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1. INTRODUCTION 

The computer storage and computing time requirements of dynamic 
programming can be excessive when the dimension of the state space 
exceeds three (Bellman’s “curse of dimensionality”). One approach to this 
type of difficulty is to search for efficient heuristics, i.e., suboptimal decision 
rules that perform well and are not too demanding computationally. This 
paper deals with the heuristic steady state policy (SSP), i.e., a policy that 
moves the system from a set of states S, to a target state s* and then keeps 
it there. SSPs are sometimes appropriate for deterministic, stationary, 
dynamic programming models, where the objective is to optimize the total 
undiscounted costs over an infinite or long finite planning horizon; [ 11, 
Sect. l] discusses advantages of SSPs. 

The adverse effect of a suboptimal policy rc on the total costs need not 
be serious. To gauge the damage, we use the opportunity cost. Section 2 
defines this, roughly, as the asymptotic difference between the N-stage costs 
under TC and the optimal N-stage costs, thus measuring how suboptimal n 
is over a long horizon. Policies with finite opportunity cost are average-cost 
optimal. The opportunity cost reflects their transient performance. It 
provides information about whether one should seek a better policy. 

In [ 111, the author obtains general sufficient conditions for the existence 
of an SSP with finite opportunity cost. Given these conditions, one can 
determine such an SSP by, first, solving a mathematical program to find s* 
and, second, constructing a feasible guidance rule that moves the system to 
s* from some set S,. This SSP generally does not optimize transient costs. 
Nevertheless, using it as a first-order approximation can produce dramatic 
computational savings, sometimes allowing one to handle problems that 
would ordinarily be intractable (see [ll, 191 and the models cited in 
Section 5). Section 5 covers the first-order approximation in detail. 
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Sections 6 through 8 study second-order improvements that reduce the 
transient costs of a given first-order approximation rr. Section 6 shows that 
for s E S,, the opportunity cost of 71 can be expressed as the sum of three 
nonnegative terms: the first, Oo(rr, s), is the penalty associated with the 
guidance rule; the second, O(s, s*), the penalty for visiting s* from state s; 
the third, OC(s*), the opportunity cost of keeping the system at s*. Think 
of OC(s*) as the tail penalty. Upper bounds on each term are available. 
Sections 7 and 8, respectively, examine improvements in the guidance rule 
and the tail. 

Let Q denote the set of SSPs with the same s* and S, as the first-order 
approximation. Section 7 studies the problem of finding a ri E 52 with 
O,(ti, s) = 0, for s E S, (i.e., a 7i in SL with minimum opportunity cost). This 
reduces to a shortest route problem in a network with nonnegative arc 
lengths whose node set is the originul state space. Exact solutions are 
difficult to obtain for large finite S and need not exist for infinite S. The 
latter part of Sect. 7 considers methods for finding approximate solutions. 

Given a ,finite horizon N, one can reduce the total costs by allowing the 
system to quit s* towards the end of the horizon and switch to a policy 
that is optimal for the remaining stages, thus mimicking turnpike behavior 
[S, 71 (Ref. [ 10, Sects. 1 and 61 compares turnpike theorems and steady 
state policies). The savings produced by such tail improvements can 
approach OC(s*). Section 8 provides bounds on the N-stage cost and 
relative error. 

Given appropriate smoothness assumptions, one can apply nonlinear 
programming and optimal control techniques when making second-order 
improvements (see the discussion at the end of Sect. 7). A companion paper 
[16] applies our results to multi-dimensional examples from [9]. Using 
nonlinear programming methods, that paper obtains relative errors of 
under 0.6 percent for j-dimensional models with planning horizons N3 20. 
(Small problems of this size were easily solved on a microcomputer using 
the software package GINO [21]). This suggests that SSPs might be 
appropriate for medium sized planning horizons. 

The rest of this paper is organized as follows. Section 2 presents our 
model; Section 3 summarizes material needed from [15]; and Section 4 
obtains results on bounds. 

2. THE MODEL 

This paper considers deterministic dynamic programs that are charac- 
terized by the following objects: S, a nonempty compact subset of R"; A, 
a nonempty compact subset of R"; A( .), a mapping from S into the family 
of nonempty subsets of S, whose graph, D = {(a, s):a E A(s) and s E SS, is 
closed and thus compact in R"+"; c( ., -), a bounded, real lower semicon- 
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tinuous function on D; and t( ., . ), a continuous mapping from D into S. 
(These continuity and compactness assumptions hold trivially when S and 
A are finite; however, the main applications of our results are to models 
with convex S.) Periodically, at stages M = 1,2, . . . . one observes a state 
s E S and selects an action a E A(s). The result is an immediate cost c(a, s) 
and a transition at stage M + 1 to a new state t(a, s). A policy is any rule 
that specifies for each initial state SE S a sequence of feasible actions: 
a, EA(s), a,EA(t(a,, s)), . . . . The problem is to control the system over a 
prescribed horizon, which may be finite or infinite. 

Let N be a positive integer. For any policy rc and any s E S, let V:(s) 
denote the total undiscounted N-stage costs under 7t when the initial state 
is s. Similarly, let V:(s) denote the corresponding optimal quantity, i.e., 
V:(s) 3 min, V:(s). Call x N-stage optimal at s if V,“(s) = V:(s). It is 
convenient to define Ip(s) = 0 and p,(s) = 0. 

Our main concern is with long horizons. Define n to be average-cost 
optimal at s E S if lim supN [ V:(s) - I/T(s)]/N= 0 (see [ 121). This criterion 
can be underselective, since it depends only on the tail. Think of 
[V:(s) - VT(s)] as the penalty for using 7c for N-stages when the initial 
state is s. Following [ 11, 121, define the opportunity cost of 7c at s as 

OC(rr, s) = lim sup[ V,“(s) - V:(s)], (s E S). (2.1) 
N 

The policy rr is said to have finite opportunity cost at s E S if OC(rc: s) < co. 
If n: has finite opportunity cost, x is average-cost optimal. The opportunity 
cost refects the transient performance of average-cost optimal policies. It 
provides information about how much better one might do with a different 
policy; OC(rr, s) is the smallest number with the property: For each E > 0, 
the possible decreases in V:(s) are bounded by [OC(n, s) + E:] for N 
sufficiently large. For more details about the opportunity cost, see [12, 
Sect. 41. 

If for some N > 0, the system can reach s’ E S in N stages when the initial 
state is s E S, then s’ is said to be accessible from s. (Every state is accessible 
from itself.) Denote by ACS(s) the set of states accessible from s. For any 
subset S, of S, let ACS(S,) denote the set consisting of each state that is 
accessible from some s E S,. 

3. OPTIMAL STEADY STATES AND EXCESSIVE FUNCTIONS 

This section summarizes definitions and results needed from [ 15). 

3.1. Optimal Steady States 

Intuitively, s* is an optimal steady state (OSS) if one can stay in s* 
while incurring finite opportunity cost. Let D.,.= {(a, s) : (a, s) E D and 
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[(a, s) = s}, and let ,Sf equal the projection of Df on S. Both D,- and Sf are 
compact. For s E S,-, let cI(s) = min{ c(a’, s): a’ E A(s) and t(a’, s) = s} and 
Af(s) = {a’: a’~ A(s), t(a’, s) = s, and ~(a’, s) = c,(s)}. Suppose s E S,- and 
N> 1. Clearly, V:+‘(s) 6 c/(s) + Vz(s).This implies that NC,(S) - V:(s) is 
nondecreasing in N. Define 

OC(s) = lim NC,-(~) - V:(s), for s E S,. (3.1) 
N 

Note that OC(s) equals the opportunity cost of staying in state s through 
the choice of a minimum cost a E A,(s). As in [ 151, define s to be an OSS 
ifs E S, and OC(s) is finite. The following is necessary for s* to be an OSS: 

c,(s*) = min c,W). (3.2) 
r’tACS(.,*)nS, 

3.2. Lagrangian Saddle-Points and Excessive Functions 

One can sometimes (see Sect. 3.3) find an OSS by solving the constrained 
optimization problem : Compute (a*, s*) where 

(a*, s*) E D,- and c(u*, s*)=min{c(a,s): (a, s)ED,}. (3.3) 

Define the Lagrangian function, L(a, s, up) = c(a, s) + w[t(a, s) -s], for 
(a, s) E D and u’ E R”. Call (a*, s*, IQ*) E D x R” a Lagrangian saddle-point 
(LSP) if L(a*, s*, w) d L(a*, s*, w*) < L(a, s, IV*), for all (a, S)E D and 
w E R”. This is equivalent to 

(a*, s*)ED, 

and (3.4) 

c(a, s + w*t(a, s) 3 w*s + c(a*, s*), for (a, s) E D. 

If (a*, s*, w*) is an LSP, then (3.3) holds and ~(a*, s*) = c,(s*), so s* ES, 
and a* E A,(s*). Call w* a saddle-point multiplier if (a*, s*, w*) is an LSP 
for some (a*, s*). Clearly if w* is a saddle-point multiplier and (a*, s*) 
satisfies (3.3), then (a*, s*, w*) is an LSP. Ref. [15] generalizes (3.4) as 
follows. For s* E S,, let E(s*) denote the set of extended-real valued 
functions W on S that satisfy 

w(s*) = 0 

and (3.5) 

c(a, s) + W(t(a, s)) 3 W(s) + c,(s*)’ for (a, s) E D. 

Define W to be excessive at s* E S,- if WE E(s*). Call W excessive if 
WE E(s*) for some s* E S,. See [15] for a detailed study of excessive 
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functions. By Theorem 6.1 of that paper, s* is an OSS if and only if some 
WeE(s*) is bounded above on ACS(s*). 

3.3. Examples of Excessive Functions 

For W* E R” and s* E S,, define the function 

@i(s) = u’*s - u’*s*, for SE S. (3.6) 

Since S is compact, w,* is bounded. Clearly, if (a*, s*, w*) is an LSP, then 
w.:+ E E(s*). (Incidentally, this and Theorem 4.1 below imply s* is an OSS 
when (a*, s*, w*) is an LSP.) 

By [15, Sect. 61, when s* is an OSS, E(s*) has a greatest element q 
and a least element W$. Their definitions arise naturally from the problem 
of finding for each M> 1 an optimal M-stage path between two arbitrary 
states in S. For M > 1, and s, s’ E S, let 

T,={((a,,.~,)),M_,:(a,,s,)~D,16j~M, 

and s,+~ = 4a,, s,), 1 G.i< M}, (3.7a) 

T,(s,s’)=(((ai,s~i))~,~TM:~,=sands’=t(a,,s,~)}, (3.7b) 

min 5 c(a,, s,): (( a,, si) > f2, E T,(s, s’) , 

V”(s, s’) = 

i 

/=I 

if T,(s, 3’) # 0, (3.8) 

a, if T,(s, s’) = @. 

Clearly, T, and T,,,(s, s’) are compact sets in D”. This and a continuity 
argument justify the “min” in (3.8). The set T,(s, s’) consists of all 
M-stage, feasible, state-action paths from s to s’; V”(s, s’) is the cost of an 
optimal path in T,,,(s, s’). Suppose s* E S,.. Define 

y?(s) = lir$ V(s,s*) - Mcf(s*)], for SE S, (3.9) 

W,“,(s) = l$l [MC,.(s*) - V(s*, s)], for SE S, (3.10) 

V,?(s) = limNinf[ V:(s) - V~(S*)], for SE S. (3.11) 

(Ref. [12, Lemma6.11 justifies the “lim” in (3.9) and (3.10)). The next 
lemma lists properties of W$, W,>, and V,: needed in this paper (see [ 15, 
Lemma 5.1 and Theorems 6.1 and 6.21). 
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LEMMA 3.1. If S* is an OSS, then the following hold for s E S: 

(a) Thefunctions W$, Vl*. , and W,b* belong to E(s*). 

(b) rf’ WE E(s*), then W,:.(s) d W(s) d W:(s). 

(c) V”(s, s*) - Mcf(s*) 1 w:(s) and Mc,(s*) - V”(s*, s) r W>.(s). 

(d) W:(s) < co iffs* E ACS(s); W,)*(s) > - m gfs E ACS(s*). 

(e) W,).(s) d sup W$(s’)= lim[Mc,(s*) - Vy(s*)] < co. 
I’ t s M 

4. EXCESSIVE FUNCTIONS AND BOUNDS 

Using excessive functions, one can construct lower bounds on the N- 
stage costs and upper bounds on the opportunity cost (see Theorems 4.1 
and 5.1). For s* E S,, WE E(s*), K3 0, and the subset S, of S, define 

U”( w, s*, S,) = sup [W(s) - V:(s) + Kc,(s*)]. (4.1) 
J t ACS(Sol 

The next theorem follows easily from the arguments for [ 12, Theorem 5.11. 

THEOREM 4.1. Suppose S, is a subset of S, s* E S,- n S,, and WE E(s* ) 
is bounded above on ACS(S,). 

(a) U”( W, s*, S,) < co, for K30; 

furthermore, U”( W, s*, S,) is nonincreasing in K. 

(b) V:(s) 3 W(s) + Ncr(s*) - U”( W, s*, S,), 

for N>KandsE ACS(S,). (4.2) 

(c) Mc,(s”) - vT(s*) r oc(s*) < U”( w, s*, S,), 

,forM>OandK>O. (4.3) 

(d) s*isanOSS. 

Part (a) ensures that the accuracy of the bounds in (4.2) and (4.3) is 
nondecreasing in K. (The same holds for the bounds in Theorem 5.1.) Of 
course the work also increases with K. Because of (4.3), information about 
Vy(s*) can aid in selecting K (see Section 8). The following theorem 
characterizes the limiting behavior of U”( W, s*, S,) as K approaches co. 

THEOREM 4.2. Assume the hypotheses of Theorem 4.1. 

(a) OC(s*) = U”( W, s*, S,), for KaOwhen W= WF*. 
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(b) lim V”( IV, s*, S,) > 
K 

sup [W(s) - V,>(s)] + oc(s*:I. (4.4) 
SE ACS(S(,) 

(c) Equality holds in (4.4) when 

VT(s) - Vz(s*) converges uniformly to V,;(s). 

Proof: By Lemma 3.l(a, d, and e), W$ EE(~*) is bounded above. 
Hence, Theorem 4.1(c) implies OC(s*) < U”( W$, s*, S,), while (3.1) and 
Lemma 3.l(d and e), imply U”( W$,, s*, So) = OC(s*). To finish (a), apply 
Theorem 4.1 (a). Next, (4.1) implies that for K 2 0, 

U”( W, s*, So) = sup { W(s) - [V:(s) - V=(s*)] } + Kc,(s*) - Vt(s*). 
.,t ACS(S,J) 

(4.5) 

Using Theorem 4.1(a), (3.11), and (3.1), one can show that 
lim, UK( W, s*, So) 2 W(s) - V,>(s) + OC(s*), for s E ACS(S,,). Take 
“sup,,” to get (b). For (c), let K + cc in (4.5). Uniform convergence lets one 
interchange “sup,” and “lim.” to get equality in (4.4). 1 

Part (a) suggests that larger K are less worthwhile when W is close to 
its lower bound Wb.. Note that So = S and W = ~1:. in [ 161, which does 
computations for small K using 

U”(w,$, s*, S) = max w$(s), 
, t s (4.6) 

UK(wf., s*, S) s max 
i 

IV,:.(S~)- 5 ~(a,, sj) 
j=l 

for K;2 1 (4.7) 

(see Sect. 3.3). Those computations find that on the average, K = 1 does 
much better than K = 0, but larger K yield only marginal improvements. 
Finally, note that (c) needs uniform convergence: pointwise convergence is 
not enough. 

5. STEADY STATE POLICIES AND FIRST-ORDER APPROXIMATIONS 

Additional definitions 

For infinite horizon problems, the policies usually studied are stationary 
policies, i.e., policies defined by a mapping 7~: S + A such that n(s) E A(s), 
s E S, and the rule: When in state s, choose action n(s). In contrast, this 
paper focuses on steady state policies, a class of policies-including both 
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stationary and nonstationary ones-studied extensively in [ 111. Under 
such a policy, there is a subset So of states from which the system heads 
towards a “steady state.” Formally, a steady state policy (SSP) rr is 
specified by the following entities: the target state s* E S,; the domain S,, 
a subset of S which contains s*; and the guidance rule which directs the 
system from each s E S, to .F* in a finite number of stages. On reaching the 
target s*, the system stays there by continually choosing a stabilizing action 
a* E A,(s*). For s #s*, let N(rr, s) equal the number of stages that elapse 
before the system reaches s* from s. Let N(z, s*) = 0. Say n has finite 
opportunity cost if it has finite opportunity cost at each s E S,. Define 
Q(s*, S,) as the set of SSPs with domain S, and target s*. 

The definition of SSP in [ 111 does not require either (i) the same target 
for each SE So, or (ii) a* E A,($*). Clearly (ii) does not sacrifice optimality. 
One can circumvent (i) by breaking S, into smaller subsets and making 
each the domain of some SSP. The next theorem describes verifiable condi- 
tions under which an SSP has finite opportunity cost together with bounds. 
(The bound in (5.2) is essentially the same as the bound in [ 11, 
Theorem 4.11 when K= 0. For additional information about the bounds, 
see Section 4.) 

THEOREM 5.1. Let x be an SSP with domain So and target state s*. Let 
W be excessive at s* and finite and bounded above on ACS( S,). Then 71 has 

,finite opportunity cost and s* is an OSS. Furthermore, the following hold for 
SE&, K>O, and N>max{N(n,s), K): 

v;(s) - v;(s) ,< yy’.‘J (s) - N(7q.s) cf.(S*) - W(s) 

+ U”( w, s*, As,,) < as, (5.1) 

OC(7c, s) d yys (s) - N(q s) c&s*) - W(s) 

+ UK( w, s*, S,) < cx3. (5.2) 

Proof: Theorem 4.1 implies s* is an OSS and U”( W, s*, S,) < co, 
for K2 0. Fix SE S,, K3 0, and N3 maxi N(rr, s), Kj. Clearly, V,“(s) = 
Vf’(“.“)(s) + [N - N(n, s)] cf(s*). Hence V:(s) - V:(s) = [V,“‘“~‘)(s) - 
N(rr, s) cr(s*)] + [Nc,(s*) - V:(s)]. This, W(s) > - co, and Theorem 4.1 
imply (5.1). Let N + co in (5.1) to get (5.2). 1 

COROLLARY 5.1. Under the hypotheses of Theorem 5.1, rc is average-cost 
optimal on S,, so 

c&s*) = min c, (s’). (5.3) ,‘t AC.s(s~)n s, 

Note (5.3) holds and u* E Af(s*) when (a*, s*) satisfies (3.3). This 
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suggests the following approach to finding a 71 satisfying Theorem 5.1. 
First, solve (3.3) for the target state s* and stabilizing action a*. Second, 
construct a guidance rule that directs the system from some subset S, to s*. 
According to Theorem 5.1, rr must have finite opportunity cost, provided 
that some WE E(s*) is finite and bounded above ACS(S,). 

Recall from Sect. 3.3 that when (a*, s*, w*) is an LSP, (a*, s*) satisfies 
(3.3) and w,*(s) E w*s - W*S* (s E S) is excessive at s* and bounded on S. 
Under mild conditions, LSPs exist for the growth models of [lo, 171 and 
the fractional flow> model of [9, 13, 141. Both models have convex S. 
For the growth models, one can obtain LSPs after solving a convex 
programming problem (c is convex, t is aftine, D is convex); Ref. [lo], 
pp. 191-198, describes how to construct a guidance rule under general 
assumptions, where S, contains almost all of S. For the flow models, one 
loses convexity (both c and t can be nonconvex, A can be finite); however, 
one can compute LSPs using algorithms like ones for n-state Murkov 
decision processes; Ref. [13, Theorem 6.1(c)] shows how to construct a 
guidance rule where S, = S under general assumptions which hold for [9]. 

The previous models have multidimensional state spaces. Using rr that 
satisfy Theorem 5.1 as first-order approximations can reduce computations 
dramatically. Sections 6 through 8 examine the problem of making second- 
order improvements that reduce the transient costs of such rc; Ref. [ 161 
applies these results to the flow model of [9]. 

6. SECOND-ORDER IMPROVEMENTS 

Under the hypotheses of Theorem 5.1, one can separate making second- 
order improvements on 7c into two subproblems. The first concerns the cost 
of the guidance rule directing the system to the target s*, the second, the 
cost of staying at s*. Theorem 6.1 justifies this decomposition and provides 
bounds. Sections 7 and 8 study the two subproblems in detail. 

THEOREM 6.1. Let 71, S,, s*, and W satisfy the hypotheses of 
Theorem 5.1. 

(a) W$ and V,; are excessive at s* and finite on S,. 

(b) For s E So, one can express OC(n, s) uniquely us the sum of three 
nonnegative terms, 

such that 

OC(7c, s) = O,(n, s) + O(s, s*) + oc(s*), 

inf OlAfi, s) = 0 and O(s*, s*) = 0, litR(s* ~~, . . 

(6.1) 

(6.2) 
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viz., 

(cl 

OG(71, s) = Ip-) (s)- N(n, s) c,.(s*) - W$(s), 

O(s, s*) = Ivyi - V>(s). 

0,(7c, s) < yy’) (s) - N(n, s) c,(s*) - W(s) < cx;, 

.for SE s,. 

(6.3) 

(6.4) 

(6.5) 

Furthermore, the left-hand inequality holds as equality at s = s*. 

(d) ZfsES,nACS(s*), then for Mb 1, 

OG(rL, s) + O(s, s*) 6 Vy-‘(s) + P(s*, s) - (N(7q s) + M) c,(s*). (6.6) 

Think of the first term in (6.1) 0,(x, s), as the penalty associated with 
the guidance rule. (The other terms do not depend on how the system 
moves to s*.) A policy 72 minimizes OC(ti, s) over Q(s*, S,) if Oo(fi, s) = 0. 
Section 7 examines the problem of finding ?z E Q(s*, S,) that drive 0,(72, s) 
towards 0. The second term, O(s, s*), is the penalty for paying a visit to s* 
when the initial state is s. (Note that O(s*, s*) = 0.) There is no attempt to 
save this cost by selecting a better s* (see Remark 6.1). Since OG(rc, s) is 
nonnegative, (6.6) provides an upper bound on O(s, s*). The third term, 
OC(s*), is the opportunity cost of keeping the system at s*. Theorem 4.1(c) 
bounds this. Think of OC(s*) as the tail penalty. When N is finite, one can 
reduce the total N-stage costs by having the system quit s* towards the end 
of the horizon and switch to an optimal policy. By (4.3), the saving can 
approach OC(s*) when N is large. Section 8 covers this. 

Remark 6.1. Some comments on the problem of selecting a better 
target than s*. By Corollary 5.1, one cannot improve on the opportunity 
cost of rt by changing the target when (5.3) uniquely determines s*, e.g., 
when s* is the only state satisfying (3.3). On the other hand, if another 
s’ E ACS(S,,) n s, were to achieve the minimum in (5.3), it might also 
satisfy O(s, s’) + OC(s’) < O(s, s*) + OC(s*) for some SE S,,, and it would 
be possible to improve the opportunity cost at s by selecting target s’ 
(given also appropriate changes in the guidance rule). In principle, one 
could require of s* and So that s* minimize O(s, s*) + OC(s*) for each 
s E S,. We do not do this. 

We now turn to the proof of Theorem 6.1, which requires the following 
lemma. 

LEMMA 6.1. Let 71 he an SSP with domain S,, and target state s*, and let 
SE SO. Then V,<(s) < x and 

OC(7r, s) = [ Vyb) (s) - N(Ts) c,(s*)] - I’::(s) + OC(s*). (6.7) 
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Hence n has finite opportunity cost if and only if s* is an OSS and 
I V?(s)1 < co, SE s,. 

Proof Fix s E S, and N 3 N(rc, s). Now, V:(s) = V!“,‘)(s) + 
[N-N(n, s)] c-Js*). Hence, V:(s)- V:(s) = [ V/,N’“.“(s)-N(rc, s) cl(s*)] - 
[V:(s) - Vc(s*)] + [Nc,.(s*) - Vr(s*)]. Since s* E ACS(s), [V:(s) - 
VT(s*)] is bounded above in N, so (3.11) implies k’;(s)< W. This, (2.1), 
and (3.1) imply (6.7). The rest follows from (6.7) and the definition of 
oss. [ 

Proof of Theorem 6.1. For this proof, assume SE S,. Also, let 
Q = Q(s*, S,). Theorem 5.1 and Lemma 6.1 imply s* is an OSS and 
V,?(s) is finite. By Lemma 3.1 (a, b, and d), Ws and V,“; are excessive 
at s* and e(s) is finite, giving as (a). For (b), if OC(rr, s) is the sum of 
three terms where the first two satisfy (6.2), then (6.7) implies the third 
must be OC(s*). Furthermore, this, (6.1), and (6.2) imply O(s, s*)= 
infti., OC(2, s) - oc(s*) and Oo(7r, s) = OC(n, s) - inf+., OC(ti, s), 
proving uniqueness. Hence, assume (6.3) and (6.4). Theorem 5.1 and (6.7) 
then imply (6.1). Using (6.3), (3.8), and Lemma 3.1 (c), one can easily prove 
(6.2), which also gives us Oc(rr, s) 20. Now (6.4), (a), and Lemma 3.1(b) 
imply O(s, s*) b 0. Finally, (3.1) ensures that OC(s*) 3 0, finishing (b). For 
(c), Lemma 3.1(b) implies W(s) < W’$(s). This, (a), and (6.3), prove (6.5). 
Also W(s*) = W$(s*) = 0 ensure equality at s =s*. For (d), add (6.3) and 
(6.4) to obtain, Oc(rr, s) + O(s, s*) = V;rN’“,“‘(s) - N(n, s) cf(s*) -- V,>(s). 
Lemma 3.l(a, b, and c) implies - V,:(s) < - W,“,(s) 6 V”‘(s*, s) - Mc/(s*), 
for M 3 1. This and the previous equality prove (6.6). 1 

7. GUIDANCE-RULE IMPROVEMENTS 

Throughout this section assume unless stated otherwise that the 
following holds. 

Assumption 7.1. (i) So is a subset of S which contains the state s* E S,; 
(ii) s* is accessible from each SE&; (iii) WEE(S*) is finite and bounded 
above on ACS(S,). 

Define R = Q(s*, S,). By (i) and (ii), Q # 0. By Theorem 5.1, the oppor- 
tunity cost of every SSP in Q is finite. This section considers the problem 
of finding an SSP in Q with minimum opportunity cost. After transforming 
the costs, we show this is equivalent to finding a shortest route from each 
s E S, to s* in a network with nodes S and nonnegative arc lengths. For 
finite S, the shortest route problem has an optimal solution, which one can 
determine using Dijkstra’s algorithm and its extensions when S is not too 
large. Exact solutions, however, need not exist for infinite S and are often 
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impossible to obtain for finite S whose dimension n exceeds three (“curse 
of dimensionality”). The latter part of this section deals with the problem 
of finding approximate solutions for large S. 

Given s E S,, call TC optimal among Q at s if rc E Q and OC(rc, s) d 
OC(72, s), for 72 E Q, or equivalently, 0,(x, s) = 0 (See Theorem 6.1(b)). 
Call rr E Q optimal among 52 if the latter holds for all s E S,. Theorem 7.2 
proves such rc exist provided S is finite. Of course, given E > 0 and s E So, 
there always exist rt that are s-optimal among Q at s, i.e., XESZ with 
0,(x, s) < E. Such policies are important for the applications cited. in 
Section 5, where S is multidimensional and convex. 

The bound on Uo(rr, s) in Theorem 6.1 (c) can help one to decide how far 
to proceed when computing approximations. Next, we introduce a trans- 
formation which incorporates this bound in the costs (see Theorem 7.1) 
and makes them nonnegative. Let D, denote the set of (a, s) E D with both 
W(s) and W(t(a, s)) finite. (If W= W$ as in (3.6) then D,= D.) Let 

c(a’ “) = 

x ) for (a,s)ED-DW, 

c(a, s) - cI-(s*) + W(t(a, s)) - W(s), for (a, s) E D,. 

(7.1) 

By (3.5) C is nonnegative. Lemma 7.1 describes other properties of C. 
s E S, let 

z(.r)=inf F -( c a,, 3,): 1 <MC xz and ((a,, s,)),:, E T(s, s*) 
j= I 

where 

For 

(7.2) 

qs, s*)= u T,(s, s*) (7.3) 
lb= 1 

(see (3.7)); T(s, s*) contains all feasible, state-action paths from s to s*. 
Note that z(s) = a3 if T(s, s*) = @. Of course, Assumption 7.1 ensures that 
T(.s, s*) # 0 when s E S,. 

LEMMA 7.1. Suppose s* is an OSS, WE E(s*), SES, and W(s)> --a3: 

(a) F ?(a,, s,)= 5 c(a,, s,)-Mc/(s*)- W(s), 
,= I ,=I 

,fOr ((ai, “j))lM_ 1 E T(S, .S*). (7.4) 

(b) z(s) = Wtj,(.s) - W(s). (7.5) 
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Proof Suppose ((a,, sj)),E, E T(s, s*). Then, sr =s, si+, = t(a,, sj), 
1 <j<M, and s* = t(a,, s,,,). Using (7.1) it is easy to verify (7.4) 
assuming 1 W(s,)J < GO, for 1 < j< M. Fix 1 <j 6 M. By hypothesis, 
W(s,)> -co. By (3.5) and an induction argument, W(si) > -co. 
Lemma 3.l(b and d) and s* E ACS(s,) imply W(s,) < W$(s,) < cc, finishing 
(a). Using (a), the definition of z(s), (3.8) Lemma 3.1(c), and routine 
arguments, one can prove (7.5). 1 

The next theorem follows immediately from Lemma 7.1 and 
Theorem 6.1 (b and c). 

THEOREM 7.1. Suppose Assumption 7.1 holds and s E S,. Zf 71 E: Q uses 
((a,, s,)),!=, E T(s, s*) to guide the system from s to s*, then I,“=, c(at, s,) 
coincides with the upper bound on O,(Z, s) in (6.5) and C;“=, ?(a,, si)= 
0&7T, s) + z(s). 

By Theorem 7.1, constructing a rc optimal among 52 means finding for 
each s E S,, a path in T(s, s*) attaining the intimum in (7.2). This reduces 
to finding a shortest route from each s E S, to s* is a network with nodes 
S, directed arcs S, z { ( s, s’): (a, s) E D and t(a, s) = s’}, and nonnegative 
length I(s, s’) = min{?(a, s): a E A(s) and t(a, s) = s’}. (That is, I(s, s’) z 
min{ c(a, s): a E A(s) and t(a, s) = s’} -- c{(s*) + W(s’) - W(s).) When S is 
finite, there exists a shortest acyclic route. Since the lengths are non- 
negative, this must be a shortest route. Arguing along these lines, one can 
prove the following. 

THEOREM 7.2. Suppose S is finite and Assumptions 7.1 holds. Then there 
exists an SSP rt* that is optimal among Q. Furthermore, there exists c1 xc* 
that is also stationary. 

Two examples appear below. The first shows that Theorem 7.2 does not 
extend to infinite S; the second shows that one needs a transformation like 
(7.1) to get an equivalent shortest route problem with nodes S and non- 
negative arc lengths-even when c is nonnegative. 

EXAMPLE 7.1. LetS={1/2”:n=O,l,... }u{O},A={0,1/2},D:=AxS, 
c(a, s) = (1 - 2a)s, and t(a, s) = as. Clearly, (a*, s*, w*) = (l/2,0, 0) is an 
LSP. Also, one can move from any s to s* =0 with a=O. Hence, s*, 
S, = S, and W(s) E 0 meet our requirements. Let s E S. By choosing a* for 
M stages, one can move from s to ( 1/2”)s at zero cost. Since a = 0 moves 
(1/2”‘)s to s* at cost ( 1/2”)s, we have z(s) = 0. But ~(a, s) > 0 unless s = s* 
or a = a*. Thus, no element of T(s, s*) can achieve the infimum in (7.2) 
when s # s*. 
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EXAMPLE 7.2. Let S=A = (0, 1, 2}, D= {(O,O), (0, l), (2, l), (0, 2)}, 
~(0, 0)=2, ~(0, l)= 10, ~(2, 1)-O, ~(0, 2)= 11, and ?(a, ~)=a. Clearly, 
c(a, s) + 2a 3 2s + ~(0, 0), for (a, s) E D, so (a*, s*, M’*) = (0, 0,2) is an LSP. 
For W(s) = 2s: C(0, 0) = 0, C(0, 1) = 6, C(2, 1) = 0, and F(0, 2) = 5. There are 
two routes from 1 to s* = 0: 1 + 0 and 1 -+ 2 --f 0. Given arc lengths ?(a, s), 
the former has length 6 and the latter length 5. Given arc lengths c(u, s), 
however, the order is reversed, 1 + 0 having length 10 and 1 + 2 +O 
having length 11. 

The nonnegativity of the arc lengths allows one to use Dijkstra’s algo- 
rithm and its extensions to solve our shortest route problem when S is 
finite. (See Denardo [S, Chap. 21 or Ahuja et al. [3]; Ref. [3, pp. 334-381 
discusses the shortest route literature). Unfortunately, the computing time 
and computer storage requirements can become excessive when the dimen- 
sion n 3 4, and one may have to settle for an approximate solution. Morin 
[ 221 surveys the available computational techniques. 

One approach, used in [ 161, is to find for a finite sequence of M a mini- 
mum cost M-stage path from a given state s E S, to s*. The advantage is 
that given certain smoothness assumptions, one can employ nonlinear 
programming and optimal control methods to solve the M-stage problems 
(see the discussion below). For M 2 1 and s E S, define 

1 
min 

a, 

1 

f 't",, s,): ((u,, sj))z 1 E T&f(S, S*) 3 

,=I I 

if T,(s, s*) # 0 

if T,W(s, s*) = 0. 
(7.6) 

Note that according to Lemma 7.1, CE, C(uj, sj) and xy!, ~(a,, sI) dif- 
fer by [Mc,(s*) + W(s)] when ((a,, s,)):, E T,(s, s*). This, the lower 
semicontinuity of c, and compactness justify the “min” in (7.6). Inciden- 
tally, for the purpose of finding a path in T,(s, s*) that attains the mini- 
mum in (7.6), the objective function can be either I,!=, ?(a,, sj) or 
C,!=, ~(a,, s,). Example 7.2 above proves that the analogous statement 
about (7.2) is false. 

For M3 1 and SE S, one can extend any path ( (ai, s,)),: I in 
T,(s, s*) to a path in TM+, (s, s*) with the same T-cost: Simply let 

(0 M+, , s,,,+ ,) = (a*, s*), where a* E A,($*). Clearly ?(a*, s*) = 0, which 
implies Cf”=: ’ ?(a,, s,) = C,“= i ?(a,, 3,). One can thus construct a feasible 
solution to an (M + 1)-stage problem from an optimal solution to an 
M-stage one. (Determining a feasible solution is the first step in many 
nonlinear programming and optimal control algorithms.) Incidentally, this 
construction implies 

“M(S) 1 dS)? for s E S. (7.7) 
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If 7c and s satisfy Theorem 7.1, then O,(n, s)=z,,,,(s)-z(s) and, further- 
more, z,Js) is an upper bound on O,(n, s). (By Lemma 7.1, how tight this 
bound is depends on how close c(s) is to W(s).) One can use Z,+,(S) as 
a basis for deciding when to stop the computations. 

Under appropriate smoothness assumptions, (7.6) becomes a classical 
discrete-time, deterministic, constrained optimal control problem, and one 
can attempt to solve it using nonlinear programming and optimal control 
methods [4, 6,24, 261, which include methods of feasible directions [25], 
general reduced gradient methods [l, 21, and differential dynamic 
programming [20,23,27]. These methods are capable of dealing with 
sizable problems. However, they need not produce a global optimum, 
unless one imposes convexity assumptions (which, as discussed in 
Section 5, hold for the growth model of [lo, 171, but not for the flow 
model of [9, 13, 141). This disadvantage may not always be serious, since 
zM(s) provides an upper bound on how much better a different solution 
can be. 

8. TAIL IMPROVEMENTS 

Suppose the horizon is finite and equals N and II satisfies Theorem 5.1. 
By allowing the system to leave the target s* and follow an M-stage 
optimal policy in the last M stages, one can reduce the total N-stage costs 
under n by Mc.~(s*)- Vy(s*). By Theorem 4.1(c), the cost savings 
approach OC(s*) for large M. For this tail improvement to be practical, 
M should be small relative to N. Computing Vi(s*) is often easy. The bound 
on OC(s*) in (4.3) contains information that is helpful when choosing M. 

Under appropriate smoothness assumptions, one can use nonlinear 
programming and optimal control methods when calculating Vr;‘(s*) (see 
the last paragraph of the previous section). Applying nonlinear program- 
ming techniques, [ 161 solves 

vr(s*) = F c(a,, s,j): (ta,, sj)>z I E u T,W(s*, s)) (8.1) 
,= I .\ t s 

for small M. To reduce the work, that paper constructs an initial feasible 
solution ((a;, s,!)),: , to an M-stage problem from an optimal solution 
((ai, s,)),:;~ to an (M- I)-stage problem, i.e., (u;,s,‘)=(u,- ,,s,~,), 
2<j<M, and (u;,s’,)=(u*,s*), where u*~A~(s*). The next theorem 
follows easily from Theorem 5.1. 

THEOREM 8.1. Let 71, S,, s*, and W satisfy the hypotheses of 
Theorem5.1. Let SES~, O<K<N, and ldM<N-N(n,s). Let 7~’ he a 

409.166.1.13 
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nonstationary policy that selects the same decisions as 7c in stages 1 through 
N - M and then switches to an optimal M-stage policy at stage N - M + 1. 
Then the ,following holds: 

v;(s) - v;(s) 6 If,“‘“. )I (s) - (N(n, s) + M) c,(s*) 

+ v;(s*) - W(s) + U”( w, s*, S”). (8.2) 

Remark 7.1. Inequality (4.2) provides a lower bound on V:(s). If this 
lower bound is positive, then its reciprocal multiplied by the upper bound 
in (8.2) is an upper bound on the relutiue error, 1 [V”(s) - V~(s)]/V~(s)l. 
Note that this bound is valid even when one chooses not to make tail 
improvements, i.e., when M = 0. 
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