0:

This is possible if and only if q− is a negative literal Ixi (the negation of the ith variable) and r+ is a positive literal xj
(the jth variable). For the corresponding components of V this implies vi = 1, vj = 0. De3ne now the vector U in Bn

as having the same components as V , except that ui = 0, and de3ne W to have the same components as V except that
wj = 1. Obviously U6V 6W . However, the implicant a+ bq+q− takes value a+ b on U , and a+ cr+r− takes value
a+ c on W . Thus

f(U )¿ a+ b;

f(W )¿ a+ c;

f(U ) ∧ f(W )¿ a+min(b; c):

But from the assumption I(V )¿f(V ) it would now follow (since I(V ) = a + min(b; c)) that f(U ) ∧ f(W )¿f(V ),
contradicting (9). Condition (ii) is thus proved from (i).

Conversely, assume we have a DNF of f as described by (ii). By Theorem 1, f is submodular. If fd were not
supermodular, then (8) would fail for some U , W in Bn, i.e. we would have

f(UW ) ∧ f(U ∨W ))¿f(U ): (10)

The value f(UW ) would be the value on UW of some implicant a + bq+q− of the given DNF, and f(U ∨W ) would
also be the value on U ∨W of some implicant a+ cr+r−, i.e.

f(UW ) = a+ b;

q+(UW ) = 1;

f(U ∨W ) = a+ c;

r−(U ∨W ) = 1

and consequently

q+(U ) = 1 r−(U ) = 1;

f(U )¿ [a+min(b; c)q+r−](U ) = a+min(b; c):

But this contradicts (10) because

a+min(b; c) = f(UW ) ∧ f(U ∨W ):

Thus fd must be submodular.

In a 3nite Boolean lattice L, often thought of as a “discrete cube”, a half cube is an order interval either of the form
[a;max L] where a is an atom of L, or of the form [min L; '] where ' is a coatom of L. For any e∈ L, the complement
of e in L is denoted by Ie.

Lemma 5. Let L1 and L2 be disjoint non-empty sublattices of a ;nite Boolean lattice L such that L1 ∪ L2 = L. If min L
and max L belong to di<erent Li then L1 and L2 are complementary half cubes of L, and if both belong to L1 then L1

is the union of two half cubes of L.

Proof. We prove the Lemma by induction on the dimension of L. The statement is easy to verify for dimension 1.
Let L have dimension n greater than 1, and suppose that the statement is true for dimension n− 1. If min L∈ L1 and

max L∈ L2, then it is easy to see that every atom of L except one (say a) belongs to L1 and every coatom except one
(say ') belongs to L2. It follows that

L1 = [min L; Ia];

L2 = [ I';max L]:
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If min L and max L belong to L1, then it is still true that there is an atom a such that every atom except a belongs to
L1 and

[min L; Ia] ⊆ L1;

L2 ⊆ [a;max L]:

Now L′ = [a;max L] is a Boolean lattice of dimension n− 1, L′
1 = L1 ∩ L′ and L′

2 = L2 ∩ L′ = L2 are non-empty lattices
partitioning L′;min L′ = a belongs to L′

2 and max L′ =max L belongs to L′
1. By the induction by hypothesis L′

1 and L′
2 are

complementary half cubes in L′, and for some coatom ' of L′

L′
2 = [a; ']:

But L′
2 = L2, ' is also a coatom of L, and

L1 = [min L; Ia] ∪ [ I';max L]

The next result is speci3c to Boolean functions.

Theorem 8. For a Boolean function f the following conditions are equivalent:

(i) both f and fd are disjunctive submodular;
(ii) f has a DNF with at most one complemented and at most one uncomplemented variable occurrence;
(iii) f is constant, or it is a literal, or it has a DNF of the form x ∨ Iy or x Iy.

Proof. The equivalence of (ii) and (iii) is easy to verify, and so is the implication (iii) ⇒ (i).
Note that (i) is equivalent to saying that both the true and the false points of f constitute sublattices of Bn. Then (iii)

follows by Lemma 5.

Theorem 9. For a pseudo-Boolean function f the following two conditions are equivalent:

(i) both f and fd are disjunctive submodular;
(ii) f is of the form k + (ax ∨ b Iy ∨ cx Iy) when k; a; b; c are constants and a; b; c¿ 0.

Proof. Note that (i) holds if and only if both of the following inequalities hold for all U;W ∈Bn

f(UW ) ∨ f(U ∨W )6f(U ) ∨ f(W ); (11)

f(UW ) ∧ f(U ∨W )¿f(U ) ∧ f(W ): (12)

If (ii) holds then we may actually suppose a¡c; b¡c. A simple case analysis shows that (11) and (12) hold for all
U;W .

Suppose, conversely, that (11) and (12) hold for all U;W . If f is constant, then clearly (ii) holds. Otherwise let us
enumerate the range of f in increasing order, say

r1 ¡ · · ·¡rm; m¿ 2:

For each i = 1; : : : ; m− 1 let fi be the Boolean function de3ned by

fi(V ) = 0⇔ f(V )6 ri:

Then for each i, fi is non-constant, submodular, and fd
i is also submodular. (This can be veri3ed using inequalities like

(11) and (12) with fi instead of f.) Obviously,

f1 ¿ · · ·¿fm−1:

It follows from Theorem 8 that m− 16 3.
If m− 1 = 1 then

f = r1 + (r2 − r1)f1

and (ii) holds obviously.
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If m− 1 = 2 then we have one of the following two cases:

(a) f1 is of the form x ∨ Iy and f2 is either x or Iy or x Iy;
(b) f2 is of the form x Iy and f1 is either x or Iy.

In either case

f = r1 + (r2 − r1)f1 + (r3 − r2)f2 = r1 + [(r2 − r1)f1 ∨ (r3 − r1)f2]

and (ii) holds obviously.
Finally, if m− 1 = 3, then for some variables x; y

f1 = x ∨ Iy; f2 = x or f2 = Iy f3 = x Iy;

f = r1 + [(r2 − r1)f1 ∨ (r3 − r1)f2 ∨ (r4 − r1)f3]

and (iii) holds obviously.

3. Implicant theory of basic conjunctions

Basic conjunctions generalize the notion of elementary conjunction, since every elementary conjunction is a basic
conjunction and every pseudo-Boolean function is the join of a 3nite number of basic conjunctions. Within the class of
Boolean functions, elementary and basic conjunctions coincide. In the class of pseudo-Boolean functions, however, the set
of elementary conjunctions is not closed under meet. In fact the closure under meet of the set of pseudo-Boolean literals
is the entire class of basic conjunctions.

We shall now outline a disjunctive representation theory of pseudo-Boolean functions based on basic rather than
elementary conjunctions. Our terminology is justi3ed within the framework of abstract lattice-theoretical implicant theory,
proposed by Davio, Deschamps and Thayse [2] (see also [7]).

De'nition. A basic conjunction g is a basic implicant of a pseudo-Boolean function f if g6f; it is a prime basic
implicant of f if it is maximal in the set of basic implicants of f.
Observe that if (c0 +c1P1)∨· · ·∨ (c0 +cmPm) is a basic implicant of f, then each c0 +ciPi is an (elementary) implicant

(and conversely, assuming c1 ¡ · · ·¡cm, P1 ¿ · · ·¿Pm, as speci3ed in condition (c) of Theorem 4).

De'nition. The nesting order � is the partial order on the set of all elementary conjunctions given by

a+ bP � a′ + b′P′ a6 a′; b6 b′; P¿P′:

From Theorem 4 it is clear that a pseudo-Boolean function is a basic conjunction if and only if it has a DNF
∨

i(ai+biPi)
where the various ai + biPi form a chain in the nesting order. (They then form an antichain in the standard order on
RB

n
.) A basic conjunction g= (c0 + c1P1) ∨ · · · ∨ (c0 + cmPm); c1 ¡ · · ·¡cm; P1 ¿ · · ·¿Pm is a prime basic implicant

of a pseudo-Boolean function f if and only if {c0 + ciPi : 16 i6m} is a maximal chain in the nesting-ordered set of
(elementary) prime implicants of f.

It follows that, similarly to (elementary) prime implicants, every pseudo-Boolean function has only a 3nite number of
prime basic implicants.

We now de3ne a consensus algorithm for basic implicants. Let a pseudo-Boolean function f be expressed as a join
of some basic implicants

f = g1 ∨ · · · ∨ gm: (13)

The algorithm performs repeatedly any of the following two procedures until none can be performed:
Absorption: If gi ¡gj , delete gi from (13).
Adjunction of consensus: If for some prime basic implicant g of gi ∨ gj there is no gk with g6 gk , then add g to (13).

Note. In adjunction of consensus, for a given pair gi; gj , there can be more than one g satisfying the stated condition that
there is no gk¿ g. E.g.

f = (x ∨ 2xyz) ∨ (y ∨ 2xyt)

= [(2− 2 Ix) ∧ (2− Iy) ∧ (2− Iz)] ∨ [(2− 2 Iy) ∧ (2− Ix) ∧ (2− It)]:
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Theorem 10. The consensus algorithm for basic implicants terminates always with precisely the join of all the prime
basic implicants of f.

Proof. It suQces to prove that if none of the two procedures of the algorithm can be performed for (13), then for every
basic implicant g of f there is a gi such that g6 gi. In fact it is enough to show this for those g whose range is contained
in that of f because for every basic implicant

g= c0 + (c1P1 ∨ · · · ∨ cmPm);

c1 ¡ · · ·¡cm; P1 ¿ · · ·¿Pm;

we can de3ne, for 16 i6m, c′
i as the smallest number greater than or equal to ci such that c0 + c′

i is in the range of
f, and then

g′ = c0 + (c′
1P1 ∨ · · · ∨ c′

mPm)

is also a basic implicant of f, and g6 g′, and the range of g′ is contained in that of f.
So let G denote the set of those basic implicants of f whose range is contained in that of f: this set G is 3nite and it

is endowed with the order inherited from RB
n
. If the Theorem fails, there is a minimal member g of G for which there

is no gi such that g6 gi. We shall derive a contradiction.
It is easy to see that g cannot be of the form c0+cP, c¿ 0; P a Boolean minterm. Let g=(c0+c1P1)∨· · ·∨(c0+ckPk),

where 0¡c1 ¡ · · ·¡ck; P1 ¿ · · ·¿Pk Boolean elementary conjunctions.
If k = 1, then P1 is not a minterm; and if k¿ 2, then P1 ¿P2 implies that P1 is not a minterm. Let x be a variable

not occurring in P1. Let

g+ = (c0 + c1P1x) ∨ · · · ∨ (c0 + ckPkx);

g− = (c0 + c1P1 Ix) ∨ · · · ∨ (c0 + ckPk Ix):

For some gi; gj , g+6 gi; g−6 gj because g+ ¡g, g− ¡g. But g = g+ ∨ g− and thus g could be added to (13) by
adjunction of consensus: contradiction.

Theorem 11. Let a basic conjunction p be represented as a meet of literals∧
i

(ai + bix̃i) (14)

with all bi ¿ 0, so that no variable occurs in more than one factor literal in (14) and no factor ai + bix̃i is redundant.

(a) p is an elementary conjunction if and only if all the factors have the same minimum,
(b) expression (14) is the canonical CNF of p if and only if all the factors have the same maximum.

Proof. (a) If all the factors have the same minimum, then (14) is by de3nition an elementary conjunction. Conversely,
if all the factors do not have the same minimum, then let a1 be the lowest of these minima, and let a2 be the second
lowest. We have ai + bi ¿a2 for every i, and thus the range of the function p includes at least the three distinct numbers

a1; a2;
∧
i

(ai + bi):

Thus (14) cannot be an elementary conjunction if all the literals in (14) do not have the same minimum.
(b) If all the factors in (14) have the same maximum, then (14) is easily seen to be the canonical CNF of p. Conversely,

(14) is a CNF by de3nition only if ai + bi are the same for all i.

The following theorem then follows by duality:

Theorem 12. Let a basic disjunction d be represented as a join of literals∨
i

(ai + bix̃i) (15)

so that no variable occurs in more than one join term of (15) and no join term is redundant.

(a) d is an elementary disjunction if and only if all the join terms have the same maximum,
(b) expression (15) is the canonical DNF of d if and only if all the join terms have the same minimum.
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