Editor,

Vavken and Samartzis1 are to be congratulated for evaluating trial quality much more rigorously than most other reviewers do. They did not, for example, take the easy way out and use the Jadad score, and they did recognize, and correctly report on, the bias arising out of alternating allocation, unmasking, and offering patients a choice to cross over. There does remain, however, one apparent inconsistency. Specifically, it is stated that randomization is appropriate if it is computer-generated and uses opaque envelopes or an independent referee, but inappropriate if alternation is used, or if it is based on the date, or predictable. The problem is that predictable methods are not at all inconsistent with computer-generated sequences and opaque envelopes, so the two definitions overlap, and are not mutually exclusive. What, for example, are we to make of computer-generated permuted blocks with fixed block size two, given the lack of masking in these trials? Clearly, such a design would qualify as “appropriate” given the definition, yet it is in no way truly appropriate, because the second allocation in each block is predictable; this represents half the allocations in the trial. In such a case, there can be no allocation concealment2,3. In fact, this very problem remains even with larger block sizes, and even with varying block sizes. Given the threat of unmasking, permuted blocks simply are not an appropriate randomization technique, no matter the block size(s). Given this, we need a new definition of what it means for randomization to be appropriate. One could do far worse than the definition given in4, based on the extent to which allocations are predictable.

Conflict of interest
I am the only author. I did everything. No other contributors. No funding source, other than that I am an employee of the US government. No conflicts of interest.

References

V.W. Berger
Biometry Research Group, National Cancer Institute, Executive Plaza North, Suite 3131, 6130 Executive Boulevard, MSC 7354, Bethesda, MD 20892–7354, United States

Address correspondence and reprint requests to: Vance W. Berger, Biometry Research Group, National Cancer Institute, Executive Plaza North, Suite 3131, 6130 Executive Boulevard, MSC 7354, Bethesda, MD 20892–7354, United States.
Tel: 1-301-435-5303; Fax: 1-301-402-0816.
E-mail address: vb78c@nih.gov