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Abstract

Although implicit–explicit (IMEX) methods for approximating solutions to semilinear parabolic equa-
tions are relatively standard, most recent works examine the case of a fully discretized model. We show
that by discretizing time only, one can obtain an elementary convergence result for an implicit–explicit
method. This convergence result is strong enough to imply existence and uniqueness of solutions to a class
of semilinear parabolic equations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The use of implicit–explicit (IMEX) methods for approximating semilinear parabolic equa-
tions is well established [1]. Many of the recent works on these methods employ discretizations
in both space and time. These fully discrete approximations can be computed directly by a com-
puter. However, one can obtain a stronger condition for convergence of the approximation if only
the time dimension is discretized [2]. We show how an even stronger condition for convergence
is met by the Cauchy problem for

∂u(x, t)

∂t
= �u(x, t) +

∞∑
i=0

ai(x)ui(x, t), (1)

where ai ∈ L1(Rn) ∩ L∞(Rn), and how convergence of this method provides an elementary
proof of existence and uniqueness of solutions. Existence and uniqueness of solutions for (1)
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under reasonable initial conditions have been known for some time. For instance, [4] and [6]
contain straightforward proofs using semigroup methods. The purpose of this paper is to show
how a more elementary proof can be obtained from a sequence of explicitly computed discrete-
time approximations.

The Cauchy problem for (1) arises in a variety of settings. Notably, some reaction–diffusion
equations are of this form [3]. Another application is the special case

∂u(x, t)

∂t
= �u(x, t) − u2(x, t) + a0(x),

where a0 is a nonzero function of x. This situation corresponds to a spatially-dependent logistic
equation with a diffusion term, which can be thought of as a toy model of population growth with
migration.

Following [2], the approximation to be used is

un+1 = (I − h�)−1

(
un + h

∞∑
i=0

aiu
i
n

)
, (2)

which is obtained by inverting the linear portion of a discrete version of (1). For brevity, we shall
call (2) the implicit–explicit method. (In the summary paper [1], this is called an SBDF method,
to distinguish it from other implicit–explicit methods.) One can compute the operator (I −h�)−1

explicitly using Fourier transform methods, and obtain a proof of the numerical stability of the
iteration as a whole.

2. A version of the fundamental inequality

In order to simplify the algebraic expressions, we make the following definitions.

Definition 1. Let

F
(
u(x, t)

) = �u(x, t) +
∞∑
i=0

ai(x)ui(x, t), (3)

and

G
(
u(x, t)

) =
∞∑
i=0

ai(x)ui(x, t). (4)

Definition 2. Define the analytic functions

g1(z) =
∞∑
i=0

‖ai‖1z
i, (5)

and

g∞(z) =
∞∑

‖ai‖∞zi . (6)

i=0
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Since we do not discretize the spatial dimension, we can employ some of the theory of ordi-
nary differential equations. We therefore first prove a variant of the fundamental inequality for
(1) as is done in [5]. The fundamental inequality gives a sufficient condition for approximate so-
lutions to converge. A slightly weaker version of Lemma 3 was obtained in Theorem 3.1 of [2],
where the existence of solutions was required.

Lemma 3. Suppose {ui}∞i=1 is a sequence of piecewise C1 functions ui : [0, T ] → C2(Rn) ∩
L1(Rn) ∩ L∞(Rn), such that

(1) there exist A,B > 0 so that for each i and t ∈ [0, T ], ‖ui(t)‖1 � A and ‖ui(t)‖∞ � B ,
(2) for each i and t ∈ [0, T ], the series g1(‖ui(t)‖1) and g∞(‖ui(t)‖∞) converge,
(3) for each t ∈ [0, T ], ‖ d

dt
ui(t) − F(ui(t))‖∞ < εi and limi→∞ εi = 0, and

(4) u1(0) = ui(0) for all i � 0.

Then for each t ∈ [0, T ], {ui(t)}∞i=1 is a Cauchy sequence in L2(Rn).

Proof. Let i, j > 0 be given. Let η(t) = ‖ui(t) − uj (t)‖2
2 = ∫

(ui(t) − uj (t))
2 dx. Notice that

the fourth condition in the hypothesis gives η(0) = 0,

η′(t) = 2
∫ (

u′
i (t) − u′

j (t)
)(

ui(t) − uj (t)
)
dx.

But, ‖ d
dt

ui(t) − F(ui(t))‖∞ < εi is equivalent to the statement that for each t ∈ [0, T ] and
x ∈ R

n,

F
(
ui(x, t)

) − εi < u′
i (x, t) < F

(
ui(x, t)

) + εi,

giving

η′(t) � 2
∫ (

F
(
ui(t)

) − F
(
uj (t)

))(
ui(t) − uj (t)

)
dx + 2(εi + εj )

∫ ∣∣ui(t) − uj (t)
∣∣dx

� 2
∫ (

�ui(t) + G
(
ui(t)

) − �uj (t) − G
(
uj (t)

))(
ui(t) − uj (t)

)
dx

+ 2(εi + εj )
∥∥ui(t) − uj (t)

∥∥
1

� 2
∫ (

�
(
ui(t) − uj (t)

))(
ui(t) − uj (t)

)
dx

+ 2
∫ (

G
(
ui(t)

) − G
(
uj (t)

))(
ui(t) − uj (t)

)
dx + 2(εi + εj )

∥∥ui(t) − uj (t)
∥∥

1

� −2
∫ ∥∥∇(

ui(t) − uj (t)
)∥∥2

dx + 2
∥∥G

(
ui(t)

) − G
(
uj (t)

)∥∥
2

∥∥ui(t) − uj (t)
∥∥

2

+ 2(εi + εj )
∥∥ui(t) − uj (t)

∥∥
1

� 2
∥∥G

(
ui(t)

) − G
(
uj (t)

)∥∥
2

∥∥ui(t) − uj (t)
∥∥

2 + 2(εi + εj )
∥∥ui(t) − uj (t)

∥∥
1.

Now also
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∥∥G
(
ui(t)

) − G
(
uj (t)

)∥∥
2

=
∥∥∥∥∥

∞∑
k=0

ak

(
uk

i (t) − uk
j (t)

)∥∥∥∥∥
2

�
∞∑

k=0

‖ak‖∞
∥∥uk

i (t) − uk
j (t)

∥∥
2

�
∞∑

k=0

‖ak‖∞

√∫ (
uk

i (x, t) − uk
j (x, t)

)2
dx

�
∞∑

k=0

‖ak‖∞

√√√√∫ (
ui(x, t) − uj (x, t)

)2

(
k−1∑
m=0

um
i (x, t)uk−m−1

j (x, t)

)2

dx

�
∞∑

k=0

‖ak‖∞

∥∥∥∥∥
k−1∑
m=0

um
i (t)uk−m−1

j (t)

∥∥∥∥∥∞

∥∥ui(t) − uj (t)
∥∥

2

�
( ∞∑

k=0

‖ak‖∞kBk−1

)∥∥ui(t) − uj (t)
∥∥

2

� g′∞(B)
∥∥ui(t) − uj (t)

∥∥
2,

which allows

η′(t) � 2g′∞(B)
∥∥ui(t) − uj (t)

∥∥2
2 + 2(εi + εj )

∥∥ui(t) − uj (t)
∥∥

1

� 2g′∞(B)η(t) + 2(εi + εj )
∥∥ui(t) − uj (t)

∥∥
1,

η′(t) − 2g′∞(B)η(t) � 2(εi + εj )
∥∥ui(t) − uj (t)

∥∥
1,

d

dt

(
η(t)e−2g′∞(B)t

)
� 2(εi + εj )e

−2g′∞(B)t
∥∥ui(t) − uj (t)

∥∥
1,

so (recall η(0) = 0)

η(t) �
[

2(εi + εj )

t∫
0

e−2g′∞(B)s
∥∥ui(s) − uj (s)

∥∥
1 ds

]
e2g′∞(B)t

�
[

2(εi + εj )

t∫
0

∥∥ui(s) − uj (s)
∥∥

1 ds

]
e2g′∞(B)t

� 4(εi + εj )Ate2g′∞(B)t .

Hence as i, j → ∞, η(t) → 0 for each t . Thus for each t , {ui(t)}∞i=1 is a Cauchy sequence in
L2(Rn). �
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Remark 4. Since C2(Rn) ∩ L1(Rn) ∩ L∞(Rn) ⊆ L2(Rn) and L2 is complete, Lemma 3 gives
conditions for existence and uniqueness of a short-time solution to (1).

Lemma 5. Suppose {ui(t)}∞i=1 is the sequence of functions defined in Lemma 3, and that u(t) =
limi→∞ ui(t) in L2(Rn). Then

u′(t, x) = lim
i→∞u′

i (t, x) for almost every x, (7)

wherever the limit exists.

Proof. Notice that since each ui(t) ∈ L∞(Rn) and ‖ui(t)‖∞ � B , the dominated convergence
theorem allows for each x ∈ R

n

t∫
0

lim
i→∞u′

i (τ, x) dτ = lim
i→∞

t∫
0

u′
i (τ, x) dτ

= lim
i→∞

(
ui(t, x) − ui(0, x)

)
= u(t, x) − u(0, x) for almost every x.

Hence, by differentiating in t ,

u′(t, x) = lim
i→∞u′

i (t, x) for almost every x. �
3. The implicit–explicit approximation

In this section, we consider the case of a 1-dimensional spatial domain, that is, x ∈ R. There
is no obstruction to extending any of these results to higher dimensions, though it complicates
the exposition unnecessarily.

As is usual, the first task is to define the function spaces to be used. Initial conditions will be
drawn from a subspace of L1(R) ∩ L∞(R), as suggested by Lemma 3, and the first four spatial
derivatives will be prescribed, for use in Lemma 10.

Definition 6. Let

W = L1(R) ∩ L∞(R) ∩ {
f ∈ C∞(R)

∣∣ f has bounded partial derivatives up to fourth order
}
.

For the remainder of this paper, we consider the case where each of the coefficients ai ∈ W . Then
let X = {f ∈ W | g1(‖f ‖1) < ∞ and g∞(‖f ‖∞) < ∞}. We consider the case where the initial
condition is drawn from X.

An approximate solution given by the implicit–explicit iteration will be the piecewise linear
interpolation through the iterates computed by (2). A smoother approximation will prove to be
unnecessary, as will be shown in Lemma 11.
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Definition 7. Suppose f0 and h > 0 are given. Put

fn+1 = (I − h�)−1(fn + hG(fn)
)
. (8)

The function

u(t) =
(

1 −
(

t

h
− n(t)

))
fn(t) +

(
t

h
− n(t)

)
fn(t)+1, (9)

where n(t) = 
 t
h
�, is called the implicit–explicit iteration of size h beginning at f0.

Calculation 8. We explicitly compute the operator (I − h�)−1 using Fourier transforms. Sup-
pose

(I − h�)u(x) = u(x) − h�u(x) = f (x).

Taking the Fourier transform (with transformed variable ω) gives

û(ω) + hω2û(ω) = f̂ (ω),

û(ω) = f̂ (ω)

1 + hω2
.

The Fourier inversion theorem yields

u(x) = 1

2π

∫
eiωx

1 + hω2

∫
f (y)e−iωy dy dω

=
∫

f (y)

(
1

2π

∫
eiω(x−y)

1 + hω2
dω

)
dy.

Using the method of residues, this can be simplified to give

u(x) = (
(I − h�)−1f

)
(x) = 1

2
√

h

∫
f (y)e−|y−x|/√h dy. (10)

Calculation 9. Bounds on the L1 and L∞ operator norms of (I − h�)−1 are now computed.
First, let f ∈ L∞(R). Then

∣∣((I − h�)−1f
)
(x)

∣∣ =
∣∣∣∣ 1

2
√

h

∫
f (y)e−|y−x|/√h dy

∣∣∣∣
� ‖f ‖∞

1

2
√

h

∫
e−|y−x|/√h dy

� ‖f ‖∞
1√
h

∞∫
0

e−s/
√

h ds

� ‖f ‖∞,

so ‖(I − h�)−1‖∞ � 1.
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Now, let f ∈ L1(R). So then

∥∥(I − h�)−1f
∥∥

1 =
∞∫

−∞

∣∣∣∣∣ 1

2
√

h

∞∫
−∞

f (y)e−|y−x|/√h dy

∣∣∣∣∣dx

� 1

2
√

h

∞∫
−∞

∞∫
−∞

∣∣f (y)
∣∣e−|y−x|/√h dy dx

� 1√
h

∞∫
−∞

∣∣f (y)
∣∣ ∞∫

0

e−|y−x|/√h dx dy

�
∞∫

−∞

∣∣f (y)
∣∣dy = ‖f ‖1,

which means ‖(I − h�)−1‖1 � 1.

The third condition of Lemma 3 is a control on the slope error of the approximation. A bound
on this error may be established for the implicit–explicit iteration as follows.

Lemma 10. Suppose f0 ∈ X, h > 0. Put f (x, t) = f0(x) + tD(x), where

D = (I − h�)−1(f0 + hG(f0)) − f0

h
.

Then for every 0 < t < h,

∥∥f ′(t) − F
(
f (t)

)∥∥∞ = O(h). (11)

Proof. Recall every function in X will have bounded partial derivatives up to fourth order from
Definition 6.

∥∥f ′(t) − F
(
f (t)

)∥∥∞ = ∥∥D − (
�(f0 + tD) + G(f0 + tD)

)∥∥∞

=
∥∥∥∥∥D −

(
�(f0 + tD) +

∞∑
i=0

ai(f0 + tD)i

)∥∥∥∥∥∞

�
∥∥∥∥∥D − �f0 − t�D −

∞∑
i=0

ai

(
i∑

j=0

(
i

j

)
f

j

0 (tD)i−j

)∥∥∥∥∥∞

�
∥∥∥∥∥D − �f0 − t�D −

∞∑
i=0

aif
i
0

∥∥∥∥∥∞
+ O(h)

�
∥∥∥∥ (I − h�)−1 − I

f0 − �f0 + (
(I − h�)−1 − I

)
G(f0)

∥∥∥∥ + O(h).

h ∞
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Now, using the fact that (I − h�)−1 − I = (I − h�)−1(h�),

∥∥f ′(t) − F
(
f (t)

)∥∥∞ �
∥∥(I − h�)−1�f0 − �f0 + (I − h�)−1(h�)G(f0)

∥∥∞ + O(h)

�
∥∥(I − h�)−1(h�)

(
�f0 + G(f0)

)∥∥∞ + O(h)

� h
∥∥(I − h�)−1(�F(f0)

)∥∥∞ + O(h)

� h
∥∥(I − h�)−1

∥∥∞
∥∥(

�F(f0)
)∥∥∞ + O(h) = O(h). �

Lemma 11. Suppose 0 < hi → 0. Let ui be the implicit–explicit iteration of size hi beginning
at f0 ∈ X on t ∈ [0, T ]. Then provided there exist A,B > 0 such that for each i and t ∈ [0, T ],
‖ui(t)‖1 � A and ‖ui(t)‖∞ � B , then the sequence {ui(t)}∞i=1 converges pointwise to a function
in t . The limit function is piecewise differentiable in t .

Proof. Let ui be the implicit–explicit iteration of size hi . By Lemma 10, the slope error is
bounded: ∥∥u′

i (t) − F
(
ui(t)

)∥∥∞ = O(hi) = εi .

Notice that εi → 0. Then, since X ⊂ C2(Rn), Lemma 3 applies, giving a pointwise limit function
u(t). Finally, since the slope error uniformly vanishes, Lemma 5 implies that the solution is
piecewise differentiable. �
4. “A priori estimates” for the approximate solutions

Now we demonstrate that the implicit–explicit method converges for all initial conditions
in X. Specifically, for each f0 ∈ X, there exist A,B > 0 such that for each i and t ∈ [0, T ],
‖ui(t)‖1 � A and ‖ui(t)‖∞ � B , given sufficiently small T . We begin by recalling that from
Calculation 9, the L∞-norm of (I − h�)−1 is less than one. This means that for the implicit–
explicit iteration,

‖fn+1‖∞ �
∥∥fn + hG(fn)

∥∥∞

� ‖fn‖∞ + h

∥∥∥∥∥
∞∑
i=0

aif
i
n

∥∥∥∥∥∞

� ‖fn‖∞ + h

∞∑
i=0

‖ai‖∞
∥∥f i

n

∥∥∞

� ‖fn‖∞ + h

∞∑
i=0

‖ai‖∞‖fn‖i∞

� ‖fn‖∞ + hg∞
(‖fn‖∞

)
.

Hence the norm of each step of the implicit–explicit iteration will be controlled by the behavior
of the recursion

fn+1 = fn + hg∞(fn), (12)
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for fn,h, a > 0. Since we are only concerned with short-time existence and uniqueness, we look
specifically at h = T/N and 0 � n � N , for fixed T > 0 and N ∈ N.

Remark 12. The recursion defined by (12) is an Euler solver for

dy

dt
= g∞(y), with y(0) = f0. (13)

This equation is separable, and g∞ is analytic near f0, so there exists a unique solution for the
initial value problem (13) for sufficiently short time. Also, whenever y(t) > 0

d2y

dt2
= g′∞

(
y(t)

)
> 0,

the function y(t) is concave up. As a result, the exact solution to (13) provides an upper bound
for the recursion (12). More precisely, we have the following result.

Lemma 13. Suppose y(0) = f0 > 0 in (13). Let T > 0 be given so that y is continuous on [0, T ],
and let N ∈ N. Then for each 0 � n � N , fn � y(T ), where fn satisfies (12) with h = T/N .

Proof. Since the right-hand side of (13) is strictly positive, the maximum of y is attained at
T on any interval [0, T ] where y is continuous. Furthermore, since y(0) > 0, it follows from
Remark 12 that y is concave up on all of [0, T ]. Therefore, y is a convex function on [0, T ].
Hence Euler’s method, (12), will always underestimate the true value of y. Another way of
stating this is that

fn � y(nh) � y(T ). �
Using Lemma 13, the growth of iterates to (12) may be controlled independently of the step

size. This provides a uniform bound on the sequence of implicit–explicit approximations.

Lemma 14. Suppose 0 < hi = T/i for i ∈ N. Let ui be the implicit–explicit iteration of size hi

beginning at f0 ∈ X on t ∈ [0, T ]. Then there exists a B > 0 such that for each i and t ∈ [0, T ],
we have ‖ui(t)‖∞ � B for sufficiently small T > 0.

Proof. Suppose fin is the nth step of the implicit–explicit iteration of size hi . If we let
y(0) = ‖f0‖∞, Lemma 13 implies that for any i and any 0 � n � i

‖fin‖∞ � y(T )

for sufficiently small T . Hence by (9) and the triangle inequality, ‖ui(t)‖∞ � B for all i and
t ∈ [0, T ]. �

With the bound on the suprema of the approximations, we can obtain a bound on the 1-norms.

Lemma 15. Suppose 0 < hi = T/i for i ∈ N. Let ui be the implicit–explicit iteration of size hi

beginning at f0 ∈ X on t ∈ [0, T ]. Then there exists an A > 0 such that for each i and t ∈ [0, T ],
we have ‖ui(t)‖1 � A for sufficiently small T > 0.
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Proof. First, notice that Lemma 14 implies that there is a B > 0 such that for each i and
t ∈ [0, T ], we have ‖ui(t)‖∞ � A for sufficiently small T > 0. Again suppose fin is the nth
step of the implicit–explicit iteration of size hi . Then we compute

‖fi,n+1‖1 � ‖fin‖1 + hi

∥∥G(fin)
∥∥

1

� ‖fin‖1 + hi

∞∑
k=0

∥∥akf
k
in

∥∥
1

� ‖fin‖1 + hi

∞∑
k=0

∫ ∣∣akf
k
in

∣∣dx

� ‖fin‖1 + hi

∞∑
k=1

‖fin‖k−1∞ ‖ak‖∞‖fin‖1 + hi‖a0‖1

� ‖fin‖1

(
1 + hi

∞∑
k=1

‖ak‖∞Bk−1

)
+ hi‖a0‖1

� ‖fin‖1

(
1 + hi

B
g∞(B) − hi

B
‖a0‖∞

)
+ hi‖a0‖1

� ‖fin‖1(1 + hiC) + hi‖a0‖1.

This recurrence leads to

‖fin‖1 � ‖f0‖1(1 + hiC)n + hi‖a0‖1

n−1∑
m=0

(1 + hiC)m

� ‖f0‖1(1 + hiC)n + hi‖a0‖1
(1 + hiC)n − 1

hiC

�
(

‖f0‖1 + 1

C
‖a0‖1

)
(1 + hiC)n − 1

C
‖a0‖1

�
(

‖f0‖1 + 1

C
‖a0‖1

)(
1 + CT

i

)n

− 1

C
‖a0‖1

�
(

‖f0‖1 + 1

C
‖a0‖1

)(
1 + CT

i

)i

− 1

C
‖a0‖1

�
(

‖f0‖1 + 1

C
‖a0‖1

)
eCT − 1

C
‖a0‖1 = A.

Once again, by referring to (9) and using the triangle inequality, it follows that ‖ui(t)‖1 � B for
all i and t ∈ [0, T ]. �
Theorem 16. Suppose 0 < hi = T/i for i ∈ N. Let ui be the implicit–explicit iteration of size
hi beginning at f0 ∈ X on t ∈ [0, T ]. Then, for sufficiently small T > 0, the sequence {ui(t)}∞i=1
converges pointwise to a function in t . The limit function is piecewise differentiable in t .
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Proof. This compiles the results of Lemmas 11, 14, and 15. �
Remark 17. These proofs can be generalized further to handle all equations of the form

∂u(t)

∂t
= L

(
u(t)

) + G(u),

where G is as in (4). If the operator L satisfies

• L : L1(R) ∩ L∞(R) ∩ C∞(R) → L∞(R) ∩ C∞(R) is a sectorial linear operator [4],
• ‖(I − hL)−1‖1 � 1 and ‖(I − hL)−1‖∞ � 1,

then the implicit–explicit iteration

fn+1 = (I − hL)−1(fn + hG(fn)
)

converges for whenever f ∈ X.

Remark 18. Additionally, the techniques can be easily extended to handle the initial boundary
value problem

∂u(x, t)

∂t
= �u(x, t) +

∞∑
i=0

ai(x)ui(x, t), for x ∈ K ⊂ R
n, t > 0,

with u(x, t) = v(x, t) a given Lipschitz function along ∂K ×[0,∞), for K compact with smooth
boundary. In this case, a boundary term appears in the estimate for η′(t) in Lemma 3, which
depends on the Lipschitz constant of v. Additionally, in Definition 7, one defines fn+1 to be the
unique solution to the linear elliptic boundary value problem

(I − h�)fn+1 = fn + hG(fn)

with fn+1(x) = v(x,nh) for x ∈ ∂K .

5. Conclusions

The convergence proof for the implicit–explicit method presented here has a number of ad-
vantages. First of all, like all implicit–explicit methods, each approximation to the solution is
computed explicitly. As a result, a fully discretized version (as is standard in the literature) is
easy to program on a computer. Theorem 16 therefore assures the convergence of these fully
discrete methods.

However, since the implicit–explicit method presented here is discretized only in time, the
convergence proof actually shows the existence of a semigroup of solutions. As a result, the
convergence proof forms a bridge between the functional-analytic viewpoint of differential equa-
tions, namely that of semigroups, and the numerical methods used to approximate solutions.
While the existence and uniqueness of solutions for (1) has been known via semigroup methods,
the proof provided here gives a more elementary explanation of how this occurs. In particular, it
approximates the semigroup action directly.
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