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Abstract

By employing the continuation theorem of coincidence degree theory, the existence of a positive peri-
odic solution for a nonautonomous stage structured population dynamics with time delay and diffusion is
established. Further, by constructing a Lyapunov functional and using the result of the existence of positive
periodic solution, the attractivity of a positive periodic solution for above system is obtained.
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1. Introduction

In the study of the population dynamics, in order to make the population models more practical
and accurate, more and more realistic factors have been considered, such as stage-structure (see
[1-4,12,13]), diffusion (see [2,5-7,13]), time delay (see [1,5-7,10,11]), but the models with all
the factors seem to be rarely considered.
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To consider all these factors, Li et al. [8] introduced the following nonautonomous population
model with stage-structure, diffusion and time delay:

t

XE(I)=011(t)y1(t)—r1(l)X1(t)—al(l‘—f)eXP<— / rl(S)dS>y1(t—f),

-t
t

OETGE r)exp(— / r (s)ds)yl(r — 1) = By ()

+ D1 (1) (y2(1) _[y_lr(t)) + R(®)y1()z(1), ;
() =a3()z(t) — r3 (O (1) — OOy (D)z2(D), t o
x5(t) = aa (1) y2 (1) — ra(t)x2(t) — a1 — T)€XP<— / rz(S)dS)yz(t - 1),

-t
t

y3(t) = an(t — T)exp (— / ra(s) ds) Y2t — 1) = B2 (O)y3 (1) + Da(0) (y1(1) — y2 (1)),

-1

where x; (), yi(t), i = 1, 2, represent the immature and mature predator population densities in
the path i, respectively. z(¢) represents the prey population density in the patch 1, and y;(¢),
in patch 1, is its predator. The mature population y;(¢), i = 1, 2, can disperse between the two
patches. t denotes the length of time that predator i (i = 1,2) grow from the birth to maturity,
o (t) denotes the bearing rate of immature predator in patch i, i = 1,2, «;(t — 7) denotes the
bearing rate of mature predator in patch i, i = 1, 2, r;(¢) is the death rate of immature predator in
patch i, i =1, 2, B;(¢) denotes the death rate of mature predator in patch i, i = 1,2, R(¢) denotes
the preying effective rate in patch 1, D;(¢) is the diffusive coefficients of mature predator in
patch i, i =1, 2, a3 denotes the bearing rates of prey in patch 1, 3 denotes the death rate of prey
in patch 1, 6 denotes the preying rate in patch 1, o; (), ri (¢) (i =1,2,3), Bi(t), D;(t) (i =1,2),
R(t), 0(¢) are positive continuous functions on [0, +00).

In [8], the authors first established the existence of a positive periodic solution by using a
fixed point theorem (see [8]) and the persistent result drawn by them. Then obtained the sufficient
condition for a unique positive periodic solution which is globally attractive by using Lyapunov
functional. To state the result in [8], we make two assumptions and a notation:

(H1) all the coefficients in system (1.1) are positive continuous w-periodic functions with @ > 0;

(H2) 0 <min{ai, r; (=1,2,3), Bi. Di (i=1,2), R, 6}
<max{@, 77 (i =1,2,3), B, Di (i=1,2), R, 6} < +00.

For a positive continuous w-periodic function f(¢), we set

e~

f= max { ()}, f= min {f(0)}, f=

tel0,w] —  t€[0,w]

/f(t) drt.
0
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Theorem 1.1. [8] In addition to (H1) and (H2), we assume that the following conditions hold:

- ) def Fe—rT4R def &
(H3) a3 — OM>s > 0, for any given 1 > 0, Mas = mff’% + &2, here M3 = ‘:—f + &y, for
any given €1, & = max{ay, @z}, r = min{ry, 2}, B = min{By, B2}, @ = min{ay, a2}, B =
max{Bi, B2}, ¥ = max{iy, 72};

i - def a3—0M
(H4) a1e™1" > Dy — Rm3, m3 = 2=

small,
(H5) ape™" > Dy;
(H6) 2Bimy+ Dy — Dy — 6 — RM3 —ae™™ > 0;
(H7) 2Byms+ Dy — Dy —ae™ > 0;
(H8) r3 — RM>s >0,

— &3 > 0, &3 is a given constant which is sufficiently

def aje 1" +Rm3—D; def ape™"27—Ds . .
here, my = _ﬁ* — &4, M5 = —T — &5 >0, €5, &4 are two given and sufficient

1 2
small constants.

Then system (1.1) has a unique positive w-periodic solution which is globally attractive.

Remark (A). A biological interpretation for Theorem 1.1 is that if

(H3) the bearing rate of prey in patch 1 is far larger than preying rate of mature predator in
patch 1;

(H4) the rate of diffusion of mature predator in patch 1 is much smaller than the bearing rate of
immature predator in patch 1;

(HS) the rate of diffusion of mature predator in patch 2 is much smaller than the bearing rate of
immature predator in patch 2;

(H6) the bearing rate of immature predator in patch 1 is larger than the preying rate in patch 1;

(H7) the bearing rate of immature predator in patch 2 is larger than preying rate in patch 2;

(H8) the death rate of prey in patch 1 is smaller than the preying effective rate in patch 1, then
system (1.1), after a long time, will approach a very stable status which exclude the inter-
ference from outward forces.

In this paper, instead of using fixed theorem, we establish the existence of positive w-periodic
solutions for system (1.1) by using Mawhin’s continuation theorem of coincidence degree theory.
Then establish the globally attractive result of a positive w-periodic solution for system (1.1) by
constructing different Lyapunov functional and using different technique from those in [8], and
the existence result of positive periodic solutions. Compared with the result obtained in [8], our
result is concise and is easily verified. Therefore, we obtain new sufficient condition for the
global attractivity of a positive periodic solution of system (1.1) under concise condition.

The organization of this paper is as follows. In Section 2, by using the independent subsystem
method, we obtain sufficient condition for the existence of positive periodic solutions of sys-
tem (1.1). In Section 3, by using the independent subsystem method, we obtain the condition of
the global attractivity of a positive periodic solution of system (1.1).



20 Z. Zhang, L. Wang / J. Math. Anal. Appl. 319 (2006) 17-33

2. The existence of a positive periodic solution

In this section, based on Mawhin’s continuation theorem, we shall study the existence of at
least one positive periodic solution of system (1.1). First, we shall make some preparations.

Let X, Z be Banach spaces, let L:Dom L C X — Z be a linear mapping, and let N: X — Z
be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dimKer L = codimIm L < 400 and Im L is closed in Z. If L is a Fredholm mapping of index
zero, there exist continuous projectors P: X — X and Q:Z — Z such that Im P = Ker L and
ImL =Ker Q =Im(I — Q). It follows that L/ Dom L NKer P: (I — P)X — Im L is invertible.
We denote the inverse of that map by K. If £2 is an open bounded subset of X, the mapping N
will be called L-compact on £2 if QN (£2) is bounded and K,(I — Q)N :£2 — X is compact.
Since Im Q is isomorphic to Ker L, there exists an isomorphism J :Im Q — Ker L.

In the proof our existence theorem, we will use the continuation theorem of Gaines and
Mawhin [9].

Lemma 2.1 (Continuation theorem). Let L be a Fredholm mapping of index zero and let N be
L-compact on §2. Suppose:

(a) Lx #AN(x,A), VA€ (0,1), x € 082,
(b)) ON(x,0)#0,Vx e KerLN382;
(c) Brouwer degree degg(J QN (-,0), 2 NKerL, 0) # 0.

Then Lx = Nx has at least one solution in Dom L N §2.

Let us consider the subsystem of system (1.1)

t

yi () =t — 1) exp (— / ri(s) ds)yl(t — 1) = Bi(OY}() + D1(1) (y2(t) — y1 (1))
-1

+ R()y1(H)z(t),

20 =05(0200) = 3OO = UM 00, 2D
yg(r>=az<r—r>exp(— / rz(s)ds)yz(r—r)—ﬁz(t)y%(t)

-1

+ D (1) (y1 (1) — y2(1)).

Theorem 2.1. Assume that (H1) and (H'1) hold, where

- & 1_?—
(H'D) a3 >0(ge ™ +572).

Then system (2.1) has at least one positive w-periodic solution.
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Proof. Consider the system

duy(t)
dt

duy(t)
dt

dus (1)
dt

t

=a(r — r)exp(— f r1 (s)ds>e"1<’—f>—"1(’> — Bi(t)e" 1
t—T

+ Dl(t)(eus(l)*ul(T) _ 1) + R(t)e'”(t),

=a3(1) = r3(Ne" " — 00",
t
=ar(t — 1) exp(— / r2(s) ds)e’”(tr)’“(t) — Ba(t)e"3 ™

-1

+ Dz(t)(eul(t)—tl3(t) _ 1)’

21

(2.2)

where all parameters are the same as those in system (2.1). It is easy to see that if system (2.2) has
an w-periodic solution (% (¢), u}(t), u3(t))”, then (1), 20 3T s g positive w-periodic
solution of system (2.1). Therefore, for system (2.1) to have at least one positive w-periodic
solution it is sufficient that system (2.2) has at least one w-periodic solution. To apply Lemma 2.1

to system (2.2),

we first define

X =27 ={u@) = (1), u2(), u3(0))" € C(R, R), u(t + ) = u())

and
r 3
= t), ), t = i (¢
lell = [ (1 @), w2 (@), u3@)) " | ;tenm]!ul( )|
for any u € X (or Z). Then X and Z are Banach spaces with the norm || - ||. Let

t

a1t — 1) exp(— / r1(s) ds)e'”(’f)’“(’) — Bi(t)e"1
-7

+AD (1) (D7D — 1) 4 AR(1)e 2,

N2 =1 ay(t) = r3 (e =260 (He®,

/
Lu=u =

t

ar(t — 1) exp(— / r2(s) ds)e’“(tr)'”(t) — Ba(t)e

-t

—i—)»Dz(t)(e”l(t)ﬂ“(’) _ 1)

du(t)
dt

w
1
, Pu:—/u(t)dt, ueX;
w

0

w

QZZl/z(t)dt, zeZ.
w

0

Then it follows that

w

KerL:R3, ImL:{zeZ: /z(t)dt:O} is closed in Z,

0

ueX;
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dimKer L =3 =codimIm L,
and P, Q are continuous projectors such that
ImP =kerL, KerQ=ImL =Im(I — Q).

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
Kp:ImL — Ker P N Dom L is given by

t

w t
K,,(z)z/z(s)ds—é//z(s)dsdt.
00

0
Thus
wJo Fi(s)ds
ON@u, )= | L [ Fy(s)ds
L[y F3(s)ds
and

fo Fi(s)ds — L [ [T Fi(s)dsdt + (5 — L) [ Fi(s)ds
Ky(I = QN 2)=| [y Fa(s)ds — 2 [V s Fa(s)dsdt + (3 — L) [’ Fa(s) ds |,
fo Fs(s)ds — L [ [V Fs(s)dsdt + (5 — L) [o Fa(s)ds

where

s

Fi($) =a1(s — 1) exp(— / r1(t) dt)e”‘(x_f)_“l(s) — Bi(s)e"'®

§—T
+AD;(5) (e — 1) 4 AR(s5)e"2),

Fa(s) = a3(s) = r3()e") — 10(s)e"! ),

N

F3(s) = aa(s — 1) exp(— / rz(t)dt>e”3(“_”_“3(s) — Ba(s)e®

S—=T

+ ADy(s) (e 71 ),

Obviously, ON and K,(I — Q)N are continuous. It is not difficult to show that K,(/ —
Q)N(£2) is compact for any open bounded £2 C X by using the Arzela—Ascoli theorem. More-
over, QN (£2) is clearly bounded. Thus, N is L-compact on 2 with any open bounded set
2 CX.

Now we reach the point where we search for an appropriate open bounded subset §2 for the
application of the continuation theorem (Lemma 2.1). Corresponding to the operator equation
Lx=AN(x,)),re(0,1), we have
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t

dui(t
”dlt( ) =A[a1(t - t)exp<— / . (s)ds)e“l"”““’) — Bi(e"®
t—T
+ AD](Z‘)(E'B(I)_“'([) _ 1) +AR(t)eu2(f)i|’
duy(t
”;t( - Aoz () — r3()e2® — 10 (r)e V], 2.3)
t
dus(t
u;t( ) _ k[az(z — t)exp<— / rz(s)ds>€”3('_r)_"3(’) — Ba(t)e">®
-1
+ AD; (1) (e W70 — 1)}.

Assume that u = u(f) € X is a solution of system (2.3) for a certain A € (0, 1). Because of
(1), ua (), u3(@))T € X, there exist &, n; € [0, w] such that

u;i(§)= max u;(t), wu;(n;)= min u;(t), i=1,2,3.
tel0,w] te[0,w]
It is clear that
u;(6)=0, u;(n)=0, i=1273.

From this and system (2.3), we obtain

&1
o (€1 = r)exp(— / ri(s) ds)e“l@l—”—“l@” — Br(Ene €

&1—t
4 )»D](éj])(e“}@')_ul@') _ 1) +AR(§1)6”2(S]) =0, (2.4)
@3(&2) — r3(£2)e"2%) — 20 (£2)e" &) =0, 2.5)
&
(83— T)exp (— / ra(s) ds)e“3@3’>“3@3> — Ba(E3)e®
&—1
4 )\Dz(%)(eul(&)*us(&) _ 1) =0, (2.6)
and
n
o1 (i = 1) exp(— / n(s)ds)e“'("l‘”‘“l‘"“ = Bi(me"t
n-—t
+ )nD](m)(eM(M)_“l("') _ 1) ~|—)»R(m)e"2(n') =0, 2.7)
a3(n2) — r3(m2)e*2 "™ — 10 (n)e"1 1) =0, 2.8)
n3
az(n3 — 1) exp(— / rz(s)ds>e"3<"3—”—"3<"3> — Ba(n3)e"3 )
nm3—t

+ ADa(n3) (1) 7133 — 1) = 0. 2.9)



24 Z. Zhang, L. Wang / J. Math. Anal. Appl. 319 (2006) 17-33

There two cases to consider for (2.4)—(2.6).

Case 1. Assume that u1(&1) > u3(&3); then ui(£1) > usz(&1).

From this and (2.4), we have

3]
a1 (E1 — 1) exp(— / r1(s) ds>eu1(él—f)—u1(’§1) — Bi(€1)e"1 Y 4 AR(£))e">ED
§1—1
— )\Dl(%-l)(e”,?(&l)—’ll(él) _ 1) >0,

that is
Bre* 1 GV < By (&)1 GV
< age e ED 4 RemIT pt2(E)Hu1ED)
Laje el &) + Ret2(E)+ui€n)
Hence

u1§1) « 7=, 17t 4 p 2(6)
Bie < aje + Re .

(2.5) implies that

r3e"?®) < r3(£)e?®) < a3(8) < @.
From (2.10) and (2.11), we have

eMED Eeflf + Ras

Bi r3Bi

Thus
e"3(E) “__1€—U + RoT3.
B r3p1

Case 2. Assume that u1(&1) < u3(&3); then u1(£3) < u3z(&3).

From this and (2.6), we have
&

a2(€3—f)exp(— / rz(s)ds>e“3<53—”—"3@3>—ﬁz(&z)w@”
&—1

_ AD2(§3)(1 _ eul(Sz)*m(Sz)) >0,
that is
Bre® 353 < By (£3) 33
&

<05_2($3—‘L’)exp<— / rz(s)ds)e“3(53f)

&-1
< (x_ze_Ue”3@3).

(2.10)

@2.11)

(2.12)
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Hence

a _
38 o = mrT

Thus

e ED Ot__ze,g
B2

From Cases 1 and 2, we obtain

_ ae
ui(§1) <1n(ﬁﬁe—£f+ﬁ> @l g

2] B3rs
ur(E) <In = &g,
&)
a R\ def
u3z(§3) < ln(—e E —) =d.
B Birs

There two cases to consider for (2.7)—(2.9).
Case 1. Assume that u1(n1) < u3(n3); then u(n1) < uz(ny).
From this and (2.7), we have
n
Bir(n)e ™) = ai (1 — ) exp (— / r1(S)dS>e“‘('“_”_”](”')
nm-t

+ ADy (n])(eu3(771)—141(771) _ 1) + KR(U])E”Z(UI)
n

> a1 (1 — r)exp(— / rl(S)dS>€"1(mt)ul(m)’
n—t
that is
,3_162“‘("') - ale_ﬁfetll(n‘).
Hence
1) o a:_le—rTr, 3m) o azle_ﬁr'
Bi Bi

Case 2. Assume that u1(n1) > u3(n3); then u(n3) > uz(n3).

From this and (2.9), we have

UE

/ rz(s)ds>e“3("3t)“3(”3)
03—t

B2(13)e"3 ™) = ar (3 — T) exp (—

+ ADz(n3)(eu1(n3)_"3(”3) _ 1)

25

(2.13)

(2.14)

(2.15)
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13

> (3 — 1) exp(— / ra(s) ds)e“3('73_r)_“3("3),

03—t
that is
’3_262143(')3) -~ aze*r_zfeus(m).
Hence
3 o azze—r_zr, POIVIVES Ol:_ze_r—ﬂ.
B2 B2
From Cases 1 and 2, we have
ui(n1) > ln<%e‘”) o, (2.16)
B2
uz(n3) > ln(%e‘”) défp], (2.17)
B2
(2.8) implies that
ﬁe'”('m > o3 — D16 o o3 — é<&e_” + Rot_3>.
- - B Birs
Thus
1 _(a& _.. Ras
uz(m2) >ln:[a3 —9<ge_” + ﬁ)] défpz. (2.18)
Bl \B Birs

From (2.13)—(2.15) and (2.16)—(2.18), we have for V¢ € R,

lur ()] < max{|di, 1p1]} € Ry,
lua ()| < max{|dal, |pal} € R,
|us(1)| < max{ldil, |p1]} £ Rs.

Clearly, R; (i =1,2,3) are independent of A. Denote M = 213: 1 Ri + Ro; here Ry is taken
sufficiently large such that the solution (a*, g*, u*)T of the following system:

Z—Ble“ =0,
&3 — F3ef =0,
B — Pret =0

satisfies || (o*, B*, u*)T|| < M, where
w t
Z:l/al(t)exp<— / rl(s)ds) dt
@ 0 t—7

and
t

B= é/aﬂt)exp(— / rg(s)ds> dt.

0 t—71
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Now we take 2 = {u = (u(2), uz(t), us())T e X: |lu|| < M}. This satisfies condition (a) of
Lemma 2.1. When u € d N Ker L = 82 N R3, u is a constant vector in R3 with Z?:l lui| =M.
Therefore

A-— Biett 0
ONu,0) = | @3 — e | (0) .
B — pre® 0

Finally, we will prove that condition (c) of Lemma 2.1 is satisfied.
Since the system of algebraic equations:

A—fix=0,
a3 —r3y =0,
B—Prz=0
has a unique solution (x*, y*, 79T which satisfies:
x*:g, y*=@, Z*=§,
p1 3 p2

then
deg(J QN (u,0), 2 NKerL, (0,0,0)")
—deg((A - Bre"t, & — 3¢, B — pre®)", 2 NKer L, (0,0,0)7)

—Bix* 0 0
=sign| O —r3y* 0
0 0 —poz*

= sign(— 173 fox*y*z*) = ~ 1.
This completes the proof of Theorem 2.1. O

Theorem 2.2. Assume that (H1) and (H1') hold. Then system (1.1) has at least one positive
w-periodic solution.

Proof. From the first and the fourth equation of system (1.1), we obtain

t 0 s
x,-(t):exp(—/rﬂs)ds) |:x,~(0) — [oti(s)yi(s)exp</ri(0) d@) ds:|
0 -7 0

T 1—u
+/Oti(t—U)yi(t—u)exp< / ri(9)d0> du, i=1,2.
0 t

Let (yj (1), 2% (1), y; (1))T be a positive w-periodic solution of system (2.1), then we get
t 0 s

X (1) =exp<—/ri(s)ds) |:xl~*(0) —/a,-(s)yf"(s)exp(/ri(e) d@) ds:|

0 -7 0
T

t—u
+/al~(r—u)yi*(t—u)exp(/r,~(9)d9> du, i=1,2.
1

0
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Let
0 s
x7(0) = /ai ()i (s) exp(/ ri (0) d9> ds,
T 0
then
T —u
x(t)= fai(t —u)y;(t —u) exp( / ri (0) d9> du.
0 t

Therefore, (x; (1), y{(t), 2*(t), x5 (t), yik(t))T with x7(0) = f?t a; (s)yF(s) exp(f(f ri(0)do)ds
is a positive w-periodic solution of system (1.1). This completes the proof of Theorem 2.2. O

3. Global attractivity of a positive periodic solution

In this section, by constructing a Lyapunov functional, we derive sufficient condition for the
global attractivity of a positive periodic solution of system (1.1).

Lemma 3.1. [10, P4, Lemma 1.2.2, Barbalat’s lemma] Let [ be a nonnegative function defined
in [0, +00) such that f is integrable on [0, +00) and uniformly continuous on [0, +00). Then
limy, 100 (1) =0.

Theorem 3.1. In addition to the conditions in Theorem 2.1, we assume further that system (2.1)
satisfies

H2) 0+ 5+ %" <p
(H'3) Ii<£3_; B
H4) ZF+ % < B,y

Then system (2.1) has a unique positive w-periodic solution which attracts all positive solu-
tions of system (2.1).

Remark (B). A biological interpretation for Theorem 3.1 is that if the death rate of mature
predator in patch 1 is larger than the its preying rate in patch 1, the preying effective rate in
patch 1 is smaller than the death rate of prey in patch 1 and the death rate of mature predator in
patch 2 is larger than the bearing rate of immature predator in patches 1 and 2, then system (2.1),
after a long time, will approach a very stable status which exclude the interference from outward
forces.

Proof of Theorem 3.1. By Theorem 2.1, system (2.1) has at least one positive w-periodic solu-
tion, say (y{(t),2*(t), y; (t)T. Then for ¢ > 0, from the proof of Theorem 2.1, we have

el < yi (1) <eh, ePr < 75(1) < e®, el < y3 (1) <.
Suppose that (y;(7), z(t), y2(t))” is a positive solution of system (2.1) with the initial conditions

yi1(s) =¢1(s) 20, se€[-71,0], ¢1(0) >0,
() =¢2(s) 20, se[-7,0], $2(0)>0,
y2(s) = ¢3(s) 20, se[-7,0], $3(0) >0.
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Consider the following Lyapunov functional defined by

2
V() = Z|lnyi —Iny?|+|Inz —Inz*|
i=1
t
e / [Iyl (8) = Y7 )|+ |y2(s) — ¥3(s)]

eb1

j|ds, fort > 0.

-1

Apparently V() >0 forr > 0.
By calculating the right upper derivative of V (¢) along the solution of (2.1), we have

2 i oy 7
DYV(r) = Zsign(yi - yl*)<y—' - ﬁ) + sign(z — Z*)<Z - —)

i=1 ! i z¥
ae T * *
+ 5 (O =3 O]+ [0 -3 0))
ae It
i (= =y =D+ |00 -0 -0 -]

t
: ] (t—1) Y@-1)
_ 51gn(y1 — yl){al(t - 1) exp(—t/r ri(s) ds> <y1y1(t)f _ ylyT(t) )

. ) Y
— — D —
Bi(0)(y1 (1) — yi (1) + 1(t)<y1 R0

t
+sign(y2 — y;){"@(t - T)GXP(— / rz(s)ds) (yz(t -1 »- T)>

y2(7) y5(t)

) + R(1)(z() — z*(t))}

-t

« yi®)  yi@
= B2 (02(1) = y5 (1)) + Dz(t)<m - y;(t))}

+sign(z — 2 {—=r3(0) (z(t) — 2* (1)) — 0 @) (1 (1) — y{ (1))}

ae Lt . .
+ o (1O =y O] + [0 - 3 0))
ae Lt . i
—— (=0 =3 =]+ |00 -0 -0 -0

t

<a1(l—f)exp(—/rl(s)dS>A1(t)—ﬂl(t)}yl(l)—yT(t)\+A2(t)

-1

t

+ R(0)|2(t) — 2* ()| + aat — T)eXP<— / ra(s) dS> A3 (1)

-t

— B y2(1) = Y3 (O] 4+ As(t) — r3(D)|2(1) — ()| +0@)|y1(1) — yF ()|
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ae Tt . .
+ o (O =i O]+ [0 -y 0])
ae It . .
— o (nG =0 =57 = D]+ [n6) - 5en)).
where
yi-1) —
‘lyi‘(t)r =4 @ <y,
— — '*([— )
Al(t) YIy(lt(t)T) - }lyik(t)r 5 )’1(1) > yik(t),
0, yi(t) =y} ),
5 (t=1) y2(t—1)
Di)(Frm — B ), n® <y,
Ar(t) = (@ ()
20=1 D) (3 - 355)- n > yio,
0, Y0 =y @),
¥(t—1) _
SO 2 00 <330,
= 0 (F— X (t—T)
A=) 20 2D 0 > 0,

o
Da) (S — ). (0 < ¥3(0),

— 2k (t
AO=1Di(F - 3H5). 20 >0,

0, () = y;(@).
There are the following three cases to consider for the estimate of A1 (¢):

@) if y1(t) > yj(2), then
Vit —1) =yt —1) o Iyt —7) —yjt — 1)
yi@) b yi@) ’

A(t) <

(i) if yi () < y{(?), then

AL < i —r)*— yi(t —1) < [y} (t—r)*— yl(l‘—‘[)l;
i@ O

(iii) if y;(r) =y}, then
Iyi(t —7) =y (t — 1)

A1) =0
1) = yi®)

From (i)—(iii), we have

[y{t—1)=y1(t — 1) _ [t —1) = y1(t — 1)
yi@® 2 '

Using the same estimate as that for A3(¢), we have

[y3(t —7) = y2(t — 7)) _ ly3(t — 1) — y2t — 7)|
¥5 () 2 '

A1(t) <

A3(t) <
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There are three cases to consider for the estimate of A;(f):

(@) if y1(r) < yj (), then
ly5 (@) — y2 ()|

’

< Di(t)

¥5 (1) yz(t)) Y3 () — y2(1)
A DI 2= - 2= ) =D ()2
2(t) = l(t)< 1(t) yf(t) y]"(t)

Y@ o yr@
(b) if y1(t) > y}(t), then

y2(t) — y5 () - D)
yi@) yi@)

y2() = (0

3

Ax(t) < Di(1)

(c) if y1(r) = y](t), then

Ay(t) =0 < Dl(t)M.

i
Hence
A1) < Dy () |)’2(t)*—y2(t)| - D—llyz(t) —y2(1)|.
Y1 (t) eP1
Therefore
DTV 0 52 e It . . )
O="\&=0- er e 10 = y7 (O] = (r3 = R)[z(t) = 2" (1)
Dy  @e 't
‘(ﬁf;’r“ﬁm >\yZ(f>—y§(t>, t>0. 3.1

It follows from conditions (H'2)—(H'4) in Theorem 3.1 that there exists a constant a® > 0 such
that

2
DTV() < _a*(Zb’i(t) —yf®| + |z() - z*(t)|>, 1>0. (3.2)

i=1
Integrating on both sides of inequality (3.2) leads to
)
V() +a* / <Z|yi(s) —yF©)| + |z(s) — z*(s)|> ds < V() <400, t>0,
n \i=l

which implies that
2

D (3@ = yF 0] +[z) = 2*@)]) € L0, +00)

i=1
and

2

Z(|1ny,~(t) —Iny/(®)|) + [Inz(t) —Inz*)| < V() < V(0) < 400, 1>0. (3.3)

i=1
From the boundedness of y’(¢) (i =1,2) and z7(¢) and inequality (3.3), it follows that y;(¢)
(i =1,2) and z(¢) are bounded for ¢ > 0. From the boundedness of y;(t) (i =1,2), z(t) and
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system (2.1), it follows that y; (f) — y*(t) (i =1,2), z(¢) — 2*(¢) and (y;(t) — y; (), (z(t) —
z*(t))’ remain bounded on [0, +00). Hence Ziz:l (lyi (1) = yF ()| + 1z(t) — 2*(1)]) is uniformly
continuous. By Lemma 3.1, it follows that

t—+00

2
lim <Z|y,~(r) — i | +]z2(0) - z*(t)|> =0.
i=l1

Therefore

Jim (i) =y} @) =0 (=12
and

lim |z(1) — 2*(t)| =0.

=00

This implies that system (2.1) has a positive w-periodic solution which attracts all positive solu-
tions of system (2.1). The proof is completed. O

Theorem 3.2. In addition to the conditions in Theorem 2.2, we assume that system (1.1) satis-
fies (H'2)—(H'4). Then system (1.1) has a unique positive w-periodic solution which attracts all
positive solutions of system (1.1).

Proof. By Theorem 2.2, system (1.1) has at least one positive w-periodic solution, say,
(7 (@), yy (@), 25 (1), x5 (1), y;‘(t))T. Let (x1(t), y1(t), z(t), x2(t), y2(t))T be a positive solution
of system (1.1). Then from the proof of Theorem 3.1, we have

i ; —_ * = | — 1 —7* =
tilgrnoo|y,(t) yim| =0, i=1.2, tllgrnoo(z(t) Z5(1)) =0.

New we will prove lim; 40 |X; (1) — x7(t)| =0, i = 1, 2. Since

t 0 s
xi(t)=exp<—/r,-(s)ds> |:x,-(0) —/oti(s)yi(s)exp</ri(0)d9) ds]
0 -7 0

T t—u
+/a,-(t—u)y,-(t—u)exp(/r,~(9)d9> du, i=1,2,
0 '

t 0 K
xf(t):exp(—/rﬂs)ds) |:xf(0)—fot,-(s)yf(s)exp(/ri(é?)de) ds:|
0 -7 0

T r—u
+/ai(t—u)y;*(t—u)exp<fri(G)d9> du, i=1,2,
0 t

then
t

xi (1) = x7 (1) = (x;(0) —xi*(()))exp(—/n(S)dS)

0
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t 0 s
— exp —/rl-(s)ds /ai(s)(y,-(s) —yi*(s)) exp /rl-(e)dQ ds
0 -7 0
T t—u
+/ot,~(t—u)(yi(t—u)—y;“(t—u))exp /r,»(e)de du
0 t
= F@+g0).

Since

f(0) < (xi(0) — x7(0))e™" - 0, ast— +oo,

0 T
g(r) el /oTi|yi(s>—y;‘(s)|ds +oTif|yi<r—u>—y,f“(r—u)!e*’—ffdu»o,
-7 0

ast — 400,

thus x; () — xl?“ (t) = 0, as t = +o00. This completes the proof of Theorem 3.2. O
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