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Molecular dynamics simulations of a dioleoylphosphocholine (DOPC) lipid bilayer were performed to explore
its mechanosensitivity. Variations in the bilayer properties, such as area per lipid, volume, thickness, hydra-
tion depth (HD), hydration thickness (HT), lateral diffusion coefficient, and changes in lipid structural order
were computed in the membrane tension range 0 to 15 dyn/cm. We determined that an increase in mem-
brane tension results in a decrease in the bilayer thickness and HD of ~5% and ~5.7% respectively, whereas
area per lipid, volume, and HT/HD increased by 6.8%, 2.4%, and 5% respectively. The changes in lipid confor-
mation and orientation were characterized using orientational (S2) and deuterium (SCD) order parameters.
Upon increase of membrane tension both order parameters indicated an increase in lipid disorder by 10–
20%, mostly in the tail end region of the hydrophobic chains. The effect of membrane tension on lipid lateral
diffusion in the DOPC bilayer was analyzed on three different time scales corresponding to inertial motion,
anomalous diffusion and normal diffusion. The results showed that lateral diffusion of lipid molecules is
anomalous in nature due to the non-exponential distribution of waiting times. The anomalous and normal dif-
fusion coefficients increased by 20% and 52% when the membrane tension changed from 0 to 15 dyn/cm,
respectively. In conclusion, our studies showed that membrane tension causes relatively significant changes
in the area per lipid, volume, polarity, membrane thickness, and fluidity of the membrane suggesting multiple
mechanisms by which mechanical perturbation of the membrane could trigger mechanosensitive response in
cells.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Cells sense their physical environment through mechanochemical
signal transduction. The exact molecular mechanisms by which me-
chanical forces and deformations are transformed into biochemical
signals are still to be determined. It is expected thatmechanical pertur-
bation of the lipid membrane can lead to changes in its static and dy-
namic physical properties. These changes in the lipid membrane may
trigger changes in the conformation and function of the membrane
proteins. It is known that even a small variation in the composition
of the cell membrane can strongly influence the activity of membrane
proteins [1–3]. An increasing number of G protein-coupled receptors
(GPCR) such as the bradykinin B2 receptor [4], parathyroid hormone
osphocholine; HD, hydration
isplacement; COM, center of
r dynamics; ns, nanosecond
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type 1 receptor [5], angiotensin II type 1 receptor [6,7] and formyl pep-
tide receptor [8] have been shown to respond to mechanical pertur-
bation of a cell membrane in a ligand-independent manner; such
response is consistent with a well established sensitivity of GPCRs to
lipid matrix structure [9]. Many other studies have shown that mecha-
nochemical signal conversion originates at the cell membrane [10–12].
These studies and thewell established role of lipid–protein interactions
in regulating the function of membrane proteins [3,13–15] suggest
that the lipid bilayer membrane plays, a major role in mediating
mechanosensing.

The lipid bilayer properties such asmembrane thickness [16,17], po-
larity [18], structural order [19–21] and fluidity [22,23] have been
shown to be affected by the mechanical perturbation. Other dynamic
properties such as hydration of the hydrophilic head groups of lipid
molecules and their rate of diffusion could also play a critical role in
the structure and function of lipid bilayers [24,25]. Considering the
high sensitivity of proteins and especially integral membrane proteins
to their environment, it is quite reasonable to expect functionally signif-
icant conformational changes in themembrane protein in response to a
change in hydration of the lipid bilayer. Recently we have used a mem-
brane environment-sensitive probe, Laurdan, to assess hydration
changes in the lipid bilayer of small and large unilamellar vesicles

https://core.ac.uk/display/82309016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbamem.2012.05.006
mailto:mirianas@ljbi.org
http://dx.doi.org/10.1016/j.bbamem.2012.05.006
http://www.sciencedirect.com/science/journal/00052736


2272 A.S. Reddy et al. / Biochimica et Biophysica Acta 1818 (2012) 2271–2281
(SUVs and LUVs) under mechanical tension induced by osmotic gradi-
ent. Our data on Laurdan solvation in liposomes suggested that me-
chanical membrane tension leads to significant changes in polarity
(i.e. level of hydration) of the lipid bilayer membrane [18]; studies by
other groups showed that Laurdan emission is extremely sensitive to
the composition, phase state (gel or liquid-crystalline) and hydration
of the lipid bilayer membrane [26–29].

Dipole potential (for review see [30]) is another property of lipid bi-
layer membrane that is essentially determined by the lipid structure of
the bilayer [31] and thereforemay be involved in regulation ofG protein
coupled receptors due to their voltage sensitivity [32]. In a recent study
[33], we have used molecular dynamics (MD) simulations and experi-
ments with dipole potential sensitive fluorescent probes to show that
the dipole potential of the DOPC bilayer decreases in the physiologically
relevant range of membrane tension values (0 to 15 dyn/cm). These re-
sults suggested a potentially new mechanosensing mechanism by
which mechanically induced structural changes in the lipid bilayer
membrane couldmodulate the function ofmembrane proteins by alter-
ing electrostatic interactions and energetics of protein conformational
states [33].

During the last decade MD simulations have emerged as a practical
tool to study the structure and dynamics of the lipid and lipid interac-
tions with membrane proteins [34–36]. These simulations can provide
affluent details about the hydration, fluidity, diffusivity and structural
order of the lipid bilayer. There has been quite a number of atomistic
and coarse grained MD studies focused at the characterization of lipid
bilayers composed of various kinds of lipid chains (saturated, unsaturat-
ed, and polyunsaturated chains) [19,33,37], cholesterol [38] and mem-
brane proteins [36]. However, theoretical studies dedicated towards
understanding the influence of mechanical forces on the lipid bilayer
structure and physical properties are scarce [21], especially for the
DOPC lipid. In this study, we have used MD simulations to determine
the effect of membrane tension on following physical properties of
the DOPC lipid bilayer: polarity, fluidity, thickness, diffusivity and struc-
tural order of lipid molecules. Computational data were analyzed in
terms of a few well defined parameters, such as lipid bilayer thickness,
area per lipid, volume, hydration depth, hydration thickness, structural
order parameters and diffusion coefficients.
Fig. 1. The structure of DOPC lipid molecule and a snapshot of t
2. Materials and methods

An initial structure of a model bilayer system comprised of 128
DOPC lipids and 5763 water molecules (total 34,953 atoms) was
obtained from CHARMM-GUI [39] (Fig. 1). MD simulations were
performed using NAMD (version 2.8b1) [40] at different membrane
tension values (γ=0, 1, 2, 3, 4, 6, 8, 10, and 15 dyne/cm) at 310 K.
We have used a flexible periodic simulation cell which allows fluctu-
ations of cell boundaries in all dimensions. The ratio of the x and y di-
mensions of the cell were fixed to keep the shape constant in the x–y
plane (perpendicular to the bilayer normal). Simulations were per-
formed on the NPzγT ensemble using the Nosé–Hoover–Langevin pis-
ton method [41,42] in order to keep the pressure normal to bilayer
(Pz) at 1 atm and the surface tension constant at the values studied.
The Lennard–Jones (LJ) potential was switched and truncated from 10
to 12 Å. The particle mesh Ewald (PME) [43] method was employed
for the calculation of long range electrostatic interactions. The contribu-
tion of LJ and PME to the energy and forces were updated at every time
step. The temperature was held constant using the Langevin dynamics
method with a 1 ps−1 coupling constant. A timestep of 2 fs was used
and the coordinates were saved at every 1 ps.

We have used recently developed CHARMM36 force field parame-
ters; CHARMM36 is an additive, all-atom model which fixes flaws in
CHARMM27 and CHARMM27r resulting in greater accuracy [37];
e.g. earlier force field parameters do not reproduce the experimental
SCD, whereas CHARMM36 yields more accurate values of SCD [37].
Simulations were performed on the Teragrid supercomputer (Rang-
er) using 256 cores and locally on a 48 core Linux cluster based on
Xeon 5500 processors. Each simulation was run for 200 ns. The first
10 ns of each run were intended for equilibration only andwere omit-
ted from subsequent analysis. The degree of equilibration of the bilay-
er was determined by monitoring the value of the area per one lipid
molecule. We have used a TIP3P water model [44].

All the properties derived from quantitative analysis of hydration,
fluidity, and lateral diffusion properties of the DOPC lipid bilayer are
reported as averaged over time. For the lateral diffusion values, the
standard errors were computed from the data of individual lipid mole-
cules. It should be noted that NPzAT ensemble (with fixed membrane
he bilayer model used comprising of 128 DOPC molecules.



Fig. 2. Time-averaged bilayer thickness as a function of membrane tension.
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area (A) and constant normal pressure) could also be used instead of
NPzγT ensemble to perform similar studies [45]. However to employ
NPzAT ensemble, one would have to know the exact surface area
corresponding to the desiredmembrane tensionwhereas theNPzγT en-
semble directly provides the desired membrane tension.

3. Results

3.1. Lipid bilayer thickness

The average bilayer thickness calculated as the average distance
between phosphate groups of the two bilayer leaflets showed a linear
decrease with increasing membrane tension (Fig. 2). The bilayer
thickness decreased by 4.97% to 36.6 Å when membrane tension
increased to 15 dyn/cm (Fig. 2). In the MD simulations, the values of
bilayer thickness and area per lipids are typically used for validation
of lipid bilayer simulations. The thickness value obtained from the
simulations at zero membrane tension was 38.5 Å which is in good
agreement with the previously reported experimental value of 38 Å
[46]. The bilayer thickness exhibited fluctuations with a standard de-
viation of ~0.25 Å.

3.2. Area per lipid and volume

Fig. 3 shows that both area per lipid and volume of the bilayer in-
creased with increasing membrane tension indicating loosening of
packing of the lipid molecules in the bilayer. Average area per lipid
calculated at zero membrane tension (68.8 Å2/lipid) was in good
agreement with the experimentally reported value (67.4±1.0 Å2/
lipid) [47] as well as the value reported by other simulations per-
formed under similar conditions (69.0 Å2/lipid) [37]. The area per
lipid increased from 68.8 Å2 to 73.5 Å2 (total increase of 6.8%) when
Fig. 3. Time-averaged area per lipid and bilayer volume as a function of membrane
tension.
the membrane tension increased from 0 to 15 dyn/cm yielding the
area expansion modulus (KA) of 241.3±24 dyn/cm; this theoretical
value of KA agrees well with the experimental value of 265±
12 dyn/cm reported earlier for the DOPC bilayer [48]. The standard
deviation of fluctuations in the value of area per lipid was ~1.4 Å2/
lipid.

The volume of the bilayer also increased by 2.4% which is consis-
tent with high volumetric compressibility moduli of the lipid bilayers
[16].

3.3. Hydration depth (HD) and hydration thickness (HT)

We calculated HD and HT to study the effects of membrane tension
on polarity and hydration. Both parameters were obtained from the
time-averaged mass density profiles. Fig. 4 shows the time-averaged
mass density profiles of the lipid, water and phosphate molecules. The
HD was defined as the distance between 50% bulk water and bilayer
center in the direction of the bilayer normal. The HT was defined as
the distance between 90% and 10% bulk water. When the membrane
tension was varied from 0 to 15 dyn/cm, the HD was observed to de-
crease linearly with increasing membrane tension (Fig. 5A), whereas
the thickness of the water layer (HT) stayed nearly constant except
for the simulation with the largest applied membrane tension
(15 dyn/cm) (Fig. 5A). The HD decreased by 5.7% (from 19.8 Å to
18.7 Å)whereasHT valuesfluctuated between 11.3 Å to 11.1 Å. Howev-
er, the ratio HT/HD (effective hydration level) increased by ~5% with
the increased membrane tension as shown in Fig. 5B,

3.4. Microscopic fluidity and order parameters

Experimental studies suggest that the fluidity of the lipid bilayer
membrane increases with increasing membrane tension [22,45,49,50].
Fluidity of lipid membranes could be related to lipid parameters such
as order parameters, diffusion coefficient and packing density. In the
present study, we computed two order parameters, S2 [51] and SCD
[52], to assess the changes inmicroscopic fluidity of the bilayer with in-
creasing applied membrane tension.

3.4.1. Orientational order parameter
To characterize the angular motion of the lipid molecules, orienta-

tional order parameter, S2 [51] was calculated as:

S2 ¼ 4π
5

X2
m¼−2

〈Y�
2m Ωð Þ〉〈Y2m Ωð Þ〉; ð1Þ

where Y2m(Ω) is the second-order spherical harmonics and Ω=(θ,φ)
defines the direction of the vectors for three regions of the lipid mol-
ecule, namely the head (near middle (beta) carbon of glycerol: Cβ),
Fig. 4. Time averaged mass density profiles of the DOPC groups relative to bulk water at
0 dyn/cm membrane tension. Density for the water, lipid, phosphate and ester oxygen
are shown in cyan, gray, orange, and red respectively. The total time-average mass den-
sity is shown in magenta.
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Fig. 5. (A) Variation in the HD and HT values with the increasing membrane tension.
(B) Variation in the HT/HD ratio as a function of membrane tension.
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tail near double bond (C9–C10) and tail-end (near C18) of the sn-2
chain (see Fig. 6A). ‘θ’ is the angle made by the vector passing through
(a) Cβ,N atoms for the head group, (b) C5 and C8 atoms for the alkyl
tail, and (c) C15,C18 for the tail-end of the lipid molecule to bilayer
normal (z-axis). S2 is a general measure of the angular motion of
the corresponding inter-nuclear vector. 1−S2 is directly proportional
to the sum of the secondmoments of the spatial part of the dipolar in-
teraction, revealing an analogy to crystallographic temperature fac-
tors. S2 ranges between 0 and 1; it is equal to 1 in the absence of
angular mobility and decreases with increasing disorder.

As shown in Fig. 6B, the variation in θ is insignificant with the mem-
brane tension in the lipid head group region, whereas it increases mod-
erately at the tail region suggesting tilting of lipid alkyl tails at larger
membrane tension values. Fig. 6C shows that S2 was highest at the tail
region of the aliphatic chain near the double bond and lowest at the
tail-end. The S2 values at the tail-end region are approximately 50%
lower than in the tail region near the double bond. This is expected as
a double bond that rigidifies the regions surrounding it [53]. S2 values
decreased by ~18% with an increase in the membrane tension (from
0 to 15 dyn/cm) for the tail-end region, suggesting that the region be-
comesmore disorderedwith increasingmembrane tension, thus imply-
ing an increase in fluidity in the interior of the bilayer. The variations in
S2 values at the tail near double bond and head group regions were
insignificant.

3.4.2. Deuterium order parameter
The deuterium order parameter [52] is defined as

SCD ¼ 3
2
cos2θCD−

1
2

� �
¼ P2 cosθCDÞð i;h ð2Þ

where θCD is the angle between each C―H bond and the bilayer nor-
mal (z-axis). The angular braces denote the ensemble average over
time and number of DOPC molecules. The SCD can vary from 0 to
0.5, where it is equal to 0.5 at high ordering and 0 at low ordering.

Fig. 6D shows the dependence of SCD values at the different loca-
tions along the aliphatic chain on the applied membrane tension. In
the lipid head group region SCD values are maximal, at ~0.18. SCD
sharply decreases to ~0.05 in the tail region near the double bond
(carbon atoms 9–10) and approaches 0 at the tail-end region, indicat-
ing highest disorder in the interior of the bilayer. Similar SCD profiles
have been observed experimentally using NMR studies [54] and in
earlier MD studies [55] further validating our simulations. With the
rise in membrane tension from 0 to 15 dyn/cm, SCD decreased by
12%–13% in the head region and by 18%–20% in the tail and tail-end
regions. This is primarily due to an increase in area per lipid, which al-
lows for the spreading of acyl chains, consistent with what has been
reported previously for other PC bilayers [21,37,45,56].

3.5. Lipid diffusion

The time-averaged diffusion coefficients were calculated for each
of the 128 DOPC lipids. The lateral diffusion was analyzed in terms
of the mean square displacement (MSD). The coordinates of the
lipid molecules were extracted from the NAMD trajectory and the
center of mass (COM) of each lipid was computed at each time step.
The COM values were corrected for periodic boundary conditions
and the motion of the individual leaflet [57]. The MSD was evaluated
as:

MSD tð Þ ¼ r t þ t0
� �

−r t0
� �� �2D E

; ð3Þ

where r(t) is the COM position of a molecule at time (t).
The angular brackets indicate the ensemble average over all the

lipid molecules and multiple time-origins (t′). Fig. 7A shows the var-
iation of MSD as a function of time of a few representative membrane
tension values. For further analysis we have plotted time-normalized
MSD, br2>/ t as a function of time in Fig. 7B; three distinct time re-
gions can be indentified based on the different slope of the curve.
The first region with a positive slope of the curve is due to inertial
motion (nearly no collisions with neighboring lipid molecules), the
second region with a negative slope is defined as an anomalous diffu-
sion, and a near-zero slope (in the asymptotic limit) in the third re-
gion is attributed to a nearly normal diffusion. Below we will
discuss the effect of membrane tension on the translational motion
of lipids on these three well-separated time scales.

3.5.1. Inertial motion
At a femtosecond time scale a lipid molecule moves without sig-

nificant collisions with neighboring lipid molecules (inertial motion).
Ornstein [58,59] and Furth [60] independently derived the general-
ized equation (applicable to all time scales) for the MSD:

r2
D E

¼ 2dmkBT
f 2

f t
m

−1þ e−
f t
mð Þ

� �
; ð4Þ

where d is dimension of the motion; m is mass; kB is Boltzmann con-
stant; T is temperature; and f is friction constant. In the limit t→0, the
Furth equation simplifies to:

r2
D E

¼ 2dkBT
m

t2
h i

; ð5Þ

which describes purely inertial motion. At larger t values when t»m / f,
the Furth equation yields Einstein's formula for the MSD:

r2
D E

¼ 2dkBT
f

t½ � ¼ 2dDt; ð6Þ

where D=kBT / f is diffusion coefficient.

image of Fig.�5


Fig. 6. (A) Definition of the relevant angles used in calculation of order parameters. (B) The variation in the average angle of the head and the tail of the lipid molecule with the
bilayer normal (z axis) as a function of membrane tension. Change in (C) the orientational order parameter, S2 and (D) the deuterium order parameter, SCD with increasing mem-
brane tension.
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Fig. 8A shows the MSD and the fit using the Furth equation at
0 dyn/cm membrane tension. The dashed line represents the expected
inertial motion when MSD is proportional to t2 and is dependent on
the mass of the lipid molecule. The actual MSD increases slower than
t2 which is due to accumulation of interactions with other liquid mole-
cules as the lipidmoves. The diffusion coefficientwas obtained byfitting
the MSD values from 0 to 50 fs using Eq. (4) to determine the friction
coefficient and the effective lipid mass value. From the obtained friction
values, the diffusion coefficient values were computed as kBT/ f. We
validated this method by calculating diffusion coefficient of bulk
water molecules in our model (3.88×10−5 cm2/s), which was close
to the earlier reported theoretical (4.5×10−5 cm2/s) [61] and experi-
mental (2.4×10−5 cm2/s) values [61].

Interestingly, in the case of the DOPC lipid molecules, the
obtained mass was 43.25% lower than the real mass of the lipid,
which indicates that effectively only a portion of the lipid molecule
is diffusing at such short time scale. The mass obtained for the
0 dyn/cm case was used to get the D values at other membrane ten-
sions (using different mass values did not affect D significantly).
Fig. 8B shows the diffusion coefficient as a function of membrane
tension; these data suggest that the diffusion coefficient on the fem-
tosecond time scale does not significantly depend on membrane
tension.
3.5.2. Anomalous diffusion
In normal diffusion, the MSD of a diffusion particle in two dimen-

sions is given by

r2
D E

¼ 4Dt ð7Þ

where D is the diffusion coefficient. In the case of anomalous diffusion
the MSD is given by

r2
D E

¼ 4DAt
α
: ð8Þ

Where DA is the anomalous diffusion coefficient, and α is scaling
coefficient.

The MSD curves of the DOPC lipid molecules were fitted using
Eq. (8) to obtain the DA and α values for all membrane tension values
studied; Fig. 9A shows the fit for 0 dyn/cm membrane tension. The fit
resulted in scaling coefficient value (α) of 0.736 which was not
changing significantly at other membrane tension values. The plot
showing the DA values for other membrane tensions is presented in
Fig. 9B. It is evident from the plot that increasing the membrane ten-
sion from 0 to 15 dyn/cm leads to a significant increase in DA values
from 1.11×10−6 to 1.33×10−6 cm2/s0.73651.

image of Fig.�6


Fig. 7. (A) Variation of the mean square displacement, br2> with time at various mem-
brane tension values. (B) Time-normalized mean square displacement, br2>/t as a
function of time at zero membrane tension.

Fig. 8. (A) Mean square displacement as a function of time in the case of nearly inertial
motion at 0 dyn/cm; solid line shows a fit using Furth formula (Eq. (4)); dashed line
represents a pure inertial motion. (B) Diffusion coefficients at different membrane ten-
sions obtained by fitting Furth formula to MSD curves on the time scale corresponding
to nearly inertial motion.
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3.5.3. Random walk analysis
To further analyze the anomalous nature of lipid diffusion in the

bilayer, we performed randomwalk analysis of the lipid molecule tra-
jectory as described by Qvist et al. [62]. We computed the running av-
erage position �R nð Þ of the molecular COM from the positions in n
consecutive MD time steps,

R nð Þ ¼ n−1ð ÞR n−1ð Þ þ R nð Þ
n

: ð9Þ

The average of R is updated only if R(n+1) remains within a pre-
scribed distance (Dmax=2.0 Å) from the current average:

R nþ 1ð Þ−R nð Þ�� ��≤Dmax ð10Þ

otherwise, n time frames are identified as a dynamical basin centered
at �R nð Þ and the n is reset to 1 for the next basin.

The distance between the centers of consecutive basins is defined
as jump length, and the time period of the basin formation is defined
as waiting time. We merged the consecutive basins if their centers
were separated by less than a minimum jump length (μ). Larger μ
yields fewer numbers of basins, whereas smaller μ gives a larger num-
ber of basins. The jump length and waiting time distributions for two
values of membrane tension of 0 and 15 dyn/cm are shown in
Fig. 10. The shape of the distributions did not significantly change
with variation in μ value; the distributions shown in Fig. 10 were cal-
culated using μ=2.0 Å. For normal random walk, the distribution of
jump lengths is expected to be Gaussian and the distribution ofwaiting
times is expected to be exponential [62,63]. In the case of basins
obtained for the DOPC lipid diffusion, the waiting time distribution
(Fig. 10B and D) is non-exponential although the jump length
distribution is Gaussian (Fig. 10A and C). The waiting time distribu-
tions could not be fitted to a single exponential equation in the
whole waiting time range; therefore it was fitted separately in the
(i) shorter (0 to 5000 ps), and (ii) longer waiting time (>5000 ps)
range. These results suggests that the lateral diffusion of DOPC lipid
molecules is anomalous in nature due to the non-exponential distri-
bution of waiting times.
3.5.4. Normal diffusion
The diffusion coefficient of the normal diffusion was calculated

using Einstein's relation (Eq. (7)), by a linear fit to the MSD curve.
Long time diffusion coefficient was calculated by fitting the MSD data
on the longer time scale (10 to 180 ns). Short time diffusion coefficient
was calculated by fitting the MSD data on the short time scale (0 to
1 ns).

Fig. 11 shows the dependence of both short and long time diffusion
coefficients on membrane tension. Note that, both short and long time
diffusion coefficient values are increasing with the membrane tension.
The short time diffusion coefficient values varied from 1.64×10−7 to
1.97×10−7 cm2/s (~20% increases) whereas the long time diffusion co-
efficient varied from 6.82×10−8 to 10.42×10−8 cm2/s (~52% increase)
as the applied membrane tension increased from 0 to 15 dyn/cm. As
expected long time diffusion coefficient values are closer to the experi-
mentally determined DOPC diffusion coefficient values which range
from 1×10−7 to 10×10−7 cm2/s [38,64].

Using hydrodynamic theory Saffmann and Delbrück derived an
expression for the diffusion coefficient of a rod-shaped particle em-
bedded in a two-dimensional sheet of a high viscosity fluid (lipid

image of Fig.�7
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Fig. 9. (A) Mean square displacement on the anomalous diffusion time scale at 0 dyn/cm.
The gray curve depicts the fit of Eq. (8) to theMSD; (B) the values of the anomalous diffu-
sion coefficient at different membrane tensions obtained from the fit using Eq. (8).

2277A.S. Reddy et al. / Biochimica et Biophysica Acta 1818 (2012) 2271–2281
bilayer) surrounded on both sides by another fluid of a much lower
viscosity (water) [65]; their derivation assumed that the rod-shaped
particle spans the whole bilayer i.e. the particle length is at least as
large as bilayer thickness, therefore Saffman and Delbruck's equation
is not directly applicable to a lipid molecule which is half-bilayer long.
Hughes et al. [66,67] extended the above theory for the case of a lipid
bilayer (with viscosity η) bounded on opposite sides by fluids of dif-
ferent viscosities (η1, η2) with diffusion coefficient given by:

D ¼ kBT
4πηh ⋅ ln

2
ε
−0:5772þ 4

ε
− ε2

2
ln

2
ε

 !
; ð11Þ

where ε=(a /h)[(η1+η2)/η] is the dimensionless parameter, h is bi-
layer thickness, a is the radius of the particle (in our case DOPC mol-
ecule, ~4.5 Å [68]), η1 is viscosity of water (~0.0076 P at 310 K [69]).
In our case η2 is equal to η since a single lipid molecule is exposed
to water on one side and to the interior of the bilayer on another
side. We have chosen to use the following empirical expression
suggested and tested by Squier et al. [70] (see also Ref. [71]) to link
membrane viscosity η to the orientational order parameter S2

obtained from our MD simulations:

S ¼ c1⋅ log
η
T
þ c2: ð12Þ

The dependence of h (as approximation h /2 was used to account
for the length of a single lipid molecule) and S2 on membrane tension
was assumed to be as in Figs. 2 and 6C, respectively. Eq. (11) was then
fit to the values of long time diffusion coefficient as a function of mem-
brane tension as shown in Fig. 11; the parameters c1=0.083 and
c2=0.607 were obtained from the fit.
4. Discussion

TheMD simulations enabled us to characterize the effects of mem-
brane tension on various physical properties of the DOPC lipid bilay-
er; below we discuss in more detail the effects of membrane tension
on bilayer thickness, area per lipid, volume, polarity, microscopic flu-
idity and lateral diffusion of lipids.

4.1. Membrane tension reduces bilayer thickness and increases area per
lipid and volume

Increasing the membrane tension from 0 to 15 dyn/cm results in a
decrease in the thickness of the DOPC bilayer by 4.97% and an in-
crease in the area per lipid (6.8%) and volume (2.4%), agreeing with
previously reported PC bilayers [37,48]. It is interesting to compare
our results with a recent study of the DPPC lipid bilayer by Muddana
et al. [45]. The MD simulations of the DPPC membrane bilayer also
revealed that tension leads to a decrease in the bilayer thickness
and an increase in the area per lipid, volume and lateral diffusion co-
efficient [45]. The DPPC simulations [45] were performed (at 323 K)
slightly above the gel-to-liquid crystalline transition temperature
of ~315 K, whereas in the present study, the simulation of the DOPC
bilayer was performed (at 310 K) well over the gel-to-liquid crystalline
temperature of ~253 K. Table 1 compares the normalized percentage
changes in theDOPC (present study) versusDPPC [37] bilayer properties.
The normalized relative decrease (change per 1 dyn/cm) in the DPPC
bilayer's thickness (0.73%) is approximately twice that of the DOPC
bilayer (0.33%). Similarly, the normalized percentage increase of area
per lipid of DPPC (0.98%) is two times that of the DOPC bilayer (0.45%).
The differences could potentially be due to the differences in chain length
and degree of unsaturation of the hydrophobic chains, since DPPC's
aliphatic tail is from saturated palmitic acid (CH3(CH2)14COOH) with
a shorter chain length of 16 carbons whereas DOPC's tail is from mono-
unsaturated oleic acid (CH3(CH2)7CH=CH(CH2)7COOH) with a chain
length of 18 carbons. However, Muddana et al. have also reported that
the area expansion modulus of the DPPC bilayer obtained from MD
simulations (105 dyn/cm) was only half of the experimental DPPC
modulus (234 dyn/cm) [22,45]; this discrepancy was assigned to
an insufficient size of the membrane patch used. By definition, a
smaller expansion modulus leads to a greater increase in the area per
lipid (and therefore in greater increase of other structure-dependent
parameters) observed in the DPPC case. However, with the use of
the more accurate CHARMM36 force parameters for DOPC mem-
brane patch of the same size, the expansion modulus (241.3 dyn/cm)
obtained in the present study is in much better agreement with exper-
imental value (265 dyn/cm) [48]. Therefore larger changes in other
DPPC bilayer properties with membrane tension (Table 1) are more
likely due to an inadequate force field (modified OPLS) used in the
DPPC study [45].

Note that the lysis tension of a pure DOPC lipid bilayer is ~9.9±
2.6 dyn/cm [72]. The lysis process (pore formation) is a kinetic pro-
cess [73] and requires longer time scales than used in our simulations.
Previous reports indicated that a membrane tension of ~90 dyn/cm is
needed to observe pore formation in the equilibrated DOPC bilayer on
the nanosecond time scale [74]; in agreement with the above studies
we did not observe any pore formation in our simulations at any
membrane tension used. The reason why we extended the studied
membrane tension range to 15 dyn/cm is because membrane tension
is subject to thermodynamic fluctuations that by far exceed the value
of lysis tension on the spatial scale corresponding to the size of typical
membrane proteins (for the bilayer size used in our simulations
membrane tension was normally distributed around the average (tar-
get) value with standard deviation of ~280 dyn/cm). Therefore it is of
general interest to know the response of bilayer properties to even
above-the-lysis membrane tensions that can be transiently experi-
enced by membrane proteins.

image of Fig.�9


Fig. 10. Jump length and waiting time distributions of the lipid molecules at membrane tension values of 0 dyn/cm (A and B) and 15 dyn/cm (C and D) obtained using random walk
analysis. The dotted lines extrapolate the fitted lines for better visibility. Dmax=2.0 Å and μ=2.0 Å.
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4.2. Membrane tension increases polarity

In our earlier experimental study using Laurdan fluorescence, we
had shown that the osmotically induced membrane tension leads to
an increase in polarity (which is related to hydration depth) of the
DOPC lipid bilayer [18]. In this study, we have observed a significant
decrease in the hydration depth of the DOPC lipid bilayer due to the
membrane tension. A decrease of 5.75% in HD and an increase of
3.90% in the HT to HD ratio were observed with an increase in mem-
brane tension from 0 to 15 dyn/cm. These results suggest that the po-
larity of the bilayer increases due to the penetration of water into
Fig. 11. Variation of the diffusion coefficient with membrane tension on longer and
shorter time scales obtained by linear fit of Eq. (7) to the corresponding MSD data.
The solid line represents the fit of Eq. (11) to the values of long time diffusion coefficient.
hydrophobic interior. Hydration of the hydrophilic head groups
plays an important role in the structure and function of the lipid bi-
layer [24]. It is well known that membrane proteins are highly sensi-
tive to the lipid environment. If the hydrophobic thickness of a
membrane protein is smaller in one of the conformational states,
then a decrease in bilayer thickness or an increase in hydration
depth can shift the equilibrium towards that conformation [24,75].
Therefore a membrane-tension-induced change in bilayer polarity
could potentially act as a trigger of the changes in the structure of
the membrane proteins.

4.3. Membrane tension alters the microscopic fluidity

It has been shown that blood flow-associated shear stress induces
a time and position-dependent increase in the endothelial cell mem-
brane fluidity [11,49,50]. Shear stress (which leads to an increase in
Table 1
Relative changes in the bilayer properties with the increasing membrane tension (per
1 dyn/cm) for DOPC and DPPC.

Property DOPCa

(% change per dyn/cm)
DPPCb

(% change per dyn/cm)

Membrane thickness −0.33 −0.73
Area per lipid +0.45 +0.98
Volume +0.16 +0.03
Diffusion coefficient +3.23 +10.02

a Membrane tension varied from 0 dyn/cm to 15 dyn/cm.
b Membrane tensions varied from −2.62 dyn/cm to 15.87 dyn/cm, DPPC results are

reported from [45].
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membrane tension) may modulate cellular processes through its ac-
tion on the plasma membrane [22]. In the present study, with an in-
crease in membrane tension both computed order parameters (S2

and SCD) exhibited 15%–20% decrease at the tail-end region and
10%–12% decrease in the head and tail (near double bond) regions.
The earlier study of the DPPC lipid bilayer [45] also demonstrated a
significant decrease in the SCD values for all the carbon atoms of the
chain with increasing membrane tension. Changes in the order pa-
rameter for the DPPC lipid molecules were smallest (~30%) near
head group region and largest (~50%) at the terminal tail region
with the increase of area per lipid (63.5 Å2 to 75.0 Å2). Previous stud-
ies linked the SCD parameter to fluidity changes caused by cholesterol
[76] and ethanol [77]. Results of both DOPC and DPPC studies indicate
significant dispersion of the hydrophobic chains with increasing
membrane tension which suggests reduced lipid acyl chain packing
(which is expected due to increase in the volume of the bilayer as
shown in Fig. 3) and lower structural order usually associated with
high fluidity. Moreover our results showing that orientational order
parameter, S2 decreases at higher membrane tensions (Fig. 6C), di-
rectly indicate an increase in microscopic fluidity with increasing
membrane tension.

4.4. Membrane tension increases the lateral diffusion

Inspection of time-normalized MSD plot (br2>/t) (Fig. 7B) reveals
three time scales with distinct lipid dynamics: inertial motion, anoma-
lous diffusion and normal diffusion. In all three regions, we observed
the effect of membrane tension on translational motion of lipids. The
rate of anomalous and normal diffusion increased significantly with in-
creasedmembrane tension from0 to 15 dyn/cm,whereas an increase in
the rate of inertial motion was found to be insignificant. The value of
anomalous diffusion coefficient (DA) increased by approximately 20%
with increasing membrane tension.

For pure lipid bilayers without any protein or other membrane con-
stituents, the diffusion of individual lipids on a long time scale is
expected to be a Brownian motion with MSD varying linearly with
time. In the case of normal diffusion the short time and the long time dif-
fusion coefficients increased by 20% and 52% respectively. The relative
change in DA (~20%, Fig. 9B) and D (short time scale, Fig. 11) values
with increasing membrane tension were similar as expected. Similar
trends were reported previously for other types of lipid membranes
[22,45] based on experimental measurements using FRAP andMD sim-
ulations. Muddana et al. observed a threefold increase in the lateral
diffusion coefficient of the DPPC lipid molecules with increasing mem-
brane tension (from −2.62 to 15.9 dyn/cm) based on MD simulations
using modified OPLS force field parameters [45,78]. The increase of
the long time lateral diffusion coefficient of the DOPC lipid molecules in
the present study was only 52% with the membrane tension increase
from 0 to 15 dyn/cm (3.23% per 1 dyn/cm). The relatively larger in-
crease of DPPC lipid diffusion coefficients (10.02% per 1 dyn/cm) is like-
ly due to the artificially low value of area expansion modulus (KA) (2×
lower than experimental value, see above) which results in larger than
expected structural changes for given membrane tension value. Based
on either free volume [79–83] or Saffman–Delbrück hydrodynamic the-
ory [65–67,84] larger changes in area per lipid are expected to result in
significant changes in diffusion coefficient. The free volume theory is
usually believed to be more appropriate for describing lateral diffusion
of small, lipid like molecules [85] whereas the hydrodynamic theory is
more appropriate for larger and slower diffusing integral membrane
proteins [66,84,86] (although a recent experimental study showed sig-
nificant deviations [87]). We were not able to get a satisfactory fit of
long time diffusion coefficient values using the free volume theory
[80,88], possibly because (I) membrane tension leads to significant
changes in the geometry (thickness) of the bilayer which is not directly
accounted for in the free volume theory and because (II) bilayer viscos-
ity, as inferred from the S2 parameter (using Eq. (12) and Fig. 6C), does
not decrease exponentially but tends to saturate at higher membrane
tension values; note that no saturation in membrane viscosity with in-
creasing membrane tension is expected according to the free volume
theory [81] because in our case membrane tension leads to linear in-
crease in bilayer volume (and thus the free volume) as shown in
Fig. 3. Despite the fact that the lipid molecule is small, a qualitatively
good agreement (Fig. 11) was obtained using hydrodynamic theory
(the Eq. (11)), originally developed by Saffmann et al. [65] and Hughes
et al. [66,67] to describe the diffusion of a cylindrical molecule in the
lipid bilayer. The simulations data and the fit show that the long time dif-
fusion coefficient of the lipidmolecule does not linearly increasewith the
increase in membrane tension but starts to saturate at higher mem-
brane tensions which is primarily due to the fact that bilayer viscosity
tends to saturate at larger membrane tensions.

Our simulations data indicate that bilayer parameters such as e.g.
thickness or area per lipid exhibit substantial thermal fluctuations on
picosecond–nanosecond time scale. It may not be obvious whether
the magnitude of the membrane tension effect should be compared to
the magnitude of thermal fluctuations or to the average macroscopic
value of the relevant bilayer parameter. As we pointed out in our earlier
study [33] the time scale of the process of interest determines if the ef-
fect of membrane tension should be compared to thermal fluctuations
or to average values of bilayer parameters. Conformational transitions
in membrane proteins occur on microsecond/millisecond time scale;
in this case the membrane protein is expected to respond mostly to
changes in the average value of the relevant bilayer parameter.

It should be noted that the reported changes in the membrane pa-
rameters are of the same order of magnitude as previously shown to in-
fluence conformational changes in membrane proteins. For example it
has been reported that subnanometer changes in bilayer thickness can
completely reverse the response polarity of gramicidin A ion channel
from a stretch-activated to a stretch inactivated state [17]. There are
many other examples showing that hydrophobic membrane thickness
controls physiological functioning of membrane bound proteins such
as enzymes and receptors. Enzymes like cytochrome c oxidase [89],
Ca2+-ATPase [90,91] or (Na+–K+) ATPase [92] function optimally
when embedded into bilayers of a given thickness while the neural ac-
tivity of acetylcholine receptor has been also shown to depend on the
membrane thickness [93]. GPCRs, such as rhodopsin have also been
shown to be very sensitive to comparable changes in membrane thick-
ness and lipid composition (which affects various bilayer parameters,
including fluidity) [9,94,95]. Notably it has also been reported that me-
chanical perturbation of the cell membrane leads to membrane fluidity
changes of similar magnitude as determined in this study [22,23,96,97].
Although changes in membrane fluidity may not directly affect confor-
mational equilibrium between active and inactive states of the mem-
brane protein since populations of conformational states are primarily
determined by the free energy differences, the fluidity could have an
effect on downstreamsignaling. For example the activity of GPCRs is ini-
tiatedwhen an extracellular ligand induces or binds to an active confor-
mation [98] which in turn can activate hundreds of G proteins causing
strong signal amplification [99–101]. Since interaction of GPCRs and G
proteins involves lateral diffusion steps of G protein, this imparts sensi-
tivity of the overall signal mechanotransduction process to changes in
membrane fluidity.

In conclusion, the reported MSD time profiles of the DOPC bilayer
suggest that the lipid diffusion phenomenon is anomalous on a
shorter time scale (b10 ns) asymptotically approaching a pure ran-
dom walk on longer time scales. The values of both anomalous and
normal diffusion coefficients increase with increasing membrane ten-
sion. Other lipid bilayer parameters also varied considerably in the
membrane tension range 0–15 dyn/cm: area per lipid (6.8% increase),
volume (2.4% increase), thickness (5% decrease), HD (5.7% decrease),
HT/HD (5% increase) and structural order parameters (10–20% de-
crease). It is evident from these results that membrane tension in-
duces relatively significant changes in both structural and dynamic
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properties of lipid bilayer membrane supporting the hypothesis that
such changes could potentially be involved in triggering primary
events in mechanosensing processes in cells.
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