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The perception of objects in our visual world is influenced by not only their low-level visual features such
as shape and color, but also their high-level features such as meaning and semantic relations among
them. While it has been shown that low-level features in real-world scenes guide eye movements during
scene inspection and search, the influence of semantic similarity among scene objects on eye movements
in such situations has not been investigated. Here we study guidance of eye movements by semantic sim-
ilarity among objects during real-world scene inspection and search. By selecting scenes from the Lab-
elMe object-annotated image database and applying latent semantic analysis (LSA) to the object labels,
we generated semantic saliency maps of real-world scenes based on the semantic similarity of scene
objects to the currently fixated object or the search target. An ROC analysis of these maps as predictors
of subjects’ gaze transitions between objects during scene inspection revealed a preference for transitions
to objects that were semantically similar to the currently inspected one. Furthermore, during the course
of a scene search, subjects’ eye movements were progressively guided toward objects that were seman-
tically similar to the search target. These findings demonstrate substantial semantic guidance of eye
movements in real-world scenes and show its importance for understanding real-world attentional
control.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction likely to be found (Neider & Zelinsky, 2006; Torralba, Oliva, Castel-
In order to study the control of visual attention under fairly nat-
ural conditions, many researchers have analyzed observers’ eye
movements in real-world images during inspection or search tasks,
in which visual attention and eye movements are tightly coupled
(e.g., Findlay, 2004). In these tasks, various mechanisms of eye-
movement control based on low-level visual features have been
examined, including bottom-up (e.g., Bruce & Tsotsos, 2006; Itti
& Koch, 2001; Parkhurst, Law, & Niebur, 2002) and top-down con-
trol of visual attention (e.g., Hwang, Higgins, & Pomplun, 2009;
Peters & Itti, 2007; Pomplun, 2006; Zelinsky, 2008). These studies
demonstrated that observers’ attention is biased toward visually
salient locations, e.g., high-contrast areas, during scene inspection
and toward regions similar to the search target in visual search
tasks. It is important to notice, though, that real-world scenes con-
sist of objects representing not only low-level visual information
but also higher-level, semantic data. However, factors such as ob-
ject meanings, between-object relations, or conceptual semantic
effects, which are naturally involved in real-world situations, were
not considered in previous work.

Although there have been studies of contextual effects in visual
search, in which eye movements were constrained by contextual
spatial knowledge of the scene, e.g., information about the objects
ll rights reserved.

).
hano, & Henderson, 2006), and studies of primitive semantic ef-
fects based on co-occurrence of objects in terms of implicit
learning (Chun & Jiang, 1998; Chun & Phelps, 1999; Manginelli &
Pollmann, 2009), the contextual relations investigated in those
experiments depended on the spatial distribution or the consis-
tency of scene objects.

Scene consistency itself has been the subject of numerous stud-
ies. One line of research has focused on objects that are not seman-
tically consistent with the scene gist, referred to as ‘‘semantic
violations’’, such as an octopus in a farmyard, or a microscope in
a kitchen (Biederman, Mezzanote, & Rabinowitz, 1982; Bonitz &
Gordon, 2008; Henderson, Weeks, & Hollingworth, 1999; Joubert,
Fize, Rousselet, & Fabre-Thorpe, 2008; Loftus & Mackworth,
1978; Stirk & Underwood, 2007; Underwood, Humphreys, & Cross,
2007). Another line of research has studied objects that are seman-
tically consistent but located in unexpected places in the scene
structure or in unusual orientations, referred to as ‘‘syntactic viola-
tions’’, e.g., a floating cocktail glass in a kitchen or a fire hydrant on
top of a mailbox in a street scene (Becker, Pashler, & Lubin, 2007;
Biederman et al., 1982; Gareze & Findlay, 2007; Võ & Henderson,
2009).

The mechanisms underlying the effects of semantic or syntactic
violations on eye movements are still not well understood. There is
a current debate on whether semantic inconsistence guides eye
movements in a similar way as visual saliency does. For example,
Biederman et al. (1982), Stirk and Underwood (2007), Underwood
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Fig.1. The LabelMe object-annotated image database (http://labelme.csail.mit.edu/).
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et al. (2007), Becker et al. (2007), Bonitz and Gordon (2008) and
Loftus and Mackworth (1978) found that inconsistent objects are
often found earlier and detected more accurately, and they con-
clude that it might be the result of parafoveal or peripheral infor-
mation processing that enables object identification. On the
contrary, Henderson et al. (1999) and Võ and Henderson (2009)
found no evidence for such extrafoveal analysis. Finally, Joubert
et al. (2008) found a mixed result of lower detection rate and faster
reaction time for scene-inconsistent objects than for scene-consis-
tent ones. Despite these varying results, there seems to be consen-
sus that after the identification of an object, semantically or
syntactically inconsistent objects draw more attention, suggesting
that the estimation of semantic or syntactic relations is simulta-
neously processed with object identification.

It should be noted that these observed effects on eye move-
ments are based on a single object-scene relation (semantic or syn-
tactic violation) that rarely occurs in the real-world. The above
studies thus over-simplify high-level visual perception, making it
problematic to apply their findings to common cases in which
the conceptual relations among all scene objects contain no
semantic or syntactic violations.

Recently, there have been many efforts to understand the role of
conceptual semantic influence on attention using various experi-
mental methods. Belke, Humphreys, Watson, Meyer, and Telling
(2008) and Moores, Laiti, and Chelazzi (2003) used a visual search
paradigm, in which the search target was verbally specified before
a set of object drawings was displayed. By analyzing observers’ re-
sponse times and eye movements, these studies demonstrated that
attention was preferentially attracted to those objects that were
semantically similar to the target. Corresponding effects were ob-
tained by Huettig and Altmann (2006) and Yee and Sedivy (2006)
using the visual world paradigm. In their work, observers’ eye-
movement bias was analyzed while they were looking at multiple,
well-segregated object drawings and listening to spoken object
names. However, all of these studies were limited to briefly pre-
sented, simple search displays containing four to eight objects that
were ‘‘intuitively’’ selected for their semantic relations – a scenario
that drastically differs from any real-world situation. Moreover,
these studies only demonstrate a generic tendency of semantic
influence when activated by external, verbal stimuli.

While these previous findings point out the relevance of seman-
tics to scene inspection and visual search, their contribution to our
everyday control of visual attention is still unclear. For example,
whenever we routinely inspect our real-world visual environment,
is it possible that the semantic similarity among objects in the
scene influences our visual scan paths (gaze transitions)? Conceiv-
ably, in order to quickly develop a semantic understanding of a gi-
ven scene, observers may inspect semantically similar objects
consecutively. If such effects exist, do they depend on the visual
task, e.g., scene inspection or visual search, and do they vary for
the same scene over time? Such semantic guidance has not been
studied, most likely due to the difficulties of assigning eye fixations
to objects in real-world scenes and due to the intricacy of defining
semantic relations among objects. Moreover, a quantitative ap-
proach of assessing semantic guidance in eye-movement data is
necessary.

Analyzing eye fixations on objects in scene images requires
object segmentation and labeling. There have been numerous at-
tempts to solve these problems automatically, ranging from glo-
bal scene classification (Bosch, Munoz, & Marti, 2007; Grossberg
& Huang, 2009; Le Saux & Amato, 2004; Rasiwasia & Vasconce-
los, 2008) to local region labeling (Athanasiadis, Mylonas, Avri-
this, & Kollias, 2007; Chen, Corso, & Wang, 2008; Li, Socher &
Li, 2009). However, their results are still unsatisfactory compared
to human performance in terms of segmentation and descriptive
labeling.
Thanks to the LabelMe object-annotated image database (Rus-
sell, Torralba, Murphy, & Freeman, 2008) developed by the MIT
Computer Science and Artificial Intelligence Laboratory (CSAIL), a
large number of real-world scene images, which were manually
segmented into annotated objects by human volunteers, are freely
available. In this database, the locations of objects are provided as
coordinates of polygon corners, and they are labeled with English
words or phrases (see Fig. 1). Therefore, series of eye fixations on
these scenes can be easily translated into sequences of visually in-
spected objects and their labels.

In order to estimate the effect of semantic similarities between
objects purely based on visual scenes, the co-occurrence of objects
in a large number of scene images and the importance of each ob-
ject in the scene context – defined by its attributes such as size,
location or luminance – would have to be carefully considered.
For example, objects of frequent co-occurrence, close proximity,
or similar shape could be considered as semantically similar.
Unfortunately, analyzing a sufficient amount of scenes and com-
puting semantic relations directly from the image data sources is
impractical. It is important to notice, however, that semantic rela-
tions are formed at the conceptual rather than at the visual level
and thus do not have to be derived from image databases. Conse-
quently, any database that can generate a collection of contexts
or knowledge might be used to represent the semantic similarity
of objects.

For the present study, we chose the linguistics-based computa-
tional method referred to as latent semantic analysis (LSA; Landauer
& Dumais, 1997) to serve as a quantitative measure of semantic
similarity between objects. LSA is a theory and method for extract-
ing and representing the contextual usage-meaning of words by
statistical computations applied to a large corpus of text. The basic
premise in LSA is that the aggregate contexts in which a word does
or does not appear provide a set of mutual constraints to deduce
the word’s meaning (Landauer, Foltz, & Laham, 1998). A high-
dimensional ‘semantic space’ is established from the text corpus,
and terms (which are usually words) and documents (which are of-
ten collections of words) can be represented as vectors in this
space. The semantic similarity between two terms, one term and
one document, or two documents can be calculated as the cosine
value of the angle between the two corresponding vectors in
semantic space. The greater the cosine value, the higher is the
semantic similarity. Since annotated objects in LabelMe have
descriptive text labels, their semantic similarity can be estimated
by calculating cosine values for the labels of object pairs. In this
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study, we used the LSA@CU text/word latent semantic analysis tool
developed by the University of Colorado at Boulder for LSA
computation.

Equipped with above tools, we conducted two experiments to
study two everyday visual activities - scene inspection (Experi-
ment 1) and scene search (Experiment 2). For each recorded eye
fixation during scene inspection, we generated a semantic saliency
map. These maps were similar to feature-wise saliency maps used
in visual feature guidance analysis (e.g., Hwang et al., 2009; Peters
& Itti, 2007; Pomplun, 2006; Zelinsky, 2008), but were entirely
based on the semantic similarities between the currently fixated
object and the other objects in the scene. Here, saliency was de-
fined as the corresponding LSA cosine value. If observers’ immedi-
ate gaze transitions between objects are guided by the objects’
semantic similarities, then these saliency maps should predict
the next saccade target at an above-chance level. We measured
these effects of transitional semantic guidance using the Receiver
Operating Characteristic (ROC). Similarly, in the scene search
experiment, we additionally measured target-induced semantic
guidance by computing saliency as the LSA cosine between the
search target and the label of each non-target scene object, fol-
lowed by an identical ROC analysis. Several control analyses were
conducted to exclude confounds and ensure that actual semantic
guidance was measured.

2. Experiment 1

2.1. Method

2.1.1. Participants
Ten subjects participated in Experiment 1. All of them were stu-

dents at the University of Massachusetts Boston, aged between 19
and 40 years old, with normal or corrected-to-normal vision. Each
participant received a $10 honorarium.

2.1.2. Apparatus
Eye movements were tracked and recorded using an SR Re-

search EyeLink-II system with a sampling rate of 500 Hz. After cal-
ibration, the average error of visual angle in this system is 0.5�.
Stimuli were presented on a 19-inch Dell P992 monitor. Its refresh
rate was 85 Hz and its resolution was 1024 � 768 pixels. Subjects’
responses were entered using a game-pad.

2.1.3. Materials
A total of 200 photographs (1024 � 768 pixels) of real-world

scenes, including landscapes, home interiors, and city scenes, were
selected from the LabelMe database (http://labelme.csail.mit.edu/,
downloaded on March 10, 2009) as stimuli (see Fig. 2 for an exam-
ple scene). Objects in each scene were annotated with polygon
Fig. 2. Examples of the experiment procedures. (a) Scene inspection task and
coordinates defining the outline of the object shape, and they were
labeled with English words. When displayed on the screen, the
photographs covered 40� � 30� of visual angle. Each scene con-
tained an average of 53.03 ± 38.14 labeled objects (in the present
work, ‘±’ always indicates a mean value and its standard deviation),
and the median object number per image was 40. On average, la-
beled objects covered 92.88 ± 10.52% of the scene area.

2.1.4. Procedure
Subjects were instructed to inspect the scenes and memorize

them for subsequent object recall tests (see Fig. 2a). After the
five-second presentation of each scene, an English word was
shown and subjects were asked whether the object indicated by
the word had been present in the previously viewed scene. Sub-
jects had to respond within three seconds by pressing a button
on the game-pad. If they were unable to make the decision within
that period, the trial would time out and the next trial would begin.

2.2. Data analysis

2.2.1. Computing semantic similarity based on LSA
In a nutshell, LSA similarity computation can be described as

follows: First, an occurrence matrix is constructed from a large cor-
pus of text, where each row typically stands for a unique word,
each column stands for a document (‘‘word-by-document matrix’’,
Landauer et al., 1998) and each cell contains the frequency with
which the word occurred in the document. Subsequently, each cell
frequency is normalized by an information-theoretic measure.
However, it is computationally inefficient to operate with this very
high-dimensional matrix. Therefore, a form of factor analysis called
Singular Value Decomposition (SVD; see Berry, Dumais, & Obrien,
1995) is applied to reduce the matrix to a lower-dimensional vec-
tor space called ‘semantic space’. Previous empirical testing showed
that optimal results are usually obtained with a number of dimen-
sions ranging between 100 and 300 (Berry, Drmac, & Jessup, 1999;
Jessup & Martin, 2001; Lizza & Sartoretto, 2001). LSA has the nice
property that it can still estimate the semantic similarity of two
words that never co-occur in the same document (Jones & Mew-
hort, 2007; Landauer & Dumais, 1997).

Every term, every document, and every novel collection of
terms (‘‘pseudo-document’’) has a vector representation in the
semantic space. Thus, the pair-wise semantic similarity between
any of them can be calculated as the cosine value of the angle be-
tween the two corresponding vectors, with greater cosine value
indicating greater similarity. Table 1 shows examples of LSA cosine
values for various object labels used in LabelMe scene image ‘‘Din-
ing20’’ (see Fig. 3) in terms of the reference object label ‘‘FORK’’.
This label has, for instance, a higher cosine value (greater semantic
similarity) with ‘‘TABLE TOP’’ (0.43) than with ‘‘SHELVES’’ (0.09).
(b) scene search task. The target object is marked for illustrative purpose.
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Table 1
Sample LSA cosine values.

Label 1 Label 2 Cosine

– – –
FORK TABLE TOP 0.43
FORK PLATE 0.34
FORK CANDLESTICKS 0.27
FORK FIRE PLACE 0.17
FORK SHELVES 0.09
– – –
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This difference indicates that in the text corpus, ‘‘FORK’’ and ‘‘TA-
BLE TOP’’ occur in more similar contexts than do ‘‘FORK’’ and
‘‘shelves’’, which is plausible since, for example, forks are used
for eating food on table tops rather than on shelves. The important
feature of LSA is that it can quantify higher-level conceptual
semantic similarity, regardless of any geometrical relation, func-
tional relation or visual relation.

Since the images in the LabelMe database were annotated by
many different contributors, objects are not always labeled consis-
tently. For instance, the same object could be labeled ‘‘computer
screen’’ in one image and ‘‘monitor’’ in another. In this study, we
preserved the original object labels as much as possible by mini-
mizing any kind of label modification – only spelling mistakes
were corrected. Since LSA represents each term or document as a
vector in semantic space, inconsistent but appropriate labels (syn-
onyms) are mapped onto similar vectors. Therefore, the semantic
similarity between synonyms is typically very high. While measur-
ing the agreement among contributors in a meaningful way would
require data beyond those offered by the LabelMe database, a
study by Russell et al. (2008) suggests a high level of agreement.
In their study, WordNet (see Fellbaum, 1998) was used to unify dif-
ferent contributors’ object descriptions. They found only a small in-
crease in the number of returned labels for several object queries
Fig. 3. Examples of semantic saliency maps. The reference object (for instance, the c
(Dining20). (b) Semantic saliency map during gaze fixation on an object labeled as ‘‘PLAN
when the observer fixates on an object labeled as ‘‘FORK’’. (d) Semantic saliency map wh
more similar objects receive higher activation; for example, candle sticks in (d) are acti
before and after applying WordNet, indicating good consistency
of the labels in the database.

To compute semantic similarity for each pair of object labels in
our materials, a web-based LSA tool, LSA@CU (http://lsa.colorado.
edu), developed at the University of Colorado at Boulder, was used.
This tool was set to create a semantic space from ‘‘general readings
up to 1st year college’’ and 300 factors (dimensions). Based on this
space, we computed semantic similarity as the LSA cosine value,
ranging between 0 and 1, for each object label compared to all
other objects’ labels for the same image. LSA cosine values are
sometimes slightly smaller than 0 because of the high-dimensional
space computation; we rounded negative values to zero. The aver-
age semantic similarity value for the pairs of labels in our materials
was 0.245 ± 0.061.

The reason for choosing LSA as our semantic similarity measure
is that it is one of the fundamental and widely used approaches for
estimating semantic relationships at the conceptual level based on
semantic analysis among words, sentences, or documents. It would
be difficult to reach a consensus about how semantic similarity
should be measured, and LSA is just one possible approach that
may capture relationships between words at the conceptual level.
It is thus important to keep in mind that in the present work, we
define ‘‘semantic similarity’’ to be similarity as measured by LSA.
2.2.2. Constructing semantic saliency maps for gaze prediction
We introduce the term ‘‘semantic saliency map’’ to refer to a

saliency map purely based on the LSA cosine between the label
of a given object (the currently fixated object during inspection
or the target object during search) and the labels of other objects
in the scene. The semantic saliency maps were normalized so that
the total volume under them was one. In the current study, seman-
tic saliency maps served as predictors of gaze behavior, as de-
scribed in the following section.

Fig. 3 shows examples of semantic saliency maps generated for
a subject’s individual fixations on various objects in the scene
urrently fixated one) is marked with an orange square. (a) Original scene image
T IN POT’’; greater brightness indicates higher activation. (c) Semantic saliency map
ile fixating on an object labeled as ‘‘FLAME’’. As it can clearly be seen, semantically

vated by the reference object labeled ‘‘FLAME’’.

http://lsa.colorado.edu
http://lsa.colorado.edu
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(‘‘Dining20’’). As expected, when subjects fixate on an object la-
beled ‘‘PLANT IN POT’’ (highlighted in Fig. 3b), semantically similar
objects like ‘‘FLOWER IN VASE’’ and ‘‘DECORATIVE POT’’ receive
high semantic activations. The LSA cosine values between ‘‘PLANT
IN POT’’ and ‘‘FLOWER IN VASE’’, and between ‘‘PLANT IN POT’’ and
‘‘DECORATIVE POT’’ are 0.53 and 0.37, respectively. In Fig. 3c,
where the subject is currently looking at one of the forks on the ta-
ble, the semantically most similar objects are the other forks on the
table (LSA cosine = 1.00), which are maximally activated in the
semantic saliency map. Objects that are semantically similar to
‘‘FORK’’, such as ‘‘BOWL’’ (LSA cosine = 0.46) and ‘‘PLATE’’ (LSA co-
sine = 0.34) still get higher activations compared to rather dissim-
ilar objects like ‘‘FIREPLACE’’ (LSA cosine = 0.19) or ‘‘CHANDELIER’’
(LSA cosine = 0.13). Similar semantic saliency elevation between
‘‘FLAME’’ and ‘‘CANDLE STICKS’’ (LSA cosine = 0.59) can be seen in
Fig. 3d.
2.2.3. Measuring semantic guidance
Similar to bottom-up and top-down effects in visual feature

guidance, we defined two kinds of hypothetical semantic effects
that might guide eye movements in real-world scenes. One is tran-
sitional semantic guidance, which can be computed for both scene
inspection and scene search, and the other is target-induced seman-
tic guidance, which can only be computed for scene search and will
be discussed in the context of Experiment 2.

Transitional semantic guidance affects immediate gaze transi-
tions from one object to another. In other words, this guidance
influences the choice of the next object to be inspected; our
hypothesis is that there is a bias toward selecting objects that
are semantically similar to the currently fixated object. Since this
type of guidance is thought to influence transitions between ob-
jects, we measured it by analyzing only those eye movements that
transitioned from one object to another. This restriction led to the
exclusion of 36.2% of the saccades (23.5% within object saccades
and 12.7% saccades starting or landing outside of any marked ob-
jects) from the analysis of transitional semantic guidance in Exper-
iment 1 (fixation sequences and durations within objects were
examined in a separate study by Wang, Hwang, & Pomplun,
2010). To be clear, this exclusion only affected saccades in the
semantic guidance analysis, and no data were excluded from any
fixation analyses.

In order to compute the transitional guidance measure, we first
translated the sequences of eye fixations into sequences of in-
spected objects. For each gaze transition in a given scene, a seman-
tic saliency map was generated based on the currently fixated
object (see Fig. 4). Subsequently, the ROC value was computed
for the semantic saliency map as a predictor of the next object to
be fixated by the subject. This calculation was very similar to
previous studies using visual saliency maps (Hwang et al., 2009;
Fig. 4. Examples of transitional semantic guidance computation. For each fixation transitio
object (dashed arrows). The semantic saliency of the next fixation target determines the g
scores across all gaze transitions during a trial is computed as the transitional semantic
Tatler, Baddeley, & Gilchrist, 2005). All ROC values computed along
scan paths, excluding successive fixations on the same object, were
averaged to obtain the extent of transitional semantic guidance
during the inspection of a real-world scene. If gaze transitions were
exclusively guided by semantic information, making semantic sal-
iency a perfect predictor of gaze transitions, then the average ROC
value across all scenes should be close to one. If there were no
semantic effects on gaze transitions at all, the average ROC value
should be close to 0.5, indicating prediction at chance level.

Similar to the majority of studies using visual saliency maps
(e.g., Bruce & Tsotsos, 2006; Hwang et al., 2009; Itti & Koch,
2001; Parkhurst et al., 2002), our semantic saliency maps for both
inspection and search were static, i.e., did not account for the ob-
server’s gain in scene knowledge over time (see Najemnik & Geis-
ler, 2005). Clearly, as with the visual saliency maps, this
characteristic does not imply that, at stimulus onset, observers in-
stantly build a complete, static semantic map that guides all of
their subsequent eye movements. Observers certainly do not iden-
tify all objects in the scene at once, which would be necessary to
instantly build a complete semantic map (see Torralba et al.,
2006). Instead, we assume the semantic exploration of the scene
to be an iterative process. For example, at the beginning of the
inspection or search process, subjects may mostly identify objects
that are close to the initial (central) fixation position. From this ini-
tial set, in the case of transitional semantic guidance, subjects tend
to choose objects that are semantically similar to the initially fix-
ated one. As inspection progresses, subjects identify more objects
in the scene. While these dynamics are not reflected in our saccadic
similarity maps, for the purpose of the current study, they are a
straightforward, initial approach to investigating the existence
and extent of semantic guidance.
2.2.4. Excluding possible confounds with control data sets and analyses
In order to control for possible confounds in the measurement

of semantic guidance, ROC values were computed for three control
data sets, namely (1) random fixations, (2) dissociated fixations,
and (3) Greedy Model fixations. The random case, consisting of
randomly positioned fixations, served as a test for correct and
unbiased computation of ROC values. For example, if the normal-
ized semantic saliency maps were biased toward greater saliency
for larger objects, we may receive above-chance ROC values even
for random fixations, because larger objects are likely to receive
more fixations than small objects. The random data for each sub-
ject and trial were sequences of randomly selected fixation posi-
tions in the scene, simulating unbiased and unguided fixations.
We used a homogeneous pseudo-random function to place fixa-
tions at random pixel coordinates (x, y) on the image. For each sim-
ulated trial, the number of gaze transitions during the inspection
period was kept identical to the empirical number in a given
n, a semantic saliency map of the scene is generated based on the currently fixated
uidance score (ROC value) of that gaze transition (solid arrows). The average of these
guidance for that trial.
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subject’s data (see Fig. 5a and b). Any ROC values for the random
case that deviate substantially from the chance level of 0.5 would
indicate a bias in our ROC measure.

The dissociated case was introduced to control for likely con-
founds in the guidance measures: It is possible that semantically
more similar objects tend to be spatially closer to each other in
real-world images (proximity effect). Since amplitudes of empiri-
cal saccades during both scene inspection (5.81 ± 4.30� of visual
angle) and scene search (6.43 ± 5.27�) are significantly shorter
(both ts(9) > 24.125, ps < 0.001) than those of random saccades
(12.59 ± 6.08� and 13.17 ± 6.50�, respectively), we might overesti-
mate the extent of semantic guidance of actual eye movements
simply because they favor transitions between spatially close ob-
jects. Furthermore, it is known that our eye fixations are biased
toward the center of a presented image during experiments under
laboratory conditions (Tatler, 2007), and real-world images are
often biased by a tendency of photographers to put interesting
objects in the center. Therefore, the empirical eye fixation distri-
bution is unlikely to resemble the artificial, homogeneous distri-
bution created in the random control case.

To measure the potential proximity effect on our guidance mea-
sure, we computed the ROC value for dissociated fixations and
scenes, that is, we analyzed the eye fixation data measured in
scene n against the object data from scene (n + 1), and the eye fix-
ation data in scene 200 against the object data from scene 1, in the
randomized sequence of scenes. This technique conserved the spa-
tial distribution statistics of the empirical eye movements while
eliminating semantic guidance effects (see Fig. 5a and c). Conse-
quently, an ROC elevation above 0.5 in the dissociated case would
indicate distribution (e.g., proximity) effects, and the ROC differ-
Fig. 5. Examples of the three control cases. (a) Empirical eye movements in one of the sc
fixations in the same scene. (c) Dissociated case, in which empirical eye fixation data w
computed the ROC value of eye movements made in scene 1 as predicted by the saliency m
and so on. (d) Gaze transitions produced by the Greedy Model, which uses empirical fix
transitions.
ence between empirical and dissociated fixations measures the ac-
tual strength of semantic guidance.

However, even the dissociated case may not provide sufficient
assurance against artifacts entering the data, because it may be dis-
torted by breaking the mapping between fixations and objects.
While inspecting or searching through a scene, subjects presum-
ably tend to fixate on objects. However, in the dissociated case,
these fixations are superimposed on a different scene and do not
necessarily land on objects anymore. Furthermore, successive fixa-
tions that transitioned between objects in the original scene may,
in the dissociated case, land on the same object and would then
be excluded from analysis.

In order to ensure that this characteristic of the dissociated case
did not lead to a misinterpretation of the guidance data, we imple-
mented the Greedy Model of gaze transitions. Following the idea of
greedy, i.e., locally optimizing algorithms, this model always tran-
sitions from its current fixation location to the center of the display
object with the shortest Euclidean distance from it, excluding the
currently fixated object. If the semantic similarity maps predict
the empirical transitions better than they predict the Greedy Mod-
el’s transitions, this would further support the existence of transi-
tional semantic guidance. For this evaluation, due to possible
proximity effects (see above), it is important to only compare sac-
cades of similar amplitudes.

When testing the Greedy Model, we found that if we simply
started it at the screen center and let it perform a series of transi-
tions that matched the number of transitional saccades in empirical
scan paths, in most cases the model remained substantially closer
to the screen center than the human gaze trajectories would. This
was the case even when the model was prevented from visiting
enes. (b) Random case, in which we computed the ROC value of simulated random
ere analyzed for different scenes than those in which they actually occurred. We
ap for scene 2, eye movements made in scene 2 as predicted by saliency in scene 3,

ations as starting points and the spatially closest display objects as endpoints of its
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any object more than once. However, as discussed above, it is prob-
lematic to compare the guidance characteristics of scan paths with
clearly distinct spatial distributions, and therefore we decided to
use the empirical fixations as the starting points for all of the mod-
el’s gaze transitions. To be precise, we took every object fixation
from every subject and scene, recorded a transition from the cur-
rent fixation to the closest object, and continued with the subject’s
next fixation, and so on (see Fig. 5a and d). This approach allowed us
to compute transitions that were not guided by semantic informa-
tion but only by proximity, while preserving the spatial distribution
of eye movements and their targeting of scene objects. Since each
model transition was associated with a given subject’s fixation,
we compared empirical and model ROC values within subjects.

As a final control measure, we computed transitional guidance
by visual similarity, in order to rule out that transitional guidance
is caused by low-level visual similarity rather than semantic simi-
larity. Conceivably, visual and semantic similarities are positively
correlated – semantically similar objects may be more likely to
share visual features than do semantically dissimilar ones. For
example, intuitively, different kinds of plants are semantically sim-
ilar, and they are also visually similar, as green is their predomi-
nant color. Therefore, gaze guidance by both visual and semantic
similarity of objects and the correlation between the two similari-
ties have to be considered in order to get conclusive results.

Our visual similarity measure considered the following four
important object characteristics: color, size, compactness, and ori-
entation. Color similarity between two objects was measured by a
simple, robust histogram matching method called Histogram Inter-
section Similarity Method (HISM; Swain & Ballard, 1991); Chan
(2008) demonstrated the accuracy of the HISM method for esti-
mating perceptual color similarity. Following these studies, our
current color similarity measure included the three components
of the DKL color model which is based on the human eye’s cone
receptor sensitivity regarding three wavelengths (short, medium
and long) and double opponent (red–green, blue–yellow and lumi-
nance1) cell responses (see Krauskopf, Lennie, & Sclar, 1990; Lennie,
Derrington, & Krauskopf, 1984). The computation of these features
and their similarity is described in detail in Hwang et al. (2009).

Object size was measured as the number of pixels covered by
the polygon that outlined the object. The compactness of an object
was defined as the square of its perimeter, measured as the sum of
the length of the enclosing polygon’s edges, divided by the object’s
area. Compactness tells us whether an object is rather disc-shaped
(low value) or elongated like a stick (high value). Finally, the orien-
tation of an object was determined by computing a linear regres-
sion on all pixels belonging to that object, and taking the angle
between the horizontal axis and the resulting regression line as
the orientation measure. Size, compactness and orientation values
were scaled to vary between 0 and 1.

The overall similarity between two objects was then computed
as the product of similarity values along the four feature dimen-
sions (color, size, compactness, and orientation), where color sim-
ilarity was measured by the HISM method, size and compactness
similarity were defined as one minus the absolute distance be-
tween feature values, and angular similarity was defined as the
minimum angle difference between two line orientations. This
type of multiplicative feature similarity was found to yield more
robust results than additive techniques (e.g., Hwang et al., 2009).

It is clear that adding more visual feature dimensions to our
similarity measure could still, at least slightly, improve that mea-
sure. In order to estimate the extent of such improvements, we also
computed the measure with only the DKL color component, mak-
1 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
ing it insensitive to size, compactness, and orientation. To assess
the quality of visual similarity measurement, we computed the
correlation between visual and semantic similarity across all object
pairs in our study. This correlation is assumed to yield a positive
coefficient for sound visual similarity measures (see below). We
found a correlation of r = 0.15 for the full visual similarity measure
and only a very small decrease, r = 0.147, for the color-only mea-
sure. This finding is in line with our previous studies (e.g., Hwang
et al., 2009), showing that among commonly computed low-level
visual features, color features exert by far the strongest guidance
of eye movements. Moreover, this finding suggests that adding
even more visual features is unlikely to drastically increase the cor-
relation between visual and semantic similarity. It thus seems
appropriate to use the full version of the current measure for esti-
mating visual similarity guidance in the present context.

3.2. Results and discussion

3.2.1. Basic performance measures
Subjects produced an average of 15.5 ± 4.0 fixations per trial.

Among those fixations, subjects made 11.1 ± 1.7 gaze transitions
between distinct objects, with average fixation duration of
248 ± 29 ms. The average saccade amplitude was 5.81 ± 4.30�. Re-
sponse accuracy, measured as the percentage of correctly identi-
fied target-present and target-absent cases, was 72.0%.

3.2.2. Transitional semantic guidance and control cases
As described above, we computed four ROC values to study

transitional semantic guidance, which were based on (1) empirical
data, (2) random fixations, (3) dissociated fixations, and (4) the
Greedy Model’s gaze transitions. As shown in Fig. 6a, the transi-
tional semantic guidance value of simulated random fixations dur-
ing scene inspection (0.508 ± 0.123) was close to 0.5, i.e., chance
level. This result indicates that the ROC computation was applied
correctly and that the normalized saliency maps used for our anal-
ysis were unbiased. Moreover, the ROC value was significantly
greater for the dissociated gaze-scene pairs (0.583 ± 0.143) than
for the random fixations, t(9) = 17.16, p < 0.001, evidencing the
hypothesized proximity effect. Finally, the empirical eye move-
ments had a significantly higher ROC value (0.646 ± 0.127) than
the random fixations, t(9) = 23.28, p < 0.001, and disassociated
ones, t(9) = 12.46, p < 0.001. Consequently, we can conclude that
although there is a significant proximity effect, actual transitional
guidance still plays a significant role independently of proximity.

As discussed above, due to proximity effects, the ROC analysis
for the Greedy Model had to be performed separately for different
saccade amplitude intervals. At the same time, this analysis had
the added benefit of providing some insight into both the nature
of the proximity effect and semantic guidance as a function of sac-
cade amplitude. Fig. 7 shows an ROC comparison of the empirical
gaze transitions and those generated by the Greedy Model. Since
the transitions produced by the Greedy Model tended to be shorter
(3.43 ± 2.75�) than the subjects’ transitions (5.81 ± 4.30�),
t(9) = 7.69, p < 0.001, there were not many transitions larger than
10� (3.2% of all transitions) to allow interval-based analysis. The
cut-off point for empirical transitions was set to 18�, with 1.8% of
the transitions being longer. It can clearly be seen that the ROC val-
ues for the empirical transitions were consistently greater than
those for the modeled ones. Comparing the average ROC values
for saccade amplitudes below 10� within subjects revealed a signif-
icant difference, t(9) = 26.13, p < 0.001, between empirical (0.667)
and model data (0.586). Furthermore, the data for the Greedy Model
show strong proximity effects, as evidenced by ROC values above
0.6 for object-to-object transitions shorter than 3�. The ROC values
decrease with longer transitions and seems to virtually disappear
for transitions longer than 9�. This pattern contrasts with the



Fig. 6. (a) Transitional semantic guidance and (b) transitional visual guidance during scene inspection (Experiment 1) as measured by the ROC method, with dashed lines
indicating chance level and error bars representing standard error of the mean. The difference between the empirical and dissociated cases indicates the existence of semantic
guidance.

Fig. 7. Comparison of transitional semantic guidance during scene inspection
(Experiment 1) between empirical gaze transitions and transitions generated by the
Greedy Model. Results are shown separately for different saccade amplitude
(distance between transition starting point and endpoint) intervals. Note that all
ROC values for saccades longer than 18� and 10� for the empirical and model data,
respectively, were collapsed into one data point for each series. The dashed line
indicates ROC chance level, and error bars show the standard error of the mean.
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ROC values for the empirical transitions, which not only exceed the
model’s ROC for short transitions but remain at a constantly high
level, even for transitions longer than 18�. These results further
support the view that the elevated ROC for the empirical eye move-
ments is not an artifact caused by the arrangement of objects and
their local contexts.

As discussed in the previous section, the final step in the guid-
ance data analysis was to rule out the possibility that the observed
guidance effects were purely caused by low-level visual similarity
of objects instead of their semantic similarity. In order to quantify
the influence of visual similarity on gaze movements, the correla-
tion between visual and semantic similarity within objects was
computed. For this computation, all possible pairings of objects
across all 200 scenes used for the current experiments were
analyzed (879,998 object pairs, average visual similarity of
0.161 ± 0.152). As expected, the result shows a slight positive corre-
lation between the two similarity measures, r = 0.15, p < 0.001. This
finding suggests the possibility that the semantic guidance mea-
sured above could be an artifact resulting from strong guidance of
eye movements by visual similarity and its correlation with seman-
tic similarity. To examine this possibility, we computed ROC values
based on the visual similarity of objects for the empirical, random,
and dissociated cases in a manner analogous to our semantic guid-
ance calculation. In this computation, the saliency maps that were
generated for each gaze transition between distinct objects repre-
sented visual similarity, instead of semantic similarity, between
the currently fixated object and all other objects in the scene.

As illustrated in Fig. 6b, the random control case showed a near-
chance ROC level of 0.510 ± 0.092, and the dissociated case re-
vealed an elevated ROC value (0.564 ± 0.088) as compared to the
random case, t(9) = 7.09, p < 0.001, demonstrating a visual proxim-
ity effect. However, the difference between visual similarity guid-
ance for the empirical data (0.573 ± 0.059) and the dissociated
data did not reach statistical significance, t(9) = 1.29, p > 0.1. This
finding indicates that semantic similarity, and not visual similarity,
is the main factor underlying the current results.
3.2.3. Time course of transitional semantic guidance
Since we found significant semantic guidance effects, it is sensi-

ble to ask when this guidance starts and whether it is sustained
throughout the trial. These temporal changes of semantic guidance
during scene perception might help to understand the underlying
mechanisms. We decided to examine transitional semantic guid-
ance for each of the first nine gaze transitions after stimulus onset,
which include 68.6% of all fixations, and an average value over 10th
or later fixations.

As shown in Fig. 8, transitional semantic guidance influences
gaze movements throughout the trial, starting from the first gaze
transition. However, since only saccades transitioning between dif-
ferent objects were included in the analysis, the present data can-
not conclusively show whether this guidance is already fully
present at the first saccade in a trial. Nevertheless, the data suggest
that semantic saliency guides the attentional selection of visual ob-
jects in a continuous and constant manner.

To analyze in more detail the timing of guidance, the gaze tran-
sitions for each scene and each subject were separated into those
visiting an object for the first time and those revisiting an object.
We found no significant difference in ROC values, t(9) = 0.49,
p > 0.6, between the first-time visit (0.647 ± 0.020) and re-visit
groups (0.645 ± 0.012). This finding suggests that transitional
semantic guidance was not limited to revisiting of objects but also
occurred, to the same extent, before an object was fixated for the
first time.



Fig. 8. Temporal variation of semantic guidance during scene inspection indicated
by the difference between the ROC values for the empirical data and the dissociated
control case. The dashed line represents chance level, and error bars indicate
standard error of the mean. Note that the rightmost column, labeled ‘‘P10’’,
includes the data for not only the tenth transition, but also for all subsequent ones.
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While the results of Experiment 1 provide evidence for transi-
tional semantic guidance during scene inspection, it also raises
some questions. As discussed above, we can assume some level
of object recognition to be necessary for accessing an object’s
semantic information (e.g., Torralba et al., 2006). Consequently,
in order for transitional semantic guidance to take effect, it seems
that such level of recognition must have been achieved for a set of
potential target objects prior to the programming of a saccade. The
guidance mechanism could then semantically relate these objects
with the currently attended one and bias the selection of the next
saccade target toward the most similar object.

However, as the Greedy Model (Fig. 7) and fixation re-visit anal-
yses show, transitional guidance does not substantially decrease
with greater eccentricity of saccade targets, even for large angles
and for targets that have not previously been fixated. This finding
seems to imply that recognition performance does not differ be-
tween objects at, for example, eccentricities of 1� and 18�, which
is clearly implausible. To explain this pattern of results, it should
be noted that long saccades are rather infrequent; for example,
only 19.4% of all saccades are longer than 8�, and only 1.8% of them
are longer than 18�. For most of these long saccades, it is conceiv-
able to assume that a particularly salient peripheral object at-
tracted the observer’s attention prior to the saccade. This
allocation of attention likely enabled at least some rudimentary
processing of the object’s visual information, possibly including
some semantic analysis, before the saccade was programmed. In
such situations, the semantic guidance mechanism may bias
saccade-target selection toward either the peripheral object or
one of the more central objects whose semantic information has al-
ready been accessed. Such a bias could prevent a large proportion
of long saccades to peripheral objects that are likely unrelated to
the currently fixated object based on the semantic information
available. Thus, transitional semantic guidance could still exert a
significant influence even on long saccades.
4. Experiment 2

4.1. Method

4.1.1. Participants
Ten subjects, who did not participate in Experiment 1, partici-

pated in Experiment 2, all of them were students at the University
of Massachusetts Boston, aged between 19 and 40 years old, with
normal or corrected-to-normal vision. Each of them received a
$10 honorarium.

4.1.2. Apparatus and materials
The apparatus and materials used in Experiment 2 were identi-

cal to those in Experiment 1.

4.1.3. Procedure
Subjects were instructed to search for objects whose name or

description was shown prior to the scene. After a two-second pre-
sentation of the object name, the search scene was shown for five
seconds. During each scene presentation, whenever subjects
thought they had found a target object, they were to press a button
while fixating on that object. Since there could be multiple target
objects in the same scene, subjects were asked to continue search-
ing for target objects until the trial ended (see Fig. 2b). This task de-
sign allowed a fixed five-second duration of scene presentation as
in the scene inspection experiment (Experiment 1) and thereby en-
abled a useful between-experiments comparison of results. After
scene presentation, the correct location of targets would be indi-
cated or the text ‘‘Object does not exist’’ would be shown, in the
target-present or the target-absent case, respectively. Search tar-
gets were randomly selected, then inspected, and possibly newly
selected to avoid target objects that can be detected very easily.
Subjects performed 200 randomly ordered trials preceded by five
practice trials. Target-present and target-absent cases were evenly
distributed among the 200 trials.

4.1.4. Data analysis
Besides the analysis of transitional guidance that was intro-

duced in Experiment 1, the search task used in Experiment 2 moti-
vated the additional study of a hypothesized second kind of
semantic guidance, termed target-induced semantic guidance, influ-
encing gaze distribution during scene search. This guidance reflects
the extent to which semantic similarity between the target object
and the objects in the search image determines the choice of fix-
ated objects. Its computation for a given search scene-target pair
only requires a single semantic saliency map, which represents
the spatial configuration of semantic similarity between the target
object and all non-target objects in the scene. As shown in Fig. 9,
the ROC value was measured for this saliency map as a predictor
of all eye fixations made during a trial.

4.2. Results and discussion

4.2.1. Basic performance measures
Subjects made an average of 16.2 ± 1.6 fixations per trial in

Experiment 2, with no statistical difference to Experiment 1
(15.5 ± 4.0 fixations), t(18) = 0.57, p > 0.5. Among those fixations
were 9.3 ± 3.6 gaze transitions per trial between distinct objects.
The average fixation duration was 301 ± 87 ms, which was signifi-
cantly greater than that measured in Experiment 1 (248 ± 29 ms),
t(18) = 2.67, p < 0.05. Even if we exclude all fixations on targets
in Experiment 2, which may have been prolonged by verification
processes and by executing button presses, the resulting fixation
duration (286 ± 69 ms) was still significantly greater than that in
Experiment 1, t(18) = 3.27, p < 0.05. This difference in fixation
duration between scene inspection and scene search clearly differs
from previous studies (e.g., Castelhano, Mack, & Henderson, 2009;
Võ & Henderson, 2009). A possible reason for the current pattern of
results is that in the current scene inspection task, subjects were
asked to memorize the objects in the scene. Given the large aver-
age amount of objects in the stimulus images that needed to be
memorized in a short amount of time, subjects may have produced
more saccades than they would have without any explicit task
instruction.



Fig. 9. Example of target-induced semantic guidance computation in the scene search experiment. For each trial, a single semantic saliency map is generated based on the
search target (a) and all objects in the scene (b). The ROC value for this map as a predictor of all fixated objects during that trial is taken as the guidance measure (c).

Fig. 11. Comparison of transitional semantic guidance during scene search
(Experiment 2) between empirical gaze transitions and transitions generated by
the Greedy Model. Results are shown separately for different saccade amplitude
(distance between transition starting point and endpoint) intervals. Note that all
ROC values for saccades longer than 18� and 10� for the empirical and model data,
respectively, were collapsed into one data point for each series. The dashed line
indicates ROC chance level, and error bars show the standard error of the mean.
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The average saccade amplitude in Experiment 2 was
6.43 ± 5.27�, which was significantly larger than the one measured
in Experiment 1 (5.81 ± 4.30�), t(18) = 2.33, p < 0.05. The subjects’
response accuracy in Experiment 2, measured as the percentage
of correctly identified target-present and target-absent cases, was
70.1%, which was very similar to Experiment 1 (72.0%). In target-
present trials, subjects manually reported the detection of the first
target after an average of 6.2 ± 3.5 fixations.

4.2.2. Transitional semantic guidance and control cases
Analogous to Experiment 1, in Experiment 2 we excluded all

saccades that did not transition from one object to a different
one, which amounted to an elimination of 36.8% of the saccades,
from all further analysis (25.9% within-object saccades and 10.9%
saccades starting or landing outside of any labeled objects). As in
Experiment 1, subsequent fixation analyses were not affected by
this exclusion. Once again, we examined transitional semantic
guidance through four ROC analyses based on (1) empirical data,
(2) the random control case, (3) the dissociated control case and
(4) the Greedy Model. As shown in Fig. 10a, the ROC value for sim-
ulated random fixations, 0.504 ± 0.104, was close to 0.5, indicating
unbiased saliency maps. The ROC value for the dissociated gaze-
scene pairs was significantly elevated (0.566 ± 0.127) above the
random-fixation ROC value, t(9) = 17.10, p < 0.001, revealing a
proximity effect similar to the one observed in Experiment 1.
Moreover, the ROC value for the empirical eye movements was
slightly greater (0.583 ± 0.134) than that for the dissociated case,
t(9) = 4.71, p < 0.001. Even though this difference (0.017 ± 0.012)
was statistically significant, it was substantially smaller than the
corresponding difference for scene inspection (0.063 ± 0.016),
t(18) = 7.27, p < 0.001.
Fig. 10. (a) Transitional semantic guidance and (b) transitional visual guidance in Experim
chance level and error bars representing standard error of the mean.
In order to verify that the dissociated fixations did not bias the
results by breaking the fixation-to-object mapping, we also applied
the Greedy Model to the data of Experiment 2. Fig. 11 illustrates
the ROC values for the empirical and the modeled gaze transitions
for different saccade amplitude intervals. Empirical transitions
ent 2 (scene search) as measured by the ROC method, with dashed lines indicating



Fig. 12. Target-induced semantic guidance during scene search, with a dashed line
indicating chance level and error bars representing standard error of the mean.
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longer than 18� (4.7% of the data) were pooled into a single data
point, and for the model this was done with all transitions above
10�, which also affected 4.7% of the respective data. The model’s
average saccade amplitude was 3.58 ± 3.01�. In contrast to Experi-
ment 1, the ROC comparison between empirical and model data in
Experiment 2 did not show a clear distinction. Comparing the
mean values for saccade amplitudes below 10� did not reveal a sig-
nificant difference between the empirical (0.582) and model data
(0.578), t(9) = 1.18, p > 0.25. Given this result and the small differ-
ence between empirical and dissociated ROC, the present data do
not provide any conclusive evidence of transitional guidance dur-
ing search. However, Fig. 11 suggests that with greater amplitude,
the model ROC decreases faster than the empirical ROC, allowing
the speculation that there may be weak, long-range transitional
semantic guidance effects during search.

To investigate the contribution of low-level visual similarity to
transitional guidance of eye movements during search, we com-
puted ROC values based on visual similarity in the same manner
as for Experiment 1. As illustrated in Fig. 10b, an elevated ROC
measure of visual guidance in the dissociated case (0.560 ± 0.095)
as compared to the random case (0.501 ± 0.069), t(9) = 7.00,
p < 0.001, demonstrated a proximity effect. There was also a slight
effect of visual similarity guidance, as indicated by significant dif-
ferences between the empirical case (0.583 ± 0.058) and the disso-
ciated case, t(9) = 3.12, p < 0.005.

Comparing Fig. 10a and b, we find that, in contrast to Experi-
ment 1, the ROC difference between the empirical and dissociated
cases is greater for visual similarity than for semantic similarity.
However, since both effects are very modest, we can only speculate
about their behavioral relevance and underlying mechanisms. It is
possible that both types of guidance slightly influence transitional
eye movements during scene search, or that the transitional
semantic guidance may, at least in part, be due to both transitional
visual guidance and the correlation between the two similarity
measures.

In summary, while there were statistically significant effects of
both semantic and visual guidance on transitional eye movements
in both scene inspection and scene search, the pattern of results
differed noticeably between the two tasks. During scene inspec-
tion, subjects were guided much more strongly by semantic simi-
larity as compared to low-level visual similarity. This finding
suggests that during scene inspection tasks, subjects may inspect
semantically similar objects consecutively to enhance scene mem-
orization for later recall. In the scene search task, on the other
hand, visual guidance is stronger than semantic guidance, but both
influences are clearly weaker than that of semantic similarity in
the scene inspection task. It seems that when subjects are assigned
a specific task, ‘search for the target object’, this task takes prece-
dence over scene inspection. As a result, the strategy of gaze con-
trol may be shifted to a target-focused mode that is not aimed at
object memorization. The slight transitional visual guidance found
during search could be a result of subjects forming a visual tem-
plate whose low-level features guide their search (cf. Schmidt &
Zelinsky, 2009; Yang & Zelinsky, 2009).

4.2.3. Target-induced semantic guidance
The analysis of target-induced semantic guidance during scene

search was similar to the analysis of transitional semantic guid-
ance. Target-induced semantic guidance represents the influence
of semantic similarity between the search target and all non-target
scene objects on fixation distribution. As shown in Fig. 12, target-
induced semantic guidance for the random control case
(0.497 ± 0.076) was close to 0.5, confirming that the target-based
semantic saliency maps were unbiased. For the dissociated control
case, target-induced semantic guidance was 0.506 ± 0.145, which
was very slightly, but significantly, greater than the value for the
random case, t(9) = 4.35, p < 0.005, indicating a very small proxim-
ity effect in the scene search task. The empirical ROC value was sig-
nificantly higher (0.637 ± 0.159) than both the random,
t(9) = 18.79, p < 0.001, and dissociated ones, t(9) = 17.04,
p < 0.001. We can thus conclude that target-induced semantic
guidance plays a significant role in scene search, independently
of proximity effects.

Note that, in the search task, the target object was specified only
by its verbal description, not by its visual features. Due to the large
visual variation among those objects that match a given descrip-
tion, determining dependable and representative visual features
of the target that could define visual similarity between the target
and other objects in the scene is computationally infeasible. As a
consequence, we did not attempt to compute target-induced visual
similarity guidance in Experiment 2. Nevertheless, it is still possi-
ble that the ROC values for target-induced semantic guidance were
partially due to visual guidance. For example, an observer search-
ing for a fork may look at a knife not because the two are seman-
tically similar, but because they look alike. While such an effect
cannot be ruled out, the weak correlation (r = 0.15) between visual
and semantic similarity makes it seem unlikely that visual similar-
ity, rather than semantic similarity, plays a major role in producing
the current results.

Comparing the results for transitional and target-induced
semantic guidance during scene search (Figs. 10a and 12, respec-
tively), it is noticeable that while transitional semantic guidance
is hardly detectable (0.017 ± 0.012), target-induced guidance is
very pronounced (0.131 ± 0.023). This finding further supports
our interpretation that the specific priorities in the scene search
task are responsible for reduced transitional semantic guidance
as compared to the scene inspection task. More insight into this is-
sue may be obtained by analyzing the time course of target-in-
duced semantic guidance, which is reported in the following
section.
4.2.4. Time course of target-induced semantic guidance
Following the same grouping used in Experiment 1, we exam-

ined the time course of target-induced semantic guidance for each
of the first nine gaze transitions after stimulus onset, covering
59.8% of all fixations, and an average value over 10th or later
fixations.

As shown in Fig. 13a, target-induced semantic guidance in-
creased gradually during search in a given scene, followed by a de-
crease after approximately the sixth fixation. This pattern may be
due to interference between visual saliency and semantic saliency.



Fig. 13. Temporal change of target-induced semantic guidance during scene search indicated by the difference between the ROC values for the empirical data and the
dissociated control case, including fixations (a) throughout the trial and (b) from stimulus onset until first target detection. Dashed lines represent chance level, and error bars
indicate standard error of the mean. The rightmost column, labeled ‘‘P10’’, includes not only the data for the tenth transition or fixation, but also all subsequent ones.
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At the beginning of the search, although the target is specified by
words, a visual representation of the target object, a ‘search-tem-
plate’, may be generated and maintained in working memory in or-
der to continuously match it with objects in the scene (e.g.,
Desimone & Duncan, 1995; Houtkamp & Roelfsema, 2009; Schmidt
& Zelinsky, 2009; Wolfe, 1994; Yang & Zelinsky, 2009). Therefore,
initially eye movements may be strongly governed by bottom-up
and top-down processing of low-level visual saliency, with only lit-
tle influence by semantic information. As search progresses, a bet-
ter semantic understanding of the scene may develop, and if visual
feature saliency by itself fails to detect the target, target-induced
semantic guidance may start to dominate the control of eye move-
ments. Conceivably, after the first target object in the scene has
been found (as reported above, it occurs after an average number
of 6.2 ± 3.5 fixations), subjects may maintain strong semantic guid-
ance to detect further targets. When no more targets can be found,
guidance may slowly decrease.

We should consider the possibility, however, that the specific
search task - requiring subjects to continue search for further tar-
gets after detecting the first one – may have artificially induced the
steady increase in semantic guidance over time. The reason for
such a data artifact could be that after the first target detection,
subjects might transition back-and-forth between the first target
and further target candidates. Due to the possibly high semantic
similarity between these objects with the target label, such gaze
behavior would likely increase target-induced guidance in the later
stages of the search.

Our data revealed that subjects did in fact frequently re-visit the
first target object they detected; on average, this occurred
1.02 ± 0.44 times per trial. However, this number does not appear
large enough to suggest a significant impact of back-and-forth
scanning behavior on guidance measurements. In order to rule
out such potential bias from the data, we recomputed our analysis,
but this time excluded all eye-movement data that were recorded
in any given trial after the first target detection was reported. The
resulting time course of target-induced guidance (Fig. 13b) shows
slightly reduced ROC values but does not differ qualitatively from
the initial one and thus supports the notion of a steady increase
of guidance over the course of the search.

5. General discussion

Previous studies on semantic effects on visual processing have
focused on global contextual effects based on scene gist and eye
fixation distribution, semantic effects in simple, artificial visual
search tasks, or context effects based on co-occurrence or contex-
tual cueing of objects. In contrast, the present work investigated
semantic guidance of eye movements in real-world scenes, in-
duced by the semantic similarity of scene objects to each other
or to a search target.

We conducted two experiments to demonstrate semantic guid-
ance of gaze transitions during scene inspection and semantic
guidance of gaze distribution during scene search. To accomplish
this, we introduced a novel interdisciplinary approach combining
visual context research and linguistic research. Using eye-move-
ment recording and linguistics-based LSA on object labels, we
demonstrated that our visual scan paths in the inspection of every-
day scenes are significantly controlled by the semantic similarity of
objects. Our gaze tends to transition to objects that are semanti-
cally similar to the currently fixated one, basically unaffected by
the time course of the inspection or whether an object is fixated
for the first time or is re-visited.

When interpreting the current data, we have to consider the
possibility that, besides semantic guidance, contextual guidance
may also have influenced the subjects’ gaze transitions. While
the dissociated control case allowed us to account for proximity
effects, it did not fully control for the fact that semantically sim-
ilar objects are often also located in contextually restrained parts
of a scene in similar ways. For example, a spoon and a plate are
often placed on a horizontal surface within the scene, such as a
table. Eye movements during search in real-world scenes can be
guided by such contextual factors (Castelhano & Henderson,
2007), relying on global scene statistics rather than the identifica-
tion of individual objects and their semantics (Torralba et al.,
2006). Since ‘scene context’ is ultimately built on the spatial lay-
out of semantically related objects, it is difficult to rule out the
possibility of contextual guidance in the current study. However,
our data show that during scene inspection, transitional guidance
by semantic similarity does not decrease with greater distance
between the currently fixated object and the saccade target ob-
ject. This finding is important because longer saccades should
be more likely to move the observer’s gaze beyond a contextually
constrained part of the scene. Although such scene parts are
sometimes large, e.g., the sky, we would expect at least a small
reduction in average empirical ROC values for longer saccades if
contextual guidance, and not semantic guidance, were the main
factor driving the observed effects. This is clearly not supported
by our data. Nevertheless, the contribution of contextual guidance
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to the effects observed in this study needs to be examined in fu-
ture experiments.

While the current study demonstrates the existence of semantic
guidance, it only allows a rough characterization of its underlying
mechanisms. Clearly, it is impossible for observers to semantically
analyze each individual scene object prior to their first eye move-
ment in a scene. Instead, there has to be an iterative semantic
exploration of the scene. The present data suggests that it involves
parafoveal and even peripheral semantic analysis, since even long
saccades tend to land on objects that are semantically similar to
the previously fixated one. This finding is in line with several of
the semantic inconsistence studies such as Underwood et al.
(2007), Becker et al. (2007), and Bonitz and Gordon (2008), but it
conflicts with others such as Võ and Henderson (2009). The last
study used well-controlled, computer-generated displays to con-
trol for some confounds in earlier work, and it did not find an effect
of peripheral analysis. There are two possible reasons for the dis-
crepancy between Võ and Henderson’s (2009) and the present
data: First, Võ and Henderson (2009) had subjects inspect a large
number of scenes without presenting intermittent questions about
the scene content. In contrast, our study required subjects to mem-
orize a potentially large number of objects within five seconds of
scene presentation, which may have induced a strategy of periph-
eral semantic analysis. Second, it is likely that the detection of
semantic inconsistency differs from semantic analysis of individual
visual objects. Guidance toward semantic information that is re-
lated to the currently attended information is a plausibly useful
mechanism allowing us in everyday life to efficiently explore the
semantic content of a visual scene. Detection of semantic inconsis-
tencies, however, is a rather unusual task as such inconsistencies
rarely occur in the real world. It is thus possible that the human vi-
sual system has developed an ability for at least a rough semantic
analysis of peripheral objects, whereas the detection of semantic
inconsistencies requires focal attention.

In a larger context, the transitional semantic guidance data may
reveal a general mechanism of high-level attentional guidance by
semantic association. As put, most prominently, by James (1890),
there are different ‘‘varieties of attention’’, among them visual
attention and internal attention to our thoughts, with the latter
variety producing trains of thought by association, i.e., transitions
between semantically related concepts. The current study demon-
strates that the former variety, visual attention, also proceeds by
semantic association when exploring a visual scene, and this is
the first time that any such general attentional mechanism has
been studied quantitatively.

Once a visual search task is involved, search seems to take prece-
dence over scene inspection. In a search task, the fixation order is
prioritized by similarity to the target, and as a result, guidance of
individual gaze transitions by semantic factors almost disappears.
However, the overall distribution of fixations during the search task
shows strong target-induced semantic guidance – observers tend to
inspect objects that are semantically similar to the search target.
This result demonstrates that semantic bias of attention, as previ-
ously shown for artificial search displays (Huettig & Altmann,
2006; Yee & Sedivy, 2006), also exists during search in real-world
scenes. Unlike transitional semantic guidance during scene inspec-
tion, target-induced guidance increases gradually during the time
course of the search task. This increase in guidance is similar to,
but slower than, the one observed in guidance of visual search by
low-level visual features in real-world scenes (Hwang, Higgins, &
Pomplun, 2007). For such low-level guidance, it is assumed that
observers first examine the overall composition of the scene in terms
of its low-level visual features before using those features to guide
their search (Pomplun, 2006). With regard to semantic guidance, a
similar assumption seems plausible: It is possible that the progres-
sively developing semantic understanding of the scene during the
course of the search task is accompanied by an increased influence
of target-induced semantic guidance on eye movements. Further-
more, it is likely that observers start their search under the guidance
of a generic visual template that they create based on the verbal
description of the target. This visual feature guidance may initially
dominate the search process, at the cost of semantic guidance, until
it either fails to detect the target, or more semantic context informa-
tion becomes cognitively available, or both.

The current findings can be considered a first glimpse at the
high-level, semantic mechanisms of attentional control in real-
world situations. Further experiments are necessary to corroborate
the current findings of semantic guidance by using explicit manip-
ulations of semantic scene content and other semantic similarity
measures than LSA. Future research should also address the
dynamics of semantic guidance in more detail. It would be desir-
able to develop a dynamic model of semantic guidance that ac-
counts for the iterative semantic exploration of real-world scenes
and might be able to predict scanning behavior more accurately.
Moreover, for a deeper understanding of these mechanisms, fur-
ther research needs to address, in particular, the function of the ob-
served semantic guidance. For instance, a crucial question to
investigate is whether semantically ordered sequences of object
inspections lead to better scene understanding or memorization
as compared to random sequences. Furthermore, the processes
underlying the gradual increase of target-induced guidance during
search have to be examined. Will guidance increase even more
slowly or stay at a marginal level in scenes showing unnatural
arrangements of objects with no attainable global semantic under-
standing? Answering such questions promises to reveal the cogni-
tive processes underlying semantic guidance and build a
comprehensive, multi-level model of the control of visual atten-
tion. As argued above, such a model may generalize, at least in part,
toward other ‘‘varieties’’ of attention.
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