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For all pairs of positive integers N, v  with u .< v  we define L(u, v) to be the 
number of steps required in applying the Euclidean algorithm to the pair U, v. 
Then given any E > 0 there exists c0 > 0 such that 

1 L(lC, v) - (12~~2 log 2) log ” 1 < (log vp+s 

for all except at most x2expj-eO(log x)@{ of the pairs II, v  with I Z: II :- 
V’: x. 

1. INTR~OUCTI~N 

Given any two integers u and v with 1 < u < v, the usual Euclidean 
algorithm for computing the greatest common divisor will give a series of 
equations 

r. = v, r1 = ZI and rmvl = qnlrnl + r,,, (WI = 1, 2 )... ), (1.1) 

where the qi are positive integers and the ri are integers such that 
r. 2 r1 > ..’ > r,,, = 0. The greatest common divisor is r, and we shall 
denote the number n of steps in applying the algorithm by L(u, v). 

Trivially L(u, v) > 1 and L(u, U) = 1 exactly when u 1 v. It is also easy 
to see that we get the largest possible value for L(u, v) with respect to the 
sizes of u and v when r, = 1 and each qi in (1.1) is 1. Then the equations 
(1.1) define u and v, respectively, as the n-th and (n + 1)st Fibonacci 
numbers. As is well known, in this case, 

v= 
$A+1 + (- I)” a-“-1 

ily + cl-1 

where (Y > 1 satisfies 01~ = LX + 1. Since 01 + 01-l = 51/2, u is the closest 
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integer to 5-1/201n+1. Thus we conclude that if we are given x, then for all 
pairs u, v with 1 < u < v < x we have 

Jqu, v) < (log x + l)/log cy. = (2.07...)(log x + 1). U.2) 

Moreover, this bound is asymptotic to the least upper bound for all 
L(u, v) with 1 < u < v < x. 

The object of this paper is to prove the following theorem. 

THEOREM. For all positive E there exists c,, > 0 such that 

] L(u, v) - (12C2 log 2) log v I < (log v)ll2-l-c 1 
for all except at most x2 exp{-cc,(log x)~/~} of the pairs of integers u, v 
with 1 ,< u < v < x. 

Note. 127~~ log 2 = 0.84276.... We shall denote the reciprocal of this 
constant by h. 

Remarks. Heilbronn recently showed in [I] that for each integer u 

&I-’ c L(u, L’) = (127.~’ log 2) log D + O(log log 0)” 

where the sum is over all positive integers u < v which are relatively prime 
to u and cp(u) is the Euler function. Heilbronn’s methods are quite different 
from ours and he states his result in terms of continued fractions. There 
are very close links between our problem and certain problems in the 
theory of continued fractions (see Section 2); in this connection the con- 
stant h is already familiar from work of Levy [2, Section 791. Indeed the 
proof of our theorem involves an application of results due to Philipp in 
the metric theory of continued fractions (although Philipp presents his 
results in a more general context). The work of this paper arose from a 
question put to me by D. Knuth in 1963. At that time Knuth obtained 
a great deal of computational evidence for a theorem like the one proved 
in this paper, and has since published an analysis of his results in [5, 
pp. 3 16-3381. 

I should like to acknowledge the helpful criticisms made by W. Philipp 
of an earlier version of this paper. At his suggestion I have used a number 
of his results to simplify this paper and to strengthen the main theorem. 

Notation. In dealing with continued fractions our notation will follow 
closely that of Khinchin’s book [6]. In particular, [a, , a, ,...I denotes the 
continued fraction 
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where a, , a2 ,... are positive integers (this is different from [l]). The letter c 
(with appropriate indices) will always denote a positive constant. The 
letter 8 always denotes a real quantity of absolute value < 1; it may take 
different values at different places. Finally (0. I>, denotes the open interval 
from 0 to 1, and p,S denotes the (Lebesgue) measure of a subset S of (0,l). 

2. THE RELATION WITH CONTINUED FRACTIONS 

We first review some elementary results on continued fractions (see 
[6; Chap. 11). Let 0 < 01 d 1. Then 01 may be expanded as a continued 
fraction [a, , a2 ,...I with positive integers a, , a2 ,...; this expansion is 
unique if we make a suitable convention in the rational case. The m-th 
convergent of this continued fraction is P,,JQm where 

P, = 0, PI = 1 and P, = amPm-r + P,-% (m = 2, 3,...) 

(2-l) 
Q,=l, Q,=a, and Pm = GQ,,+~ + Qm-2 (m = 2,3,...) 

and PJQ,,, --f 01 as m - co. The continued fraction is finite (that is, 
a, # 0 but a, = 0 for all m > n) if and only if 01 is rational, and in this 
case P,/Qn = 01. There is an obvious relation between the equations (2.1) 
and (1.1); indeed with the notation of (1.1) we have u/v = [ql ,..., q,J. In 
particular, when the greatest common divisor of u and u is 1, then r, = 1 
and u and v are precisely the numbers P, and Q, computed from (2.1) 
with a, = q,(m = l,..., n). 

If 01 = [a, , a, ,...I, then we define the m-th complete quotient Z~(CX) to be 
equal to [am,1 , a,+, ,...I if a,+, # 0 and otherwise Z,(E) = 0. Note that 
0 < z,(a) < 1 and that 

%(a) = 01 and z,-,(a) = l/(a, + ~~(a)) if m 3 1 and a, # 0. (2.2) 

We now have three elementary theorems on continued fractions. The 
first follows readily from (2.2). 

LEMMA 1. Let u and v be relatively prime integers with 1 < u < v. 
Then 

n-1 

The proof of the next result may be found in [6, Section 121. 
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LEMMA 2. Let a, ,..., a, be n positive integers. Let J be the set of all 
e E (0, l} such that the first n terms in the continued fraction expansion of 
5 are a, ,..., a, . If P,,, and Qrn are defined by (2. l), then J is an interval with 
end points P,,/Qpa and (Pn + P&/(Qn + Qnpl) and of length 

PJ = tQn<Qn + Qn-W. 

Note that because Qn 3 Q,+, , &Q;” < pJ < Q;“. 

LEMMA 3. Let J be defined as in Lemma 2, and let 4,f’ E J. Then for 
each m < n we have 

and 

1 z,(g) - z&g’)1 < 2-(fl-7+1) (2.3) 

j log z,(g) - log z,(.$)l < 2-+(n-m-I). (2.4) 

Proqfi From the definition of z,,, it is enough to consider the case 
m = 0; then zO(g) = 4 and z,,(g’) = 5’. 

To prove (2.3) we note that, in the notation of Lemma 
/ 6 - g’ I < {Qn(Qn + QnJ}-‘. Since an easy induction (see 
Section 41) shows that Qn > 2+(n-1), I g - 5’ / < 2+-l) as required. 

To prove (2.4) we note that Lemma 2 shows that g/e lies between 

Pn(Qn + Qn-1) and QnU’n + Pn-I) 
Qn(P, + f’n-1) P,(Qn + Qn-1) * 

(2.5) 

Since we always have I PnQndI - QnPneI I = I (see [6; Section 2]), the 
ratios in (2.5) differ from 1 by {Q,(P, + P&}-l and {Pn(Qn + en&}-l, 
respectively. Hence as in the first part of the proof 

1 1 - g/g’ I < Q;’ < 2-+‘). 

Since we may suppose 8 3 c, we have 

0 < log g - log g’ ,< log{1 + 2-+19 < 2-i(“-1). 

This completes the proof. 
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3. THE PRINCIPAL LEMMA 

The following inequality lies at the heart of the proof of our Theorem. 

LEMMA 4. For ail positive integers n and k we have 

(log QIE - nX + 48)2/,- 

Q7L2 log z,(E) + nAi2’ dc (3.1) 
al....,a, 

where the sum on the left is over all n-tuples of positive integers a, ,..., a,, , 
and Q,, is defined in terms of the ai by (2.1). 

Remark. We are using 0 as a generic symbol to represent quantities of 
absolute value < 1 and the value of 8 will differ from term to term in the 
sum. We shall apply (3.1) in the case where h has the value defined in the 
Theorem; however the inequality (3.1) is valid for arbitrary values of A. 

Proof. Let J be defined as in Lemma 2. Then when P, and Q,, are 
defined by (2.1) we have 5’ = P,/Qn E J. Thus for any [ E J, Lemmas 1 
and 3 show that 

Hence 

= 
1 

{log Qn - n/I + 40}2” df 
J 

= {log Qn - nX + 40}“” /AI > &Q;2{log Qn - nh + 40}2” 

by Lemma 2. 
Since the interval (0, 1) is a disjoint union of all intervals J as a, ,..., a, 

run through the set of all n-tuples of positive integers, we obtain (3.1) by 
summing the last inequality over all such n-tuples. This proves Lemma 4. 

Our next step is to estimate the right side of (3.1), and we proceed as 
follows. For each integrable g we define 

d5 
E(g) = s: g(E) (1 + 5) log 2 * 
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Let J, denote the set of all t E (0, 1) such that [l/f = m (m = 1,2,...). 
Then for each integrable g 

E(g"zl)= E j d5 
m=l Jm g(zlm (1 + 5) log 2 

= mzl 1: g(d (m + q)(m ?q + 1) log 2 

i 
1 

= 4 

0 
g(rl) (1 + ?l) log 2 = E(g)- 

Then by induction we get the (known) result 

for h = 0, l,.... (3.2) 

The constant h now enters the picture. Direct calculation shows 

E(log 6) = --h, (3.3) 

and so. if we put f(t) = log f + h and yI1 =fo z&r = 0, l,...), then 

E(Y~ = 0 for h = 0, l,.... (3.4) 

The calculations of [4, p. 841 now show that the following result holds: 
There is an absolute constant c1 > 0 such that for all integers 

1 <j<r;O<i,< ... < i, ; and k, ,..., k, > 0 we have 

(3.5) 

(In Philipp’s notation we are considering the transformation T of type C 
defined by T.$ = ~~(5). It follows from our (2.4) that his condition (15) is 
satisfied with Co = 1 and 6 = i; his inequality (20) then gives our (3.5) 
where S = 1 because T is of type C.) 

Finally [3, Hilfssatz I.31 gives the estimate we require. 
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LEMMA 5. (Philipp). There exists c2 > 0 such that, if‘ k and n are 
positive integers with 4(k + 1) < c,l/n/log n, then 

(In Philipp’s notation we have L(2k) = 1 and c(s) = exp{ -cidF> from 
our (3.5), and we are taking xh = yh . His conditions (1.1) and (1.2) are 
guaranteed by our (3.4) and (3.9, respectively.) 

4. THE PROOF OF THE THEOREM 

Let n be a positive integer and x be real and > 0. We define L,(x) as 
the’ number of pairs U, u of integers with 1 < u < u < x such that 
L(u, u) = n. We also define L,*(x) as the corresponding number of pairs 
with the additional condition that u and u are relatively prime. Note that 

because, if u and v have greatest common divisor d, then 

L(u, u) = L(u/d, u/d). 

Our final lemma estimates L,(x). 

LEMMA 6. For each positive E < 1 there exists c3 > 0 such that for all 
suficiently large x 

L,(x) < x2 exp{ -c,(log xy12} (4.2) 

whenever IE satisfies 

I An - log x I > (log X)1/2+(. (4.3) 

Remark. If we classify the pairs u, v counted in L,,(x) according to 
the value of k = [v/u], it is clear that L,(x) < C I&x/k) summed over 
k < x. Thus induction on n shows that L,(x) d x(log x + 1)“. In par- 
ticular, if n < log x/2 log log x, then (4.2) always holds for sufficiently 
large x. Thus in the proof that follows we shall assume that n > log x/2 
log log x. 
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Proof. First consider L,*(x). As we saw in $2, L,*(x) is precisely the 
number of n-tuples a, ,..., a, of positive integers such that Qn defined in 
(2.1) is < x. Now (log 6 - nX + 40)2k [-” decreases as 5 increases except 
when 0 < log .$ - nh + 48 < k. Hence, if I log x - nh 1 > k + 4, then 

(log Qn - nh + 4tQ2” 
Qla2 ’ 

So, by Lemmas 4 and 5, 

J%*(X) < ( ,  log x -x;h ,  -4)2k (wk3” 

whenever k < c,l/n/8 log n. 
Now suppose that 1 An - log x j > %(log x)I/~+~ and put 

k = [&1’4(log x)“~]. 

Since E < 1, k < c,dn/8 log n for all large x and so the last inequality for 
L,*(x) shows that for some c, > 0 

L,*(x) < x2 I 
Sn(log x)26 k 

16(log x)1+2e I 
< t x2 exp{ -2c,(log x)‘j2} (4.4) 

for all sufficiently large x, whenever I An - log x I b &(log x)~/~+~. 
We now consider L,(x). Put d, = [exp(c,(log xyf2)]. For all large x, 

d, < fi and (4.3) implies ] hn - log(x/d)] 3 +{10g(x/d)}1/2+f for d < d, 
Therefore if we divide the sum (4.1) into two parts - d < d, and d > d,- 
and apply (4.4) we obtain 

L(x) = (C’ + C’j L*CW) 

< ix2 exp(- c,(log x)~‘“> C’ d-2 + ix2 c” d-a 

< x2 exp{ -cc,(log x)‘/~} 

for all sufficiently large x whenever (4.3) holds. This proves the Lemma. 
Finally, we complete the proof of the Theorem. By (1.2) it is enough to 

consider the case E < 1. We must estimate the number of pairs U, u with 
1 < u < v < x which fail to satisfy 

1 XL(u, u) - log x I < h (log u)1’2+r. (4.5) 
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If x is large then such a pair satisfies at least one of the conditions: 

(i) v < x exp{-$(log x)‘/~}; 

(ii) x exp{--i (log x)lp) < u ;;; x and 

1 hL(u, u) - log X / 3 (log x)1/2+<, 

since h > 1. But the number of pairs satisfying (i) is < x2 exp{ -(log x)li2}. 
On the other hand, the number of pairs satisfying (ii) is < C L,(x) summed 
over all n satisfying (4.3); by Lemma 6 and (1.2) this number is 

< (3 log x) xe exp{ -c3(log x)C’~} 

for all large x. Hence there exists q, > 0 such that for all x the total 
number of exceptions to (4.5) is at most x2 exp{ -c,,(log x)““}. This proves 
the Theorem. 

Note. Professor Philipp has indicated that a closer analysis shows 
that we may improve the exponent of log x in our final estimate from 
E/2 to E. 
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