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Abstract 

Cost-efficient and sustainable delivery of e-commerce products results in enormous challenges for city logistics 
service providers. We focus on the last mile of delivery in terms of reliable and efficient vehicle routing approaches. 
In recent years, telematics based traffic data collection has built the ground for time-dependent vehicle routing, which 
supports the fulfillment of customer promises as well as economic and sustainable delivery concepts. This becomes 
extremely important in Attended Home Delivery applications, requiring the presence of the customer during delivery. 
Based on Floating Car Data and Data Mining methods, we provide time-dependent travel time data sets and discuss 
the integration of time-dependent travel times in time-dependent vehicle routing models. A case study offers insights 
into effort and benefits of sophisticated travel time collection, data aggregation and time-dependent vehicle routing. 
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1. Introduction 

In recent years, the ongoing success of online retail has promoted business models comprising direct 
delivery to consumers’ homes. More and more e-commerce businesses compete against each other 
regarding price and service quality. Even fresh groceries can be ordered online on websites such as 
peapod.com. Digital outlets of brick-and-mortar shops complement their distribution channels by online 
shops. Forrester Forecast predicts that the share of online retail will continue to grow steadily [1]. 

From a consumer’s point of view, online retail is associated with a number of benefits such as greater 
product choice, the ability to obtain goods not sold locally, better price comparison, etc. From a logistics 

 

* Corresponding author. Tel.: +49-531-3913216; fax: +49-531-3918144. 
E-mail address: j-f.ehmke@tu-bs.de 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of 7th International 
Conference on City Logistics Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82308834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


623 Jan Fabian Ehmke and Dirk Christian Mattfeld  /  Procedia - Social and Behavioral Sciences   39  ( 2012 )  622 – 632 

point of view, however, the solution for delivery is very demanding. Efficient and reliable logistics are a 
key factor for the economic success of online shops, and shipping costs are one of the biggest concerns for 
online customers [2]. Especially the “not-at-home problem” has to be treated, which results from the 
delivery of goods requiring the presence of the customer. This leads to complex planning problems within 
the last leg in supply chains, i.e., the last mile to the consumer. 

The last mile is currently regarded as one of the most expensive, least efficient and most polluting 
sections of the entire supply chain [3]. Increasing customer requirements exacerbate flexibility of 
delivery. In urban areas, traffic infrastructure is often used to capacity, resulting in traffic jams. City 
logistics service providers compete against other road user for the scarce traffic space, which cannot be 
extended unlimitedly. Defiance of varying infrastructure utilization may lead to lower service quality, 
higher pollution and higher realization costs of delivery [4][5]. 

Efficient and sustainable delivery solutions in urban areas are concluded by city logistics concepts. 
City logistics aims at the fast and reliable transportation of goods in terms of efficient and 
environmentally acceptable delivery tours. The complexity of planning operations in city logistics 
environments requires sophisticated planning systems setting up on quantitative optimization models. 
Common optimization models are based on static representations of the city road network. Network loads 
in urban areas, however, are highly fluctuant with respect to different network links and times of the day. 
For the most part, a single travel time value per network link, as provided by today’s digital roadmaps, 
only insufficiently represents congestion in city traffic. Whereas static vehicle routing is well studied, the 
consideration of time dependency in vehicle routing models is still a field of potential research due to 
substantial efforts in data processing and complexity of time-dependent routing algorithms [6]. The 
provision and the integration of time-dependent travel time data sets into enhanced vehicle routing 
methods are rarely focused. 

In this paper, we aim at the provision of time-dependent travel time data sets that can be incorporated 
in time-dependent vehicle routing models. We refer to recent technology in terms of telematics based 
travel time collection and advanced data processing in terms of Data Mining. Huge amounts of Floating 
Car Data (FCD), also known as probe vehicle data, provide time-dependent travel times representing 
typical traffic states. Data Mining methods allow for the consolidation of time-dependent travel times, 
focusing on time-dependent congestion in the evolution of city traffic. Planning of last mile delivery is 
made by time-dependent optimization. Here, travel time data sets are integrated into advanced vehicle 
routing models. Computational experiments based on huge amounts of FCD illustrate the effort for and 
the benefits of time-dependent vehicle routing with regard to costs and service quality of Attended Home 
Delivery applications. 

2. Attended Home Delivery 

In recent years, business models comprising home delivery services have staged a comeback. From an 
e-commerce point of view, home deliveries are the “logistics element of the fulfillment process within 
consumer e-commerce transactions, other remote purchases from mail order, direct selling and television 
shopping companies and deliveries from retail outlets” [7]. Online retail requires the cost-efficient and 
customer-oriented design of home deliveries. Most deliveries are of parcels and small packages, large 
items and food. Deliveries may be made to the consumer’s home, to reception/delivery boxes, collection 
points, locker banks or alternative places defined by the consumer [3]. The functionality of home delivery 
is crucial for online shopping business models and a key factor to their economic success. A 
comprehensive overview on solutions for last mile delivery is given by Allen et al. [7]. 

For home deliveries, the crucial question is whether the addressee has to be present at the time of 
delivery. In Attended Home Delivery, customers must be present for delivery due to security reasons, 
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goods being perishable, goods being physically large or because a service is performed [8]. Food 
deliveries, for example, usually take place on a pre-arranged day and within a given time window as 
corresponding products may deteriorate over time. Thus, consumers expect a choice of narrow, reliable 
time slots, which may lead to high costs of delivery [9]. Punakivi and Saranen, for example, found that 
transportation costs of Attended Home Deliveries based on 1-hour time slots are 2.7 times larger than 
unattended deliveries [10]. Examples for order processes in Attended Home Delivery can be discovered at 
e-grocers like Peapod (www.peapod.com) and Albert.nl (www.albert.nl). Peapod is one of the largest 
internet grocers in the U.S., whereas Albert.nl operates in the Netherlands [11]. 

The realization of last mile delivery is undertaken by city logistics service providers. They should 
consider time-dependent information on congestion in order to determine more reliable itineraries, 
alleviating unnecessary delays and emissions resulting from traffic jams. In recent years, however, only a 
few authors have come up with approaches for planning systems providing and utilizing such 
information: 
 For city logistics applications, Fleischmann et al. design a traffic information system [6]. Flow and 

speed data are collected in a field test with stationary measurement facilities and specially equipped 
vehicles in the metropolitan area of Berlin, Germany. The data is then aggregated and utilized in 
savings and insertion heuristics. Here, the data collection methods used have surpassed by progress in 
technology. 

 Eglese et al. refer to FCD for time-dependent routing in a supra-regional road network in the UK [4]. 
The FCD originate from a communication network consisting of trucks and coaches. Data is 
transmitted via text messages and stored as a “road timetable” in a central database. In city logistics, 
text messages are not appropriate for data collection. 

 Van Woensel et al. consider queuing theory to provide time-dependent travel time estimates [12]. 
They refer to a tabu search approach to solve the time-dependent capacitated vehicle routing problem. 
Donati et al. implement an ant colony heuristic [13]. Both publications are more focused on large area 
networks. 

 Taniguchi et al. incorporate varying travel times by investigation of a probabilistic vehicle routing 
model for city logistics [14]. Travel time distributions are derived from a dynamic traffic simulation 
model. They apply their framework within a small test network consisting of 25 nodes and 40 links. 
Computational experiments show that the consideration of time-varying travel times leads to a lower 
risk of delay and a reduction of CO2 emissions. 

 Ehmke et al. analyze huge amounts of FCD for the determination of traffic quality as well as typical 
traffic states in urban areas [15]. They introduce a “data chain” in order to describe the process of 
empirical traffic data collection and data analysis. Due to complex routing data sets, they cluster 
routing data while keeping a certain level of reliability in order to support planning of shortest routes. 

 Maden et al. present a case study with regard to the distribution of goods by an electrical goods 
wholesaler [5]. They introduce a tabu search heuristic aiming at the minimization of time-dependent 
travel times. The algorithm is used to schedule a fleet of vehicles operating in the South West of the 
United Kingdom. The results of the corresponding case study show savings in CO2 emissions of about 
7% compared to planning methods based on constant speeds. 
 
In the following, we refer to telematics based data collection in terms of FCD. First, the most 

important parts of the data collection and data analysis process are sketched. The approach by Ehmke et 
al. is extended by utilizing time-dependent travel time data sets in time-dependent vehicle routing models. 
Benefits of time-dependent travel times are revealed within a city logistics case study.  
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3. Provision of time-dependent travel times 

Reliable vehicle routing in urban areas requires the consideration of information about typical traffic 
states. Information about recurring congestion in city traffic can be provided by time-dependent travel 
times. In contrast to average travel times or distances, time-dependent travel times allow for the 
anticipation of typical phenomena in urban traffic and hence result in more reliable delivery tours. Thus, 
consumer promises can be realized faster and more efficiently. 

In the following, we rely on the source of FCD to develop and instantiate time-dependent travel time 
data sets. The FCD originate from a vehicular wireless communication network consisting of a fleet of 
vehicles equipped with a GPS device. From each vehicle, raw traffic data in terms of vehicle 
identification code, current position in the network and time of measurement is collected. An FCD record 
provides the travel time of a single vehicle being part of the current traffic flow. Given a fleet of taxis 
operating in a certain metropolitan area (“Taxi-FCD”), it is possible to collect huge amounts of speed data 
for most of the links of the traffic network considered. The resulting speed data is used for the 
description, the analysis and the visualization of average travel times. For the processing of the raw speed 
data, a general overview on Taxi-FCD and applications see [16] and [17]. In the context of travel time 
determination, FCD is supposed to enrich or substitute traditional sensor or census based traffic data 
[18][19]. 

In recent years, Taxi-FCD has become a popular data collection method, leading to the availability of 
huge amounts of empirical traffic data. We process historical FCD by means of a structured Data Mining 
process [15]. Here, incorrect or questionable travel time data is filtered, for example, in case of GPS 
shadowing effects or a link being only partly covered by a route. Empirical traffic data is amended by 
infrastructure data, i.e., a common digital roadmap. Single measurements are aggregated for planning and 
analysis purposes in terms of arithmetic means or medians (first level of aggregation). We refer to an 
aggregation in 24x7 time buckets, i.e., an average speed for each hour in each day of the week is derived. 
This voluminous data set is referred to as “FH data” (Floating Car Hourly averages). 

FH data represents a data set which is so huge that more sophisticated consolidation is required. In 
particular, travel time variation is the most important attribute with regard to more reliable vehicle 
routing. Thus, a cluster analysis approach is applied in order to provide typical daily curves of speed 
variation, representing a more compact time-dependent travel time data set (second level of aggregation). 
Links are clustered into homogeneous groups according to their relative variation of daily speeds. To this 
end, the 24 FH values of a link per weekday are normalized by their mean travel time, representing the 
deviation from each link’s average travel time. According to their daily speed variation, links are then 
clustered by the k-means algorithm [20]. 

An example result of clustering by k-means with k = 6 is given in Fig. 1, depicting typical city traffic 
patterns such as decreasing speeds during morning and evening rush hours at several levels of intensity. 
Each cluster represents a group of links in terms of 24 speed reduction factors (per weekday). Each link is 
associated with its groups’ vector of 24 speed reduction factors, which are used for weighting link 
specific average speeds. This travel time data set is referred to as “FW data” (FCD Weighted Average). 
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Fig. 1. Speed reduction factors for a typical working day (k = 6) 

4. Time-dependent vehicle routing 

The computation of time-dependent delivery tours requires the consideration of time-dependent travel 
times in enhanced optimization models. In the following, we introduce the Time-Dependent Vehicle 
Routing Problem (TDVRP) as the corresponding optimization model, which is capable of processing 
time-varying travel times. The TDVRP demands for time-dependent distance matrices denoting time-
varying durations between customer locations in the course of the day. Based on FH and FW travel time 
data sets, we describe the extension of a common digital roadmap to a time-dependent topology that 
efficiently provides the desired time-dependent information. 

4.1. Time-dependent topologies 

TDVRP solution sets up on time-dependent distance matrices representing time-varying itineraries and 
durations between customer locations. In contrast to static VRP solution, time-dependent optimization 
requires the representation of time-varying costs for each edge. Time-dependent distance matrices result 
from shortest path computation based on a time-dependent topology of the road network. In the 
following, a time-dependent topology is designed, which is instantiated by FH and FW travel times. The 
efficiency of TDVRP solution is strongly related to the structure of the underlying topology, i.e., efforts 
required and solution quality depend on simplicity and accuracy of the time-dependent topology. 

In the literature, discrete as well as continuous approaches for the modeling of time-dependent travel 
times exist [21]. We focus on a discrete approach that features piecewise linear travel time functions. 
Efficient computation of time-dependent shortest paths requires a network topology ensuring “First In, 
First Out” (FIFO) behavior. In FIFO consistent networks, vehicles are not able to “pass” each other, i.e., 
vehicles arrive in the order they commence an edge (“non-passing condition” [22][23]). FIFO networks 
support time-dependent shortest path computation in terms of a trivially-modified variant of any label 
setting or label correcting shortest path algorithm like Dijkstra’s algorithm [24]. This is due to the 
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following properties, leading to a reduced complexity of the time-dependent topology [21]: In FIFO 
networks, 
 waiting at nodes delays arrival. 
 one always finds shortest paths which are acyclic. 
 one always finds shortest paths whose sub paths are also shortest paths. 

 
FH and FW travel time data sets lead to piecewise-linear travel time functions, possibly ignoring the 

FIFO condition. The FIFO condition may be violated if an interval of a rather long travel time is followed 
by an interval of a rather short travel time. Thus, the travel time function “jumps” between the two 
intervals, and passing may occur. Fleischmann et al. solve this problem by a smoothed travel time 
function that transforms non-FIFO travel time functions into FIFO consistent travel time functions [6]. 
Here, the jump between two intervals is linearized. 

In Figure 2, the derivation of travel times τli from average speeds vli is illustrated for an example link l. 
vl(t) depicts a speed function resulting from FH or FW data, whereas τl(t) depicts the corresponding travel 
time function. Function values depend on the starting time t. The travel time function τl(t) features several 
jumps at zi. At z1, for example, the speed changes from a relatively low level to relatively high level, 
inducing a rather long or rather short travel time, respectively. This change is not FIFO valid; a vehicle 
starting shortly before z1 would be passed by a vehicle starting shortly after z1. Fleischmann et al. handle 
those jumps by linearizing the travel time function in the range [zi – δli; zi + δli]. δli determines the 
corresponding slope -s0, which is not allowed to become larger than s = 1, assuring the FIFO condition. In 
case of increasing travel times, the slope can be chosen freely (here: δli = 1).  

 

 

Fig. 2. Derivation of a FIFO consistent travel time function 
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FIFO consistent, time-dependent topologies allow for the efficient derivation of time-dependent 
distance matrices. However, TDVRP solution requires an individual shortest path for every possible 
departure time, leading to a potentially large number of required distance matrices. In order to limit the 
computational burden, we follow Maden et al. [5] and compute shortest paths for departures on every full 
quarter-hour only, resulting in 672 distance matrices for the entire week. 

4.2. Time-Dependent Vehicle Routing 

The TDVRP enhances the well-known Vehicle Routing Problem (VRP), which considers distances or 
travel times between customers to be a single constant. However, ignorance of time dependency might 
lead to a suboptimal solution with a different route structure and a different number of vehicles needed 
than would result from the time-dependent optimal solution [25]. The degree of infeasibility increases 
with the increase of the degree of time dependency. The static solutions, even if they might seem to be 
better, are usually infeasible, and even if the static solutions are feasible, they are often suboptimal [13]. 
Although the VRP is one of the most investigated optimization problems, literature on the TDVRP 
variant is still rather scarce. On the one hand, adequate travel time data has not been available in the past, 
which is recently changing due to ongoing advances in telematics. On the other hand, the TDVRP is 
harder to model and harder to solve than the VRP, because a time-dependent topology is required and 
because well-known principles of static problem solution do not hold [23]. 

The TDVRP can be defined as follows: Let  be a complete, directed, evaluated graph 
consisting of vertices  and edges . Vertex  represents the 
depot, whereas remaining vertices represent customers. A time-dependent travel time matrix  
represents the costs  that arise when travelling from customer node  to customer  using the 
corresponding edge at time . The entries of  denote time-dependent costs in terms of time-dependent 
travel times; once the time bucket during which a link is traversed is known, the travel time for this link is 
a known constant [25]. In sum, the TDVRP aims at the determination of the optimal tour plan where (1) 
every tour is starting at the depot at a given time  and is terminating there at the end of the tour, (2) 
every customer is visited exactly once by one vehicle, (3) the number of tours as well as total travel time 
is minimized. A mathematical formulation of the TDVRP can be found in [26]. 

TDVRPs of practical size are usually solved by heuristics, which require the efficient evaluation of 
neighborhood moves. Here, a local neighborhood move involving deliveries near the origin of a route 
could have a significant effect on the timings later on. This makes it more difficult to determine the effect 
of a neighborhood move with respect to the goal of the optimization. The well-known Savings 
algorithm [27], for example, is in its pure form not suited for the determination of TDVRP solutions, 
although it is very successful in the case of static VRP solution. The Savings algorithm works with a 
precomputed list of savings that result from the “merger” of pendulum tours. This principle becomes 
questionable in time-dependent contexts, since the actual saving depends on the time of the day, which on 
the other hand determines the Savings value itself. More details on TDVRP heuristics can be found in [4], 
[6], [12], [23], [25], [28], [29] and [30].  

In the following case study, we refer to a recent solution approach by Maden et al. [5]. They utilize a 
tabu search approach which improves an initial solution determined by a sequential insertion heuristic by 
Solomon [31] and a subsequent parallel insertion heuristic by Potvin and Rousseau [32]. 

5. City logistics case study 

A case study for the urban area of Stuttgart, Germany, illustrates benefits and efforts of time-
dependent travel times for vehicle routing. The case study is based on an optimization framework which 
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is capable of utilizing FH and FW travel time data in a time-dependent vehicle routing heuristic. 
Computational experiments are conducted for a fictitious city logistics service provider that serves 50 
randomly chosen consumers by several vehicles. The depot is located within a commercial area in the 
suburbs. Half of the consumers are located within the inner city or within outer boroughs, respectively. 
Consumer service time is 10 minutes; the maximum tour duration is fixed to 4 hours.  

Tour plans are computed based on FW travel time data resulting from FCD which has been collected 
by the German Aerospace Centre (DLR) in the years 2003-2005. Raw data amount up to 230 million 
FCD and refer to an area of 35x35 km² and about 100 000 links, respectively. For computational 
experiments, we limit the area of investigation to the city of Stuttgart. Here, the most FCD measurements 
have been raised. Links within this area are featured by high standard deviations of speed measurements, 
implicating the necessity of time-dependent vehicle routing. Empirically collected FCD has been analysed 
and aggregated as described above. Aggregated speed data has been transformed into FW data sets, which 
are used for the determination of time-dependent distance matrices. 

In Table 1, figures of computational effort for time-dependent routing applications are summarized. 
For a comparison of the travel time data sets from an algorithmic point of view, we point out the resulting 
input data per link for the relevant extract of the road network in the core city of Stuttgart. In case of static 
roadmap travel times, effort is rather low, but time-dependent optimization is not supported. Aggregation 
of empirical traffic data in terms of FCD leads to a voluminous FH data set, facilitating time-dependent 
planning by 168 travel time values per network link. FW data contrasts FH data in terms of a very 
compact time-dependent travel time data set, decreasing the required input data for optimization in 
volume of 96%. 

Table 1. Comparison of the required volume of input data regarding different travel time data sets 

Data set roadmap travel times FCD hourly averages (FH) 
FCD weighted averages 
(FW) 

Input data n t  d  n (n  (t  k))  d 

Input data Stuttgart 
(t  = 24, d = 7, n = 6832, k = 6) 

6 832 1 147 776 48 832 

Input data Stuttgart per link 1 168 7.1 

Time-dependent routing No Yes Yes 

n = number of links, t = number of time buckets per day, d = number of days, k = number of clusters 

 
In order to demonstrate the impact of time dependency, time-dependent vehicle routing is conducted in 

terms of 7x24 tour plans. In particular, the departure time at the depot is varied in 1-hour steps beginning 
with Monday, 00:00. Results are illustrated in Fig. 3. Individual days of the week are denoted by grey 
shadowing. Overall travel times are shown in terms of a black solid curve, depending on the specific 
departure time at the depot. The required number of vehicles for the delivery to all 50 consumers within a 
4 hour time slot is denoted by a solid, grey line. Overall distances travelled are shown in terms of the 
dotted curve. 

Depending on the departure time at the depot, temporal variations in overall travel times are clearly 
visible. Durations of tours vary between 159 minutes (departure Thursday, 1:00, 108 kilometres driven) 
and 283 minutes (departure Wednesday, 15:00, 143 kilometres driven). As far as deliveries can be 
completed during the night, i.e., in times of “free flow” traffic, overall travel times are relatively low 
(about 150-200 minutes), resulting in a requirement of 3 vehicles only. However, as soon as the execution 
of tours comes in touch with morning and afternoon rush hours, overall travel times increase a lot to up to 
250 minutes, which is accompanied by increasing demand for transportation resources in terms of 4 
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vehicles. At weekends, temporal variations are not that distinct as during working days. Overall 
kilometres driven vary between 100 and 150 km, following the evolution of travel times.  

 

 

Fig. 3. Overall travel times, distances and number of vehicles required 

As a benchmark, the solution of a static VRP based on an average speed per link and the same set of 
consumers would result in a travel time estimation of 197 minutes and 104 kilometres driven, leading to a 
constant requirement of 4 vehicles. This corresponds to an overestimation of travel times of 24% and an 
underestimation of 44% at the maximum, respectively. The static benchmark thus underlines the 
importance of time-dependent vehicle routing with regard to consumer satisfaction as well as to economic 
and environmental goals of city logistics concepts. 

6. Conclusion 

Cost-efficient as well as consumer-oriented delivery of e-commerce products results in enormous 
challenges for city logistics service providers. In this paper, prerequisites for the improvement of planning 
procedures have been discussed with regard to the fulfillment of consumer promises as well as economic 
meaningful delivery concepts. Telematics based data collection and sophisticated analysis of travel time 
data allow for the determination of compact travel time data sets, which represent typical phenomena of 
urban traffic flows. In particular, the focus has been on the modelling of time-dependent topologies based 
on FCD being available city-wide. An optimization framework has been presented, comprising time-
dependent distance matrices and a state-of-the-art TDVRP heuristic. The framework has been used for the 
demonstration of advantages of time-dependent vehicle routing in terms of more reliable and cost-
efficient delivery tours. 

In the future, the optimization framework will be enhanced regarding predefined customer time 
windows (VRPTW). Here, the impact of the variation of time-dependent travel times on the reliability of 
customer time windows will be investigated. Furthermore, structural quality of resulting tour plans will be 
examined with regard to the reliability of chosen routes as well as to the adaptability of heuristics to time-
varying input data.  

Although time-dependent vehicle routing may lead to more reliable travel time anticipation, the impact 
on overall city traffic and overall emissions remains an open question. On the one hand, time-dependent 
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travel times might reduce costs of city logistics providers due to decreasing overtimes and consumer 
dissatisfaction. On the other hand, increasing reliability of Attended Home Delivery might lead to a 
further increase of online retail share, reducing customers’ trips to shopping centres. Thus, investigations 
on the overall impact on sustainable and environment-friendly delivery will have to be explored 
furthermore. 
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