
Theoretical Computer Science 315 (2004) 151–190
www.elsevier.com/locate/tcs

Encoding types in ML-like languages�

Zhe Yang
Department of Computer Science, New York University, USA

Abstract

This article presents several general approaches to programming with type-indexed families of
values within a Hindley–Milner type system. A type-indexed family of values is a function that
maps a family of types to a family of values. The function performs a case analysis on the input
types and returns values of possibly di/erent types. Such a case analysis on types seems to be
prohibited by the Hindley–Milner type system. Our approaches solve the problem by using type
encodings. The compile-time types of the type encodings re1ect the types themselves, thereby
making the approaches type-safe, in the sense that the underlying type system statically prevents
any mismatch between the input type and the function arguments that depend on this type.
A type encoding could be either value-dependent, meaning that the type encoding is tied to a

speci3c type-indexed family, or value-independent, meaning that the type encoding can be shared
by various type-indexed families. Our 3rst approach is value-dependent: we simply interpret a
type as its corresponding value. Our second approach provides value-independent type encodings
through embedding and projection functions; they are universal type interpretations, in that they
can be used to compute other type interpretations. We also present an alternative approach to
value-independent type encodings, using higher-order functors.
We demonstrate our techniques through applications such as C printf-like formatting, type-

directed partial evaluation, and subtype coercions.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades, the Hindley–Milner type system [17,26] evolved into the
most popular type basis of functional languages. It underlies several major higher-order,
statically typed functional programming languages, such as ML [27] and Haskell [31].

� A preliminary version of this paper appeared in Proceedings of the 1998 International Conference on
Functional Programming, ACM Press, 1998.
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Fig. 1. A type-indexed family of values.

This popularity can be attributed to, among other reasons, (1) static typing,
which serves as a static debugging facility, and (2) implicit polymorphism (made
possible by the principal typing scheme), which removes the burden of pervasive
explicit type annotations. The simplicity of the type system, however, also restricts
the class of typeable programs. For example, it is impossible to examine the
type of a value at run-time, as in a dynamically typed language such as
Scheme [24].
Functions that take type arguments and return values of possibly di/erent types

accordingly appear frequently in the abstract formulations of certain algorithms. These
functions form an interesting class of programs, which seem to be beyond the capability
of the Hindley–Milner type system. In this article, we formulate such a function as a
type-indexed family of values, i.e., a family of values indexed by one or more type
argument(s). Fig. 1 illustrates a type-indexed family v indexed by one type argument
�: v= {v�}�∈F , where � ranges over a family F of types. For a given type �, the
corresponding value is v� of type T�.
Usually, the family F of types is inductively speci3ed using a set of type construc-

tors. Correspondingly, the F-indexed family v of values is de3ned by case analysis
on the type constructions. Since all types are implicit in a language with Hindley–
Milner type system, only value encodings of types, instead of types themselves, can
serve as the arguments of a function that represents a type-indexed family. One might
try to reduce case analysis on type constructions to case analysis on value construc-
tions, by encoding the type arguments using inductive data types. This would not
work, however, because di/erent branches of the case-expression might have di/er-
ent types, and hence the case-expression may not be typeable. A common strategy in
such a situation is to use tagged inputs and outputs, which are of some inductive data
types as well. However, this solution puts the burden of tagging on the user, which
is not only inconvenient, probably unusable when verbatim values are required, but
also “type-unsafe”, in that a run-time exception might be raised due to unmatched
tags.
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The problem of programming with type-indexed families of values has exposed the
limitations of the Hindley–Milner type system, and it has motivated a line of research
that explores more expressive type systems, notably intensional type analysis [15] and
polytypic typing [19]. This article, in contrast, investigates what can be done within the
framework of the Hindley–Milner type system. We demonstrate our methods with ML,
though the techniques are equally applicable to any other functional language based on
the Hindley–Milner type system.
We 3rst show that interpreting types � using corresponding values v� gives a type-

safe solution to the problem. With this approach to type encodings, we show how
examples ranging from a printf-like formatting function 1 to type-directed partial eval-
uation can be programmed in ML. Their type safety is statically ensured by the ML
type system.
But with this 3rst approach, a type encoding is application-speci3c, or value-

dependent, i.e., the type encoding is tied to a speci3c family of values. Such a type
encoding is not suitable in the practice of modular programming: one should be able
to program di/erent type-indexed families that share the same family of type indices
separately, and combine them later. It is therefore interesting to 3nd a method of type
encoding that is independent of any particular type-indexed family. A value-independent
encoding of a speci3c type � can then be combined with the representation of a type-
indexed family, say v, to deliver the value v�. We present two methods of creating
such a value-independent type encoding:
1. A type-indexed family of values is speci3ed as a tuple of value constructing func-

tions, one for each possible type constructor, and the encoding of a speci3c type
recursively selects and applies components from the tuple. This gives rise to a
Martin-LJof-style encoding of inductive types. The encoding uses 3rst-class polymor-
phism and higher-order polymorphism, and can be implemented using the higher-
order module language of Standard ML of New Jersey [3].

2. A type � is encoded as the embedding and projection functions between verbatim
values, of type �, and tagged values, of a universal data type U . To encode a speci3c
value v� of a type-indexed family v, we can 3rst de3ne its equivalent value, whose
type substitutes the universal data type for type �, and then coerce it to the speci3c
value of the indexed type. We show that this type encoding is universal, i.e., the
coercion function can always be constructed from the embedding and projection
functions of the indexed types.
In Section 2, we formalize the notion of type-indexed values, give examples, and

discuss why it is diMcult to program with them. In Section 3, we view type encodings
as type interpretations, characterize requirements for correct implementations of type-
indexed values, and give the value-dependent approach to programming type-indexed
values in ML. In Section 4, we present the two approaches to value-independent type
encodings, and argue that the second approach is universal and more practical. We
discuss related work in Section 5 and conclude Section 6.

1 Originally devised by Danvy [6].
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2. Type-indexed families of values

2.1. The notion

Type-indexed families of values (or simply type-indexed families) are used in the
formulation of algorithms given in a type-indexed fashion. Depending on input type ar-
guments, speci3c values within the same family could have di/erent types. For brevity,
we mainly consider those families indexed by only one type argument. Multiple type
arguments can be reduced to a single type argument by bundling all type indices, but
this solution could lead to code explosion. We will return with a practical treatment
for dealing with multiple type arguments in Section 4.4.
A type-indexed family is usually de3ned by induction on the type �, i.e., it is

speci3ed in the form

v� = e;

where expression e performs a case analysis on type �, and uses the values indexed
at the component types of type �. This notion is spelled out in the following series of
de3nitions.

De�nition 1 (Family of types). An (inductive) family of types is inductively const-
ructed in the following form:

� = c1(�11; : : : ; �1m1 )
| : : :
| cn(�n1; : : : ; �nmn)

(1)

where each ci is a type constructor, representing a type construction in the underlying
language (ML in our case), which builds a type � using component types �i1 through
�imi . We write Fc1 ; :::; cn for the family of types.

In most of our examples, the constructors ci are named as the type constructions they
represent, such as × (product) and → (function). It is not uncommon, however, that the
constructors ci are named according to the application: In the string-formatting example
(Section 3.4), intuitive formatting directives are used for the constructor names. For
these cases, one can take the altervative view that the constructors de3ne a syntactic
family, and there is a compositional mapping from this syntactic family to the family
of types; we make this mapping notationally explicit whenever necessary.
Without loss of generality, we assume that the case analysis used in the de3nition of

the type-indexed family occurs at the outer-most level of the right-hand-side expression.
This assumption accommodates the following de3nition.

De�nition 2 (Type-indexed family of values). A family of values indexed by the
family Fc1 ; :::; cn of types is speci3ed inductively in the following pattern-matching
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form:

vc1(�11 ;:::;�1m1 ) = e1(v�11 ; : : : ; v�1m1 )
...

vcn(�n1 ;:::;�nmn ) = en(v�n1 ; : : : ; v�nmn )

(2)

In the other words, speci3c values in the family are constructed inductively using
the expressions e1 to en. For a given type �, we write v� to represent the unique term
obtained by unfolding the speci3cation according to �. We require that each expression
ei be expressible in the underlying language, which is ML in our case; this condition
guarantees that each v� must be an ML-expression. The types of each expression ei,
consequently, might only contain type variables that are bound at the top level, i.e.,
the type must be rank-1 polymorphic type of the form ∀�̃:�.
It is the possible variation in the types of the values that makes programming with a

type-indexed family challenging and interesting. We therefore should make precise the
types of the values in a type-indexed family of values. We observe that, in the appli-
cations that we encounter, the types of the values in the same family stay essentially
the same, modulo the occurrences of the type index. That is, there is a type Q with
a free type variable �, such that the type of value v� is T�=Q{�=�}. 2 Returning to
De3nition 2, we can infer that the type scheme of the expression ei should be instanti-
atable to T�1 × · · · ×T�mi →T�=Q{�1=�}× · · · ×Q{�mi =�}→Q{ci(�1; : : : ; �mi)=�}. By
abstracting over the types �1 through �mi , we can write the type scheme for a type-
indexed family of values in the following form.

De�nition 3 (Type scheme). A type-indexed family of values v, as given in De3nition
2, is assigned a type scheme as v: ∀�∈Fc1 ; :::; cn :Q, if expression ei has the (Hindley–
Milner) type scheme ∀�1; : : : ; �mi :(Q{�1=�}× · · · ×Q{�mi =�})→Q{ci(�1; : : : ; �mi)=�}
for all 16i6n.

2.2. Running examples

This section introduces some examples to demonstrate the challenges posed by type-
indexed families. They are revisited in later sections to illustrate our methods for
programming with type-indexed families.

2.2.1. List 3attening and polytypic printing
The flatten program, which 1attens arbitrary nested lists with integer elements, is

a toy example often used to illustrate the intricacy of typing “typecases” (case stud-
ies on types) in languages with Hindley–Milner type systems. It can be written in a
dynamically typed language like Scheme (where type testing is allowed) as:

flatten x = [x] (where x is atomic)
flatten [x1; : : : ; xn] = (flatten x1)⊗ · · · ⊗ (flatten xn)

2 The type Q could contain other free type variables, which, however, can only be used monomorphically.
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where ⊗ is the list concatenation operator. To write this function in ML, a natural
solution is to use the ML data type mechanism to de3ne a data type for nested lists,
and use pattern matching facilities for case analysis. However, this requires a user
to tag all the values, making it somewhat inconvenient to use. Is it possible to use
verbatim values directly as the arguments? The term “verbatim values” here refers to
values whose types are formed using only native ML type constructors, and are free
of user-de3ned value constructors.
Due to restrictions of the ML type system, a verbatim value of nested list type must

be homogeneous, i.e., all members of the list must have the same type. In the particular
case that members are lists themselves, they must have the same nesting depth. The
1atten function for verbatim values can therefore be speci3ed as a family of 1atten
functions indexed by the possible type argument �.

Example 4 (1atten). The family F int; list of types is generated by the following
grammar. 3

� = int | �1 list

The 1atten function can then be speci3ed as an F int; list-indexed family of function
values.

flatten : ∀� ∈ F int;list: � → int list
flattenint x = [x]
flatten�1 list[x1; : : : ; xn] = (flatten�1 x1)⊗ · · · ⊗ (flatten�1 xn)

This de3nition conforms to De3nition 2, since we can also write:

flattenint = e1
flatten�1 list = e2(flatten�1 )

where

e1 : int → int list = �x:[x]
e2 : ∀�:(� → int list) → (� list → int list) = �f:�[x1; : : : ; xn]:fx1 ⊗ · · · ⊗ fxn

It should be easy to check that flatten has the declared type scheme (De3nition 3).

Before trying to write the function flatten, let us analyze how it might be used.
A 3rst attempt is to make the input value (of some arbitrary homogeneously nested
list type) the only argument. This would require that both the expression flatten 5

and the expression flatten [6] type-check, so the function argument should be of a
polymorphic type that generalizes both type int and type int list—this polymorphic
type can only be a type variable �. But ML’s parametric polymorphism disallows
inspecting the type structure of a polymorphic value. Consequently, it is impossible to
write function flatten with the value to be 1attened as the only argument.

3 It is for the ease of presentation that we use int for the base case here, instead of a universally quanti3ed
type variable. We discuss type variable and polymorphism in Section 3.5.



Z. Yang / Theoretical Computer Science 315 (2004) 151–190 157

The next attempt is to use an extra argument for describing the input type, i.e.,
a value that encodes the type. We expect to rewrite the aforementioned function in-
vocations as flatten Int 5 and flatten (List Int) [6], respectively. One might try to
encode the type using a datatype as:

datatype typeExp = Int | List of typeExp

The 3xed type typeExp of the type encoding, however, constrains the result of applying
function flatten to the type encoding to a 3xed ML type again. A simple reasoning
like the one for the 3rst attempt shows that it is still impossible to give a typeable
solution in ML.
A similar, but probably more useful example of type-indexed family, is polytypic

printing. The functionality of polytypic printing is to convert data of arbitrary verbatim
types to a string representation suitable for output, according to the type. For the type
constructors, we consider integer, string, product, and list.

Example 5 (polytypic printing). The family F toStr=F int;str;×; list of types is generated
by the following grammar:

� = int | str | �1 × �2 | �1 list

Polytypic printing is speci3ed as a F toStr-indexed family of functions.

toStr : ∀� ∈ F toStr:� → str
toStrint x = intToStr x
toStrStr s = s
toStr�1×�2 (x1; x2) = “(” ∧ (toStr�1 x1)

∧“; ” ∧ (toStr�2 x2) ∧“)”
toStr�1 list[x1; : : : ; x2] = “[” ∧ (toStr�1 x1)

∧ · · · ∧“; ” ∧ (toStr�1 xn) ∧“]”

where ∧ is the string concatenation function.

Having speci3ed polytypic printing, we can use it to de3ne a C printf-style formatting
function, also as a type-indexed family. The formatting function, however, is slightly
more involved. In order not to distract the reader with its details at the current stage,
we postpone its development to Section 3.4, where the basic programming technique
has already been introduced.

2.2.2. Type-directed partial evaluation
Partial evaluation is an automatic program transformation technique that special-

izes programs with respect to partial input, thereby improving the performance of
the programs when running on the remaining input. Traditional partial evaluators are
syntax-directed [23]: they work by simplifying the partially applied subject program
through symbolic computation. An eMcient alternative partial evaluation technique is
type-directed partial evaluation (TDPE) [4,11]. In the case of TDPE, the simpli3cation
process for the partially applied subject program is carried out using a reduction-free
normalizer: instead of performing reduction, it extracts the normal form of a program
from a suitably chosen interpretation of the program. In this interpretation, the base
types are interpreted as code (or expression) types.
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(reify) ↓exp v = v
↓�1→�2 f = �x: ↓�2 (f(↑�1 x))

(where x is a fresh variable)
(re1ect) ↑exp e = e

↑�1→�2 e = �v1: ↑�2 (e@(↓�1 v1))

Fig. 2. Type-directed partial evaluation.

We shall not go into detail of the TDPE technique itself, but devote our attention
to the type-indexed family of the extraction functions, called rei4cation. Given the
interpretation of base types as code types, the extraction functions can be viewed
as coercions from higher-order types constructed from the code type using various
type constructors to the code type. In this paper, we consider only the function type
constructor, and TDPE only for pure simply-typed �-terms.

Example 6 (Type-directed partial evaluation). The family Fexp;→ of types is generated
by the following grammar:

� = exp | �1 → �2

where the type exp is an inductive type that provides representation for generated code.

datatype exp = VAR of string
| LAM of string * exp
| APP of exp * exp

To use ML with exp as an informal two-level language for describing code-generation
algorithms, we write �x:E as shorthand for LAM(x, E), E1@E2 as shorthand for APP(E1,
E2), and an occurrence of �-bound variable x as shorthand for VAR(x).

The extraction function for type-directed partial evaluation is de3ned as two families
of type-indexed functions ↓ (reify) and ↑ (re1ect) (Fig. 2), which recursively call each
other for the contravariant function argument. At 3rst glance, their de3nitions do not
3t into the canonical form of a type-indexed family (De3nition 2); however, pairing
the two functions at each type index puts the de3nition into the standard form of a
type-indexed family (Fig. 3).
In the following, we write “•” as a shorthand for the type exp.
It might be helpful, for a rough intuition of the TDPE algorithm, to work out

some simple examples, such as ↓•→•→•→• ((�x:�y:x) (�x:�y:x)) and ↓(•→•)→ (•→•)

(�f:�x:f(f(x))). Detailed accounts of type-directed partial evaluation can be found in
the literature [8,11,13].
In his article [4], Danvy presents the Scheme code for this algorithm. He represents

the type index as a value—which is an S-expression and is similar to a value of
inductive data type in ML—thereby reducing type analysis to case analysis. A direct
transcription of that program into an ML program, however, would require the input
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(↓; ↑) : ∀� ∈ Fexp;→:(� → exp)× (exp) → �)
(↓; ↑)exp = (�v:v; �e:e)
(↓; ↑)�1→�2 = let (↓�1 ; ↑�1 ) = (↓; ↑)�1

(↓�2 ; ↑�2 ) = (↓; ↑)�2
in (�f:�x: ↓�2 (f(↑�1 x));

�e:�v: ↑�2 (e@(↓�1 v))
(where x is a fresh variable)

Fig. 3. TDPE in the general form of type-indexed family.

arguments to be tagged. Such a solution is not satisfactory for the following reasons:
• Using type-directed partial evaluation, one expects to normalize a program in the
source language with minimum modi3cation. It is cumbersome for the user to tag=
untag all the program constructs. A verbatim program is much preferable in this
case.

• Unlike the function flatten, the function ↑ (re1ect) requires the type argument ex-
plicitly. The type index � only appears as the codomain of the function ↑, whereas
its domain is always of type exp. For the same input expression, varying the type
argument results in di/erent return values of di/erent types.
Because explicit type arguments must be present, static type checking of ML

cannot guarantee the consistency of the type argument and the tags attached to the
input values cannot be guaranteed by static type checking of ML: run-time “type
error” can arise in the form of a pattern mismatch exception. This problem is also
present in the Scheme program.

3. Type-indexed families as type interpretations

Our 3rst approach to programming type-indexed families v is based on interpreting
the types � as the values v� indexed by these types.

3.1. Implementing indexed families with type encodings: the idea

As we argued in the list-1attening example (Section 2.2.1), if verbatim arguments
are required for an ML function that represents a type-indexed family, then (1) a type
encoding must be explicitly provided as an argument to the function, and (2) this type
encoding cannot have a 3xed type. Now that the type encodings, say E� for all �∈F ,
must have di/erent types themselves, a reasonable choice of these types should make
them re1ect the types � being encoded.
A type family usually consists of in3nitely many types, therefore we should not

encode types directly, but encode type constructors, such that the encoding of a type
is constructed inductively by using the encoding of the type constructors. To be more
precise, for each type constructor c of arity m (i.e., it constructs a type � from types
�1; : : : ; �m), its encoding Ec as a term (in ML) is a function that transforms the type
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encodings E�1 ; : : : ; E�m to the type encoding E�. In other words, the encodings of in-
ductively constructed types should form a particular syntactic interpretation, in the
underlying language. If we use 〈|u|〉 instead of Eu to denote the interpretation, we can
write down the requirements for the encodings:

If � = c(�1; : : : ; �m)
then 〈|�|〉 ≡ 〈|c|〉(〈|�1|〉; : : : ; 〈|�m|〉):

where ≡ represents strict syntactic equality. This can be understood as requiring the
interpretations of type and type constructors to form a homomorphism, i.e.,

〈|c(�1; : : : ; �m)|〉 ≡ 〈|c|〉(〈|�1|〉; : : : ; 〈|�m|〉) (3)

This way, for the encoding of a whole family of types, it suMces to give the encoding
of the type constructors, since the encoding of every type is uniquely determined.

De�nition 7 (Encoding a family of types). The encoding of a family of types Fc1 ; :::; cn

(as given in De3nition 1) is speci3ed as the encoding of the constructors c1 through
cn as ML-terms 〈|c1|〉 through 〈|cn|〉, such that the encoding 〈|�|〉 of every type, induced
according to Eq. (3), is typeable.

With such an encoding 〈| · |〉 of a type family F , a F-indexed family v of values can
then be represented as a function fv that takes the type encoding as an argument.

De�nition 8 (Implementation of type-indexed families). Let F be a family of types, v
be an F-indexed family of values, and 〈| · |〉 be an encoding of F (given on the con-
structors). An ML function fv implements a type-indexed value v through the encoding
〈| · |〉, if the following equation holds for all �∈; F .

v� = fv〈|�|〉 : (4)

The equality used in Eq. (4) should be the appropriate semantic equality in the
implementation language: ��-equivalence for the pure �-calculus, �c-equivalence for a
language with computational e/ects [29], such as ML.

3.2. The ad hoc approach

The task of 3nding the type encodings now boils down to 3nding suitable interpre-
tations for the type constructors ci. The close similarities between the general form of
type-indexed values in the set of equations given by (2) on p. 8 and the interpretation
of type constructors in Eq. (3) hints at an immediate solution to programming with
type-indexed families: We can interpret a type � as the corresponding value v�, which
is, in turn, achieved by interpreting the type construction ci using the value construction
ei in the set of equations given by (2).
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val Int: int -> int list (∗ 〈|int|〉 ∗)
= fn x => [x]

fun List (T:’a -> int list): (’a list -> int list) (∗ 〈|list|〉 ∗)
= fn l => foldr (op @) [] (map T l)

fun flatten T = T (∗ fflatten , �x:x ∗)

Fig. 4. flatten in ML: ad hoc encoding.

Proposition 9 (Ad hoc encoding). Let Fc1 ; :::; cn be a family of types and v an Fc1 ; :::; cn -
indexed family of values, with associated data as presented in De4nition 2, i.e.,
type constructors ci and corresponding data constructions ei. The following equation
de4nes a type encoding for F.

〈|ci|〉, ei

It induces the following encoding of types:

〈|�|〉 ≡ v�

Proof. That 〈|�|〉≡ v� follows immediately from Eqs. (2) and (3). The typeability of vi
implies the typeability of 〈|�|〉.

This type encoding is ad hoc, in the sense that it is speci3c to the F-indexed family
v. The implementation of the indexed family is immediate.

Theorem 10. Let Fc1 ; :::; cn be a family of types and v a Fc1 ;:::;cn -indexed family of values,
with associated data as presented in De4nition 2. The identity function fv, �x:x
implements v through the ad hoc encoding 〈|ci|〉, ei.

3.3. Examples

Let us demonstrate the ad hoc type-encoding method with the running examples.

Example 11 (1atten). The de3nition of the function flatten (Example 4) gives rise to
the following interpretations of type constructions:

〈|:|〉 : ∀� ∈ F int;list:� → int list
〈|int|〉 = �x:[x]

〈|� list|〉 = �[x1; : : : ; xn]:〈|�|〉x1@ · · ·@〈|�|〉xn
A direct coding of these interpretations of type construction as ML functions leads to
the program in Fig. 4.
Since we choose the ML function names to be the type constructors they interpret,

a type argument, e.g., List (List Int), already has the value of

〈|(int list)list|〉 = flatten(int list) list;
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type ’a ts = ’a -> string (∗ Type scheme : � → str ∗)
val Int: int ts (∗ 〈|int|〉 ∗)

= fn n => Int.toString n
fun Str: string ts (∗ 〈|str|〉 ∗)

= fn s => s
fun Pair (toStr1: ’a ts) (toStr2: ’b ts) (∗ 〈| × |〉 ∗)

: (’a * ’b) ts
= fn (x1: ’a, x2: ’b) =>

"(" ^ (toStr1 x1) ^ ", " ^ (toStr2 x2) ^ ")"
fun List (toStr: ’a ts): (’a list ts) (∗ 〈|list|〉 ∗)

= fn (l: ’a list) =>
let fun mkTail [] = "]"

| mkTail [e] = (toStr e) ^ "]"
| mkTail (e :: el)
= (toStr e) ^ ", " ^ (mkTail el)

in "[" ^ (mkTail l)
end

fun toStr T = T (∗ ftoStr , �x:x ∗)

Fig. 5. Polytypic printing in ML: ad hoc encoding.

and function flatten can be de3ned just as the identity function. As desired, the function
takes verbatim values as input. For example, the expression

flatten (List (List Int)) [[1, 2], [], [3], [4, 5]]

evaluates to [1,2,3,4,5].

This example exhibits the basic pattern of the ad hoc approach to programming with
a type-indexed family: for each type constructor, we bind to its corresponding ML
name the expression ei through a value or function de3nition. Their associated types,
as given in De3nition 3, are rank-1 and therefore accepted by the ML type system. 4

The same method works for the examples of polytypic printing and type-directed
partial evaluation.

Example 12 (polytypic printing). Fig. 5 shows the ML implementation of polytypic
printing, as formulated in Example 5, using the type encoding 〈|�|〉, toStr�.
As an example, evaluating the expression

toStr (List (Pair Str (List Str)))
[("N", ["Prince", "8", "14"]),
("P", ["Newport", "Christopher", "9"])]

yields "[(N, [Prince, 8, 14]), (P, [Newport, Christopher, 9])]".

4 The type annotations are not necessary, since the ML type system infers the most general type scheme
anyway; we include them for the sake of clarity.



Z. Yang / Theoretical Computer Science 315 (2004) 151–190 163

datatype exp = VAR of string (∗ exp ∗)
| LAM of string * exp
| APP of exp * exp

type ’a rr = (’a -> exp) * (exp -> ’a)
(∗ Type scheme : (� → exp)× (exp→ �) ∗)

infixr 5 -->
val a’: exp rr (∗ 〈|exp|〉 ∗)

= (fn v => v, fn e => e)
fun (T1 as (reif1, refl1): ’a rr) --> (∗ 〈| → |〉 ∗)

(T2 as (reif2, refl2): ’b rr): (’a -> ’b) rr
= (fn (f: ’a -> ’b) =>

let val x = Gensym.new()
in LAM(x, reif2 (f (refl1 (VAR x))))
end,

fn (e: exp) =>
fn (v: ’a) => refl2 (APP(e, reif1 v)))

fun reify (T as (reif_T, refl_T)) = reif_T (∗ f↓ ∗)
fun reify_init T v = (Gensym.init(); reify T v)

(∗ reify; with name counter initialized ∗)

Fig. 6. Type-directed partial evaluation in ML.

Example 13 (type-directed partial evaluation). Fig. 6 shows the ML implementation
of type-directed partial evaluation, as described in Example 6 and formulated as a
type-indexed family of values in Fig. 3, using the type encoding 〈|�|〉=(↓; ↑)�. The
structure Gensym provides a function new for generating fresh names using a counter,
and a function init to initialize this counter.
As an example, the expression

reify_init (a’ -> a’ -> a’ -> a’)
((fn x => fn y => x) (fn x => fn y => x))

evaluates to LAM("x1", LAM("x2", LAM("x3", VAR "x2"))), which represents the �-expres
sion �x1:�x2:�x3:x2.

3.4. Printf-style String formatting

We can apply the ad hoc type encoding method to program a type-safe formatting
function in the style of the C printf function. In fact, this is an example where it is more
natural not to view the indices as types directly, but to view them as syntactic phrases
that are translated to the types that they represent under a compositional mapping,
say R.
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We consider the formatting speci3cation as a sequence of 3eld speci3ers. The gram-
mar of formatting speci3cation is given below:

Spec ::= NIL | Field :: Spec
Field ::= LIT s | % �

where s is a string literal and % � speci3es an input 3eld argument of type �. We want
to write a function format such that, for instance, the expression

format (% Str ++ LIT " is " ++ % Int ++ LIT "-years old.")
"Mickey" 80

evaluates to the string "Mickey is 80-years old.".
Function format is indexed by a formatting speci3cation fs. A specialized formatfs

has type �1→ �2 : : : → �n → str, where �i’s are from all the 3eld speci3ers “% �i” in the
speci3cation fs in the order of their appearance. We use an auxiliary function format′,
which introduces one extra argument b as a string bu/er; the function appends its
output to the end of this input string bu/er to build the output string. The functions
format and format′ can be formulated as follows.

Example 14. The syntactic family Ffs of formatting speci3cations is given by the
following grammar (in concrete syntax):

fs ::= NIL | LIT s :: fs′ | % � :: fs′ (� ∈ F toStr)

Here, the 0-ary constructor NIL and the binary constructor :: are used for building
sequences, while the unary constructors LIT s and % � are used for building individual
3eld speci3ers.
A formatting speci3cation fs determines the type of formatfs, through the composi-

tional translation R, de3ned as follows:

R(NIL) = str
R(LIT s :: fs′) = R(fs′)
R(% � :: fs′) = � → R(fs′)

We specify format′ as an F fs-indexed family via R, and use it to de3ne format.

format′ : ∀fs ∈ F fs :str → R(fs)
format′NILb = b
format′LIT s::fs′b = format′fs′(bˆ s)
format′% �::fs′b = �(x : �):format′fs′(bˆ toStr�x)

format : ∀fs ∈ F fs :R(fs)
formatfs = format′fs(“ ”)

where the F toStr-indexed family toStr is from Example 5.
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infix 5 ++
type ’a fmt = string -> ’a

(∗ Type scheme (of format′) : str → R( fs) ∗)

fun LIT s: (’a fmt -> ’a fmt) (∗ 〈| LIT s|〉 ∗)
= fn (p: ’a fmt) => fn b => p (b ^ s)

fun % (toStr_t: ’c ts): (’a fmt -> (’c -> ’a) fmt)
(∗ 〈| % �|〉 ∗)

= fn (p: ’a fmt) => fn b =>
fn (x: ’c) => p (b ^ toStr_t x)

fun f1 ++ f2 = f1 o f2
val NIL: (string fmt) (∗ 〈|NIL|〉 ∗)

= fn b => b
fun format (ftrans: string fmt -> ’a fmt)

= ftrans NIL ""

Fig. 7. printf-style formatting in ML: ad hoc encoding.

Following the ad hoc method, we need to interpret each individual 3eld speci3cation
f (LIT s or % �), which is a constructor for formatting speci3cations. We can de3ne
the function 〈|f|〉 as a transformer from format′fs to format

′
f::fs, i.e.,

format′f::fs = 〈|f|〉 format′fs

We obtain the interpretation of individual 3eld speci3ers by abstracting over format′fs:

〈|LIT s|〉 = �format′fs :�b:format′fs(bˆ s)
〈|% �|〉 = �format′fs :�b:�(x : �):format′fs(bˆ toStr�x)

On the practical side, it is undesirable to use the 3eld speci3cations as nested pre3x
constructors that build formatting speci3cations from NIL. For this purpose, we de3ne
a function ++ to compose such transformers (similar to the function append for lists),
and we can de3ne the function format to take such speci3cation transformer, instead
of a speci3cation, and to supply the interpretation of the empty 3eld speci3cation
〈|NIL|〉= format′NIL, along with an empty string as the initial bu/er. Putting all the
pieces together, we have the ML implementation of the string formatter in Fig. 7; it
uses the implementation of toStr in Fig. 5.
Unlike the C printf function, the above ML implementation is type-safe: compila-

tion would reject mismatched 3eld speci3cation and input argument. For example, the
type of the expression

format (% Int ++ LIT ": " ++ % Str)

is int → str → str, which ensures that exactly two arguments, one of type int, the
other of type str, can be supplied.
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The printf example also showcases the power of a higher-order functional language
with the possibility of building constructing 3eld speci3ers for compound types, through
toStr. The following expression, following Example 12, illustrates this
1exibility.

format (LIT "MTA/NJT: " ++ %(List (Pair Str (List Str))))
[("N", ["Prince", "8", "14"]),
("P", ["Newport", "Christopher", "9"])]

It should be clear that for any given type �, we can have di/erent functions to
translate a value of type � to its string representation. By de3ning more complicated
3eld speci3ers, which, e.g., allow variations in paddings, delimiters for the layout of
compound types, and by re3ning the output type from string to more sophisticated
formatting objects, we can construct sophisticated pretty-printers like John Hughes’s
[18], through the convenient printf-style interface.
Let us conclude this section with a comparison made by Danvy [5] of the type-

indexed formatting function and the two formatting library functions of SML=NJ and
of OCaml. In SML=NJ, the user is required to embed all arguments into a universal
datatype and to collect the result in a list. Any mistake in the embedding or in the
size of the list results in a run-time error. In OCaml, the formatting function is itself
type-unsafe. When applied to a formatting speci3cation, however, the function will be
specialized by the compiler, through some dedicated mechanism, into a type-safe cur-
ried function that can be used on untagged values. Programming a formatting function
as a type-indexed value yields the same e/ect as in OCaml (convenience and verbatim
values), but with the added bene3t that the formatting function itself can be statically
type-checked in ML, and remains highly extensible.

3.5. Variations

The ad hoc method easily adapts to several variations of type-indexed families.
Multiple translations of indices. In the examples up until now, the type schemes

either uses the indices directly, or a single translation of them (such as R in the
string-formatting example). We shall see that having multiple translations of the indices
occurring in the type scheme does not add to the complexity.

Other type constructions. The type constructions used in the earlier examples include
product, function, and list. One might wonder to what other type constructions the ad
hoc method is applicable. In fact, since we left unspeci3ed the type constructions in our
formulation of type-indexed families and their implementations, type-indexed families
with any type constructions can be implemented using the ad hoc method, as long as
they can be cast into the form of De3nition 2 (where ei’s could be rank-1 polymorphic);
we shall see an example that uses both the reference type and the continuation type
(Example 15). Type constructions that bind type variables, however, do not conform
to our formulation of type-indexed families.
• Polymorphic types: suppose that the universal quanti3er ∀� could be used as a
constructor. It should construct from a type � parameterized over a free type



Z. Yang / Theoretical Computer Science 315 (2004) 151–190 167

variable � (or, equivalently, a type constructor T such that �=T (�)), the type
∀�:�. A possible type for the corresponding value construction e∀�: could be
(∀T : ∗→∗:(∀�:Q{T (�)=�}→Q{∀�:T (�)=�})). Unfortunately, the polymorphism of
this type is not rank-1, and it is higher-order; therefore universal quali3cation cannot
be used as a type construction.
This analysis, however, does not rule out using a type variable as a base type

(0-ary type constructor), universally quanti3ed over at the top level of the type ex-
pression. In fact, in the 1atten example, replacing the base type int by a type variable
would cause no problem.
Instead of performing analysis over the universal quanti3er, one might want to

parameterize an index over another index or a constructor. There is no problem with
abstracting over an index, since the corresponding encoding is used only monomor-
phically in building other type encodings. Taking the polytypic printing example
(Example 12), we can code ��:�×� list as fn t => Pair t (List Int). In con-
trast, to abstract over a constructor is generally not permissible, since we want to
use the encoding of type constructors polymorphically in building type encodings.
Again taking the polytypic printing example, coding �c : ∗→∗:c((c(int)) list) as
fn x => x (List (x Int)) results in a type error.

• Recursive types: as we have seen in the 1atten example, we can use a recursive type,
such as list, in the type construction; we can as well replace list with a user-de3ned
recursive type, such as Tree. On the other hand, by the same reason we cannot
perform type analysis over a universal quanti3er, we cannot perform type analysis
over the recursive type constructor itself.
Let us demonstrate some of these possible variations through another example: iron-

ing (or, indirection elimination), which eliminates indirections of either reference type
or double-continuation type. It showcases not only some extra type constructions, but
also the use of two separate translations from the indices, one for the domain type,
and one for the codomain type.

Example 15 (iron). The family F iron of indexes is generated by the following
grammar:

� = int|�1 list|�1 × �2| �1 ref|¬¬(�1)

The indices are almost the domain types, except for the constructor ¬¬, which is
mapped into a double-continuation construction. The indices are mapped into the do-
main types and codomain types through the compositional translations RI and RO,
respectively.

RI (int) = int
RI (�1 list) = RI (�1) list
RI (�1 × �2) = RI (�1)×RI (�2)
RI (�1 ref) = RI (�1) ref
RI (¬¬(�1)) = RI (�1) cont cont
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iron : ∀� ∈ F iron:RI (�)→RO(�)
ironintx = x
iron�1 list[x1; : : : ; xn] = [iron�1x1; : : : ; iron�1xn]
iron�1×�2 (x1; x2) = (iron�1x1; iron�2x2)
iron�1 refx = iron�1 (!x)
iron¬¬(�1)c = iron�1 (callcc(�k:throwck)

Fig. 8. The indexed family of ironing functions.

RO(int) = int
RO(�1 list) = RO(�1) list
RO(�1 × �2) = RO(�1)×RO(�2)
RO(�1 ref) = RO(�1)
RO(¬¬(�1)) = RO(�1)

The ironing function is de3ned as an indexed family of functions iron in Fig. 8.
The double-continuation construction probably is not very useful by itself; but in
conjunction with the reference type, it can be used as the type for implementing
coroutine-style iterators. That is, the type � iter, � cont cont ref can be used to
implement an iterator over inductive data structures such as trees, which enumerates
elements of type � upon “ironing”. We leave the detail of implementing such iterators to
Example 16.
The ML implementation is shown in Fig. 9. As an example, the program

let val v1 = ref [3,4]
and v2 = ref [5,6]

in
iron (List (Ref (List Int))) [v1, v2, v1, v2]

end

evaluates to [[3, 4], [5, 6], [3, 4], [5, 6]].

Example 16 (Coroutine-style iterators). A double continuation type, say � cont cont,
can be understood as the type of one-shoot �-typed value producers. To invoke such a
producer, i.e., to retrieve the �-typed value, the caller should ‘throw’ to the producer,
which is a continuation, its own current continuation, which is of type � cont. This is
realized through the de3nition of iron¬¬(�) in Fig. 8.
If we further make the double continuation type mutable through a reference cell, i.e.,

employ the type � cont cont ref, we can implement a producer thread by changing
the stored continuation when suspending the thread. The structure Iterator Fig. 10
realizes this idea. In particular, the function makeIterator converts a “producer”
function to an iterator of the mutable double continuation type. This producer function
takes as arguments a function to yield the control of the thread and “produce” an
answer. The function makeIterator takes also a second argument to provide a default
value, which the iterator should produce after the return from the “producer” function.
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val Int: int -> int (∗ 〈|int|〉 ∗)
= fn x => x

fun List (T: ’a -> ’b): (’a list -> ’b list) (∗ 〈|list|〉 ∗)
= fn l => map T l

fun Pair (T1: ’a1 -> ’b1) (T2: ’a2 -> ’b2) (∗ 〈| × |〉 ∗)
: (’a1 * ’a2) -> (’b1 * ’b2)
= fn (x1, x2) => (T1 x1, T2 x2)

fun Ref (T: ’a -> ’b): (’a ref -> ’b) (∗ 〈|ref|〉 ∗)
= fn cell => T (! cell)

fun DblNeg (T: ’a -> ’b): (’a cont cont -> ’b) (∗ 〈|¬¬|〉 ∗)
= fn (c: ’a cont cont) =>

T (callcc (fn (k: ’a cont) => throw c k))
fun Iter (T: ’a -> ’b): (’a cont cont ref -> ’b) (∗ 〈|iter|〉 ∗)

= Ref (DblNeg T)

fun iron T = T (∗ firon ∗)

Fig. 9. iron in ML: ad hoc encoding.

Fig. 11 presents an example of using structure Iterator; it builds an iterator for a
binary tree. Finally, as an example for both ironing and iterator, the program

val iter1
= tree2Iter (ND(ND(ND(LF 1, LF 2), LF 3),

ND(LF 4, ND(LF 5, LF 6)))) ~1
val iter2
= tree2Iter (ND(ND(LF 5, LF 4),

ND(LF 3, ND(LF 2, LF 1)))) ~2
val pI = [iter1, iter2]
val zipped
= iron (List (List (Iter Int)))

[pI, pI, pI, pI, pI, pI, pI, pI]

zips together the traversals of the two trees to produce the following result.

[[1,5],[2,4],[3,3],[4,2],[5,1],[6,~2],[~1,~2],[~1,~2]]

3.6. Assessment of the approach

The ad hoc encoding of a type used in the previous sections is exactly the specialized
value in the indexed family at the particular type index. There are several advantages
to this approach:
• Type safety is automatically ensured by the ML type system: case-analysis on types,
though it appears in the formulation, does not really occur during program execution.
For a type-indexed family of values v : ∀� ∈ F:Q, the encoding 〈|�|〉= v� of a
particular type index � already has the required type T�=Q{�=�}. Often, the value
v� is a function that takes some argument whose type depends on type �. Since the
speci3c type of this argument is manifested in the type T�, input arguments of illegal
types are rejected.
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structure Iterator =
struct
local open SMLofNJ.Cont in
type ’a iterator = ’a cont cont ref
fun dblNeg (v: ’a): ’a cont cont
= callcc (fn k => throw (callcc (fn c => throw k c)) v)

fun makeIter (producer: (’a -> unit) -> unit) (dflt: ’a)
: ’a cont cont ref
= let val stream = ref (dblNeg dflt)

val _ =
callcc(fn back: unit cont =>
let val consumer_k =

ref (callcc(fn init_c =>
(stream := init_c;
throw back ())))

in
(producer (fn v =>
(consumer_k :=
callcc(fn (c: ’a cont cont) =>
((stream := c);
(throw (!consumer_k) v))))));

(stream := dblNeg dflt);
(throw (!consumer_k) dflt)

end)
in stream
end

end
end

Fig. 10. Iterators from mutable double continuation.

• In some other approaches that do not make the type argument explicit (e.g., using
classes of an object-oriented language), one would need to perform case-analysis on
tagged values (which include dynamic dispatching), which would require the type
index to appear at the input position. In our approach, however, the type index �
could appear at any arbitrary position in type T�; this has been used, for example,
in the implementation of the ↑ functions for type-directed partial evaluation.
But this simple solution has a major drawback: the loss of composability. One should

be able to decompose the task of writing a large type-indexed function into writing
several smaller type-indexed functions and then combining them. This would require
that the encoding of a type be sharable by these di/erent functions, each of which
uses the encoding to obtain the speci3c value indexed at this type, but from di/erent
indexed families. However, the above simple solution of interpreting every type directly
as the speci3c value would result in each type-indexed function having a di/erent set
of interpretations of type constructors, hence disallowing sharing of the type encodings.
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structure BTIterator =
struct
structure I = Iterator
datatype ’a BTree = ND of ’a BTree * ’a BTree | LF of ’a
fun tree2Iter (T: ’a BTree) (dflt: ’a): ’a I.iterator
= I.makeIter

(fn (produce: ’a -> unit) =>
let fun traverse (ND(ltree, rtree))

= ((traverse ltree); (traverse rtree))
| traverse (LF(n))
= produce n

in traverse T
end)

dflt
end

Fig. 11. Iterators for binary trees.

fun Int x = x (∗ 〈|int|〉 ∗)
fun List T = rev o (map T) (∗ 〈|list|〉 ∗)
fun super_reverse T = T (∗ fsuper reverse ∗)

Fig. 12. super reverse in ML: ad hoc encoding.

Consider the following toy example: on the family F int;int of types, we de3ne yet
another type-indexed function super reverse, which recursively reverses a list at each
level.

Example 17 (Super reverse). Let us consider the type-indexed family of functions
super reverse, de3ned as follows.

super reverse : ∀� ∈ F int;list:� → �
super reverseint = �x:x

super reverse�1 List = �[x1; : : : ; xn]:[super reverse�1xn; : : : ; super reverse�1x1]

By interpreting the types, we obtain the ML implementation in Fig. 12.

Function flatten and function super reverse can be used separately, but we cannot
write an expression such as

fn T => (flatten T) o (super_reverse T)

to use them in combination, i.e., to reverse a list recursively and then 1atten the
result, because the encoding functions Int and List are de3ned di/erently in the
two programs. (Notice that the e/ect of composing function super reverse and func-
tion flatten amounts to reversing the 1attened form of the original list, i.e., flatten ◦
super reverse= super reverse ◦ flatten.)
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This problem can be evaded in a non-modular fashion, if we know in advance
all possible families v; v′ : : : of values that are indexed by the same family of (type)
indices: we can simply tuple all the values together for the type interpretation. Every
function fvi , then, is de3ned to project out the appropriate component from the type
interpretation. Indeed, our previous program of type-directed partial evaluation (Fig. 6)
illustrates such a tupling.

4. Value-independent type encoding

In this section, we develop two approaches to encoding types independently of the
type-indexed families of values indexed by them. That is, we should be able to de3ne
the encodings 〈|�|〉 of a family F of types �, so that given any F-indexed family v of
values, a function fv that satis3es Eq. (4) can be constructed. In contrast to the solution
in the previous section, which interprets types � using values v� directly and is value-
dependent, a value-independent type encoding enables di/erent type-indexed values
v; v′; : : : to share a family of type encodings, resulting in more modular programs with
type-indexed values. We present the following two approaches to value-independent
type encoding:
• as an abstraction of the formulation of a type-indexed value, and
• as a universal interpretation of types as tuples of embedding and projection functions
between verbatim values and tagged values.

4.1. Abstracting type encodings

If the type encoding is value-independent, the function fv representing type-indexed
value v should carry the information of the value constructions ei in a speci3cation
in the form of the set of equations given in (2). This naturally leads to the following
approach to type encoding: a type-indexed value v is characterized as an n-ary tuple
ẽ=(e1; : : : ; en) of the value constructions, and the value-independent type interpretation
〈|�|〉 maps this speci3cation to the speci3c value v�.

〈|�|〉ẽ = v� (5)

With Eq. (3), we require the encoding of type constructors ci to satisfy

〈|ci|〉(〈|�1|〉; : : : ; 〈|�m|〉)ẽ
= 〈|ci(�1; : : : ; �m)|〉ẽ (by (3))
= vci(�1 ;:::;�m) (by (5))
= ei(v�1 ; : : : ; v�m) (by (2))
= ei(〈|�1|〉ẽ; : : : ; 〈|�m|〉ẽ) (by (5))

By this derivation, we have

Theorem 18. The value-independent encodings of type constructors

〈|ci|〉 = �(x1; : : : ; xm):�ẽ:ei(x1ẽ; : : : ; xmẽ)
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val Base = fn (base_v, func_v) => base_v
fun T1 --> T2 = fn (spec_v as (base_v, func_v))

=> func_v (T1 spec_v) (T2 spec_v)

fun reify T =
let val (reify_T, _) =

T ((fn v => v, fn e => e), (* base_v *)
(* func_v *)

fn (reify_T1, reflect_T1) =>
fn (reify_T2, reflect_T2) =>

... (* (reify_T, reflect_T) *)
)

in reify_T end

Fig. 13. An unsuccessful encoding of Fexp;→ and TDPE.

and the function fv(x)= x(e1; : : : ; en) implement the corresponding type-indexed
value v.

This approach seems to be readily usable as the basis of programming type-indexed
values in ML. However, the restriction of ML type system that universal quanti3ers
on type variables must appear at the top level again makes this approach impossible:
we cannot abstract over a value of a polymorphic type, such as the ei’s.
For an example, let us try to encode types in the family Fexp;→, and use them to

program type-directed partial evaluation in ML (Fig. 13).
The de3nition of reify and reflect at higher types is as before and omitted here

for brevity. This program is not typeable in ML, because the �-bound variable spec v
can only be used monomorphically in the function body. This forces all uses of func v
to have the same monotype; as an example, the type encoding Base --> (Base -->
Base) causes a type error, because the two uses of variable func v (one being applied,
the other being passed to lower type interpretations) have di/erent monotypes.
Indeed, the type of the argument of reify, a type encoding 〈|�|〉 constructed using

Base and -->, is somewhat involved:

〈|�|〉 : ∀obj : ∗ → ∗:
∀base type : ∗:
(base typeobj × (∗ base v ∗)
(∀� : ∗; � : ∗:(� obj) → (� obj) → ((� → �) obj))) → (∗ func v ∗)
� obj

Here, the type constructor obj constructs the type T� of the speci3c value v� from a
type index �, and the type base type gives the base type index. What we need here is
4rst-class polymorphism, which allows nested quanti3ed types, as used in the type of
argument func v. Substantial work has been done in this direction, such as allowing
selective annotations of �-bound variables with polymorphic types [30] or packaging of
these variables using polymorphic datatype components [21]. Moreover, higher-order
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polymorphism [20] is needed to allow parameterizing over a type constructor, e.g., the
type constructor obj.
In fact, such type encodings are similar to a Martin–LJof style encoding of inductive

types using the corresponding elimination rules in System F!, which does support both
3rst-class polymorphism and higher-order polymorphism in an explicit form [12,32].

4.2. Explicit 4rst-class and higher-order polymorphism in SML=NJ

The module system of Standard ML provides an explicit form of 3rst-class polymor-
phism and higher-order polymorphism. Quantifying over a type or a type constructor
is done by specifying the type or type constructor in a signature, and parameterizing
functors with this signature. To recast the higher-order functions in Fig. 13 into func-
tors, we also need to use higher-order functors which allows functors to have functor
arguments or results. Such higher-order modules are supported by Standard ML of
New Jersey [3], which extends Standard ML with higher-order functors [38]. Figs. 14
and 15 gives a program for type-directed partial evaluation using higher-order functors.
Here, a Type encoding is a functor from a structure with signature IndValue, which

is a speci3cation of type-indexed values, to a structure with signature SpecValue,
which denotes a value of the speci3c type. The type my type gives the particular type
index �, and the type base type and the type constructor obj are as described in
Section 4.1.
It is, unfortunately, somewhat cumbersome to use such functor-based encodings.

The following example illustrates just how much code it takes partially evaluate
(residualize) the function �x :x with type (base→ base) → (base→ base).

local structure T = Arrow(Arrow(Base)(Base))
(Arrow(Base)(Base))

structure v_T = T.F(reify_reflect)
in

val result = #1(v_T.v) (fn x => x)
end

Furthermore, since ML functions cannot take functors as arguments, we must de3ne
functors to use such functor-encoded type arguments. Therefore, even though this ap-
proach is conceptually simple and gives clean, type-safe and value-independent type
encodings, the syntactic overhead in using the type system makes the approach some-
what tedious to be used for programming in ML. On the other hand, a systematic
application of this approach has been used in realizing self-application of TDPE in
ML [13].

4.3. Embedding=projection functions as type interpretation

The second approach to value-independent type encodings is, perhaps somewhat sur-
prisingly, based on programming with tagged values of user-de3ned universal datatypes.
Before describing this approach, let us look at how tagged values are often used to
program functions with type arguments.
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signature SpecValue =
sig
type ’a obj
type my_type
val v: my_type obj

end

signature IndValue =
sig
type ’a obj
type base_type
val Base : base_type obj
val Arrow: ’a obj -> ’b obj -> (’a -> ’b) obj

end

signature Type =
sig
functor F(Obj: IndValue): SpecValue
where type ’a obj = ’a Obj.obj

end

structure Base: Type =
struct
functor F(Obj: IndValue): SpecValue =
struct
type ’a Obj = ’a Obj.obj
type my_type = Obj.base_type
val v = Obj.Base

end
end

functor Arrow(T1: Type) (T2: Type): Type =
struct
functor F(Obj: IndValue): SpecValue =
struct
type ’a obj = ’a Obj.obj
structure v_T1 = T1.F(Obj)
structure v_T2 = T2.F(Obj)
type my_type = v_T1.my_type -> v_T2.my_type
val v = Obj.Arrow v_T1.v v_T2.v

end
end

Fig. 14. Encoding Fexp;→ using higher-order functors.
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structure TDPE: IndValue =
struct
type ’a obj = (’a -> exp) * (exp -> ’a)
type base_type = exp
val Base = (fn v => v, fn e => e)
fun Arrow (reif1, refl1) (reif2, refl2)
= (fn (f: ’a -> ’b) =>

let val x = Gensym.new()
in LAM(x, reif2 (f (refl1 (VAR x))))
end,

fn (e: exp) =>
fn (v: ’a) => refl2 (APP(e, reif1 v)))

end

Fig. 15. Type-directed partial evaluation using the functor-based encoding.

datatype tagIntList =
INT of int

| LST of tagIntList list

fun flattenTg (INT x)
= [x]

| flattenTg (LST l)
= foldr (op @) [] (map (fn x => flattenTg x) l)

fun super_reverseTg (INT v)
= INT v

| super_reverseTg (LST l)
= LST (rev (map super_reverseTg l))

Fig. 16. Tagged version of functions flatten and super reverse.

First of all, for a type-indexed value v whose type index � appears at the input
positions, the tags attached to the input arguments are enough to guide the computation.
For examples, the tagged-value version of functions flatten and super reverse is
shown in Fig. 16.
In more general cases, if the type index � can appear at any position of the type T�

of speci3c values v�, then a description of type � using a datatype must be provided
as a function argument.
However, this approach su/ers from several drawbacks:

1. Verbatim values cannot be directly used.
2. If an explicit encoding of a type � is provided, one cannot ensure at compile time

its consistency with other input arguments whose types also depend on type �; in
other words, run-time ‘type-errors’ can happen due to unmatched tags.
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Can we avoid these problems while still using universal datatypes? To solve the
3rst problem, we want the program to automatically tag a verbatim value according
to the type argument. To solve the second problem, if all tagged values are generated
from verbatim values under the guidance of type arguments, then they are guaranteed
to conform to the type encoding, and run-time ‘type-errors’ can be avoided.
The automatic tagging process that embeds values of various types into values of a

universal datatype is called an embedding function. Its inverse process, which removes
tags and returns values of various types, is called a projection function. Interestingly,
these functions are type-indexed themselves, thus they can be programmed using the
ad hoc method described in Section 3. Using the embedding function and projection
function of a type � as its encoding gives another value-independent type encoding.
For each type family F of types � inductively de3ned in the form of Eq. (1), we

3rst de3ne a datatype U of tagged values, as well as a datatype typeExpU (type
expression) to represent the type structure. Next, we use the following interpretation
as the type encoding:

〈|�|〉 = 〈emb�; proj�; tE�〉
emb� : � → U (embedding function)
proj� : U → � (projection function)
tE� : typeExp (type expression)

(6)

Finally, we use the embedding and projection functions as basic coercions to convert
a value based on a universal datatype to the type of the speci3c value v�.
We continue to illustrate the approach in Section 4.3.1, and then formally present

the general approach in Section 4.3.2.

4.3.1. Examples
Taking the family F int;list of types, we can encode the type constructors as

datatype typeExpL = tInt | tLst of typeExpL
val Int = (fn x => INT x, fn (INT x) => x, tInt)
fun List (T as (emb_T, proj_T, tE_T)) =

(fn l => LST (map emb_T l),
fn LST l => map proj_T l,
tLst tE_T)

and then de3ne the functions flatten and super reverse as

fun flatten (T as (emb, _, _)) v = flattenTg (emb v)
fun super_reverse (T as (emb, proj, _)) v =

proj (super_reverseTg (emb v))

Now that the type encoding is neutral to di/erent type-indexed values, they can be
combined to share the same type argument. For example, the function

fn T => (flatten T) o (super_reverse T)

de3nes a type-indexed function that composes flatten and super reverse.
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datatype ’base tagBaseFunc =
BASE of ’base

| FUNC of (’base tagBaseFunc) -> (’base tagBaseFunc)
datatype typeExpF =

tBASE
| tFUNC of typeExpF * typeExpF

infixr 5 -->

val Base = (fn x => (BASE x), fn (BASE x) => x, tBASE)
fun ((T1 as (I_T1, P_T1, tE1)) -->

(T2 as (I_T2, P_T2, tE2))) =
(fn f => FUNC (fn tag_x => I_T2 (f (P_T1 tag_x))),
fn FUNC f => (fn x => P_T2 (f (I_T1 x))),
tFUNC(tE1,tE2))

val rec reifyTg =
fn (tBASE, BASE v) => v
| (tFUNC(tE1,tE2), FUNC v) =>

let val x1 = Gensym.fresh "x" in
LAM(x1, reifyTg

(tE2, v (reflectTg (tE1, (VAR x1)))))
end

and reflectTg =
fn (tBASE, e) => BASE(e)
| (tFUNC(tE1,tE2), e) =>

FUNC(fn v1 => reflectTg
(tE2, APP (e, reifyTg (tE1, v1))))

fun reify (T as (emb, _, tE)) v = reifyTg(tE, emb v)

Fig. 17. Embedding=projection-based encoding for TDPE.

The other component of the interpretation, the type expression tE, is used for those
functions where the type indices do not appear at the input argument positions, such
as the reflect function. In these cases, a tagged-value version of the type-indexed
value need to perform case analysis on the type expression tE. As an example, the
code of type-directed partial evaluation using this new type interpretation is presented
in Fig. 17.
Recall that the de3nition of the functions reifyTg and reflectTg will cause

matching-inexhaustive compilation warnings, and invoking them might cause run-time
exceptions. In contrast, function reify is safe in the sense that if the argument v
type-checks with the domain type of the embedding function emb, then the resulting
tagged expression must comply with the type expression tE.
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This value-independent type encoding can be used, for example, to implement a
form of type specialization [7], where the partial evaluator and the projection function
are type-indexed by the same family of types.

4.3.2. Universality
In this section, we argue that the above approach based on embedding and projec-

tion functions indeed provides a value-independent encoding for a majority of type
constructors. The idea is that the embedding=projection encoding forms a universal
type-indexed family of values, in that any other family of values indexed by the same
family can be constructed from this particular family.
We assume the following conditions about the types:

1. All the type constructions ci (in Eqs. (2)) build a type only from component types
covariantly and=or contravariantly. The constructed type can use the same compo-
nent type both covariantly and contravariantly at its di/erent occurrences, as in the
example of type-directed partial evaluation. This condition rules out, for example,
the reference type constructor.

2. The type Q is covariant or contravariant in every occurrence of the type variable �.
Universal Type and Embedding=projection Pairs. We 3rst de3ne an ML datatype U

to distinctively represent values of di/erent types in the type family F . This is done by
tagging all the branches of type constructions ci. Without loss of generality, we assume
no other type variable freely occurring in the type constructions ci. Type variables can
be dealt with by parameterization over type U .

datatype U = tagc1 of c1(

m1
︷ ︸︸ ︷

U; : : : ; U )
...
| tagcn of cn(U; : : : ; U

︸ ︷︷ ︸

mn

)

We also de3ne a datatype typeExpU to describe the structure of a particular type in
the type family F :

datatype typeExpU = tEc1 of (typeExpU)m1

...
| tEcn of (typeExpU)mn

Condition 1 ensures the existence of the embedding=projection pairs between every
inductively constructed type index �∈F and the universal type U . Such pairs witness
the apparent isomorphisms between the values of type �, denoted as Val(�), and the
corresponding set of tagged values of type U , denoted as UVal(�).
To see that such pairs always exist, consider the category Type whose objects are

types and whose morphisms are coercions (see Section 2.1 of Henglein’s article [16]).
Every type construction ci is interpreted as a multi-functor that is either covariant or
contravariant in each of its argument:

Ci : Typep1 × Typep2 × · · · × Typepmi → Type



180 Z. Yang / Theoretical Computer Science 315 (2004) 151–190

c(�1; : : : ; �m) = �j ( j = 1; : : : ; m) (Type argument)
| � (Type variable)
| A (Atomic types)
| c1(�1; : : : ; �m) → c2(�1; : : : ; �m) (Function)
| c1(�1; : : : ; �m) list (List)
| c1(�1; : : : ; �m) ∗ · · · ∗ cl(�1; : : : ; �m) (Tuple of length l)

Fig. 18. Formation of a type construction c.

Here pj’s are the polarities of the arguments: if the type construction ci is covariant
in its jth argument, then pj =+ and Typepi =Type; if it is contravariant in its jth
argument, then pj = − and Typepj =Typeop. Given pairs of embedding emb�j : �j ❀U
and projection proj�j : U ❀ �j at the component type, we can apply the functor Ci to
induce another pair of coercions for the constructed type �= ci(�1; : : : ; �mi).

,� = Ci(embp1
�1 ; : : : ; emb

pmi
�mi ) : � ❀ ci(

mi
︷ ︸︸ ︷

U; : : : ; U )

-� = Ci(projp1
�1 ; : : : ; proj

pmi
�mi ) : ci(U; : : : ; U︸ ︷︷ ︸

mi

) ❀ �

Here, emb+� = emb�, emb−� =proj�, proj+� =proj� and proj−� = emb� for all types �.
Composing coercions ,� and -� with the tagging and untagging operations for the
tag tagci respectively gives the embedding=projection pair at the type �. By structural
induction, all types � in the type family T are equipped with the embedding=projection
pairs.
Let us make concrete the above construction for the type constructions in ML. For

Condition 1, we assume that every type construction ci is inductively generated using
the ML type constructions in Fig. 18.

Lemma 19. Let c be a m-ary type construction generated by the grammar in Fig. 18.
Given types �j ( for j=1; : : : ; m), and for each type a pair of embedding embj : �j ❀U
and projection projj : U ❀ �j (de4ned on UVal(�j)), which are inverse to each other
between Val(�j) and UVal(�j), one can induce a pair of functions ,� : �❀ c(U; : : : ; U )
and -� : c(U; : : : ; U )❀ � where � = c(�1; : : : ; �m), which are inverse to each other
between the set Val(�) and UVal(�).

Proof. By structural induction on type �= c(�1; : : : ; �m).
c(�1; : : : ; �m)= �j. De3ne ,�= embj : �j ❀U and -� = projj : U ❀ �j. They are inverse
to each other by the condition of the lemma.

c(�1; : : : ; �m)= �. Here � is a freely occurring type variable, thus c(U; : : : ; U )= �.
De3ne ,�= -�= �x :x : �❀ �, which are inverse to each other.

c(�1; : : : ; �m)=A. Since c(U; : : : ; U )=A, setting ,�= -�= �x :x : A❀A gives the pair.
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c(�1; : : : ; �m)= c1(�1; : : : ; �m)→ c2(�1; : : : ; �m). By the induction hypotheses, we have
,c1(�1 ;:::;�m) : c1(�1; : : : ; �m)❀ c1(U; : : : ; U ) and its inverse -c1(�1 ;:::;�m) : c1(U; : : : ; U )❀ c1
(�1; : : : ; �m), together with ,c2(�1 ;:::;�m) : c2(�1; : : : ; �m)❀ c2(U; : : : ; U ) and its inverse
-c2(�1 ;:::;�m) : c2(U; : : : ; U )❀ c2(�1; : : : ; �m). Now, de3ne

,�f = ,c2(�1 ;:::;�m) ◦ f ◦ -c1(�1 ;:::;�m)
-�f = -c2(�1 ;:::;�m) ◦ f ◦ ,c1(�1 ;:::;�m)

It is easy to verify that these two functions have the required types, and they are
inverse to each other.

c(�1; : : : ; �m)= c1(�1; : : : ; �m) list. By the induction hypothesis, we have the embedding
,c1(�1 ;:::;�m) : c1(�1; : : : ; �m)❀ c1(U; : : : ; U ) and as its inverse the projection -c1(�1 ;:::;�m) :
c1(U; : : : ; U )❀ c1(�1; : : : ; �m). Now, let

,�L = map L ,c1(�1 ;:::;�m)
-�L = map L -c1(�1 ;:::;�m)

It is easy to verify that these two functions have the required types, and they are
inverse to each other.

c(�1; : : : ; �m)= c1(�1; : : : ; �m) ∗ · · · ∗ cl(�1; : : : ; �m). By induction hypothesis, we have
embeddings ,ci(�1 ;:::;�m) and projections -ci(�1 ;:::;�m), which are pairwise inverse. Now,
let

,�(x1; : : : ; xl) = (,c1(�1 ;:::;�m)x1; : : : ; ,cl(�1 ;:::;�m)xl)

-�(x1; : : : ; xl) = (-c1(�1 ;:::;�m)x1; : : : ; -cl(�1 ;:::;�m)xl)

It is easy to verify that these two functions have the required types, and they are
inverse to each other.

Theorem 20. For all types �∈F , there is a pair of embedding emb� : �❀U and
projection proj� : U ❀ � which are inverse to each other between Val(�) and UVal(�).

Proof. By induction on type �.
�= ci(�1; : : : ; �mi). The induction hypotheses for every type �j where 16j 6 mi says
that emb�j : �j ❀U and proj�j : U ❀ �j exist and are inverse to each other. By
Lemma 19, we can induce a pair of inverse functions ,� : �❀ ci(U; : : : ; U ) and
-� : ci(U; : : : ; U )❀ �. De3ne

emb� : � ❀ U
emb�(x) = tagci(,�(x))
proj� : U ❀ �

proj�(tagci(x)) = -�(x)

It is easy to verify that the two functions are inverse to each other.

The proof above essentially gives an algorithm for computing the embedding=
projection pair for every type �. Notice this algorithm itself is speci3ed in a type-
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Q = � (indexed type �)
| A (Built-in atomic types)
| Q1 → Q2 (Function)
| Q1 list (List)
| Q1 × · · · × Ql (Tuple of length l)

Fig. 19. Formation of the type Q of a type-indexed value.

indexed form, that the pair for a constructed type is computed from the pairs for its
component types; therefore, we can always use the ad hoc approach to program the
type interpretation in the form of Eq. (6).

Embedding=projection for the result type. The type encoding 〈|�|〉 of a type �∈F
gives the pairs of embedding and projection between this type and the universal type
U . Now, for a type-indexed family v of values with the type scheme ∀�∈F:Q, we
need to compute the embedding and the projection between type Q{�=�} and type
Q{U=�} for any given type �∈F from its type encoding 〈|�|〉. This makes it possible
to 3rst compute the universal version of the value v�, which is of type Q{U=�}, and
then project it to the speci3c type Q{�′=�}. Condition 2 ensures the existence of these
embedding=projection pairs; in fact, the pair can be constructed using the multi-functor
Q{−=�}.
Like before, Condition 2 can be made concrete in terms of ML type constructions.

We assume that the type Q is inductively generated using the ML type constructions
in Fig. 19.

Theorem 21. Let Q be a type with a free type variable �, generated by the gram-
mar in Fig. 19. Given a type � and the pair of inverse functions emb� : �❀U
and proj� : U ❀ �, one can induce a pair of functions eQ� : Q{�=�}❀Q{U=�} and
pQ
� : Q{U=�}❀Q{�=�} which are inverse to each other.

Proof. By induction on type Q. The proof is similar to the previous ones; for brevity,
here we simply gives the construction of eQ� and pQ

� . It is straightforward to verify that
each of them is a pair of inverse functions.
Q= �. De3ne eQ�′ = emb�′ and pQ

�′ =proj�′ .
Q=A. De3ne eQ�′ =pQ

�′ = �x :x : A→A.
Q=Q1→Q2. De3ne eQ�′ f= eQ1

�′ ◦ f ◦ pQ2
�′ and pQ

�′ f=pQ1
�′ ◦ f ◦ eQ2

�′ .
Q=Q1 list. De3ne eQ�′ L=map L eQ1

�′ and pQ
�′ L=map L pQ1

�′ .
Q=Q1 ∗ · · · ∗ Ql. De3ne eQ�′ (x1; : : : ; xl)= (eQ1

�′ x1; : : : ; e
Ql
�′ xl)

and pQ
�′ (x1; : : : ; xl)= (pQ1

�′ x1; : : : ; p
Ql
�′ xl).

In fact, the proof itself provides an algorithm for computing eQ� and pQ
� for a

3xed type Q from the embedding=projection pair of type �, which is included in the
“universal” encoding encoding 〈|�|〉.
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Type-indexed values from universal values. Now, we can write a function fU
v : type

ExpU →Q{U=�}, the universal-datatype version of the type-indexed value v, such that
for each type �∈T , the value fU

v (tE�) is equivalent to the verbatim value v� embedded
into the universal type Q{U=�}.

fU
v (tE�) = eQ� (v�)

It is then suMcient to de3ne the function fv as

fv〈emb�; proj�; tE�〉 = pQ
� (f

U
v (tE�)) (7)

where pQ
� is constructed from emb� and proj� by Theorem 21. Function fv and the

universal encoding 〈| · |〉 do implement the type-indexed family v (De3nition 8); this
follows from the fact that pQ

� ◦ eQ� is the identity function, also by Theorem 21.
Function fU

v can be induced from the speci3cation in the form of Eq. (2) as follows:

fU
v (tEc1(tE�1 ; : : : ; tE�m1

)) = eU1 (f
U
v (tE�1 ); : : : ; f

U
v (tE�m1

))
...

where eUi : (Q{U=�})mi →Q{U=�} is a properly instrumented version of ei : ∀�1; : : : ; �mi :
(Q{�1=�} × · · · × Q{�mi =�})→Q{ci(�1; : : : ; �mi)=�} by adding tagging and untagging
operations. This process can be purely mechanical: instantiating all the type variables
�i to type U , and then applying a coercion function induced from the data constructor
tagci of type U .
Note that the case analysis on the types in Eq. (2) has been turned into case analysis

on their value representations, which are of the uniform type typeExpU. This way, the
program fU

v 3ts into the Hindley–Milner type system.
The following theorem summarizes the approach based on the above construction.

Theorem 22. Encoding types as embedding=projection functions gives a value-indepen
dent type encoding for a type family F. Every F-indexed family v of values is imple-
mented by the function fv de4ned in Eq. (7) and the type encoding.

4.3.3. Comments
The new approach to value-independent type encodings is general and practical.

Though this approach is based on universal datatype solutions using tagged values, it
overcomes the two original problems of directly using universal datatypes:
• Though the universal datatype version of the indexed value is not type-safe, the
coerced value is type-safe in general. This is because verbatim input arguments of
various types are mapped into the universal datatype by the embedding function,
whose type acts as a 3lter of input types. Unmatched tags are prevented this way.

• Users do not need to tag the input and=or untag the output; this is done automatically
by the program fv using the embedding and projection functions. From another
perspective, this provides a method of external tagging using the type structure.
While internal tagging incurs a syntactic overhead proportional to the size of the
term, external tagging incurs a syntactic overhead proportional to only the size of
the type, which is usually much smaller.
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exception nonSubtype of typeExp * typeExp

fun lookup_coerce [] tE1 tE2 = raise nonSubtype(tE1, tE2)
| lookup_coerce ((t, t’, t2t’)::Others) tE1 tE2 =
if t = tE1 andalso t’ = tE2 then

t2t’
else

lookup_coerce Others tE1 tE2

fun univ_coerce cl (tFUN(tE1_T1, tE2_T1))
(tFUN(tE1_T2, tE2_T2)) (FUN v) =

FUN (fn x => univ_coerce cl tE2_T1 tE2_T2
(v (univ_coerce cl tE1_T2 tE1_T1 x)))

| univ_coerce cl (tLST tE_T1) (tLST tE_T2) (LST v) =
LST (map (univ_coerce cl tE_T1 tE_T2) v)

| univ_coerce cl (tPR(tE1_T1, tE2_T1))
(tPR(tE1_T2, tE2_T2)) (PR (x, y)) =

PR (univ_coerce cl tE1_T1 tE1_T2 x,
univ_coerce cl tE2_T1 tE2_T2 y)

| univ_coerce cl x y v =
if x = y then

v
else

(lookup_coerce cl x y) v

fun coerce cl (T1 as (emb_T1, proj_T1, tE_T1))
(T2 as (emb_T2, proj_T2, tE_T2)) v =

proj_T2 (univ_coerce cl tE_T1 tE_T2 (emb_T1 v))

Fig. 20. Type-safe coercion function.

This approach is not as eMcient as the ad hoc, value-dependent approach, due to
the lengthy tagging and untagging operations and the introduction of extra intermediate
data structures. This problem can be overcome using program-transformation techniques
such as partial evaluation [23], by specializing the general functions with respect to
certain type encodings at compile time, and removing all the tagging=untagging opera-
tions. In particular, Danvy showed how it can be naturally combined with type-directed
partial evaluation to get a 2-level embedding=projection function [7].

4.4. Multiple type indices

Though our previous examples only demonstrate type-indexed values which have
only one type index, the embedding=projection-based approach can be readily applied
to implementing values indexed by more than one type index. Fig. 20 presents an
example: an ML function that performs subtype coercion [28]. Given a from-type, a
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to-type, a list of subtype coercions at base types, and a value of the from-type, this
function coerces the value to the to-type and returns it.
Following the general pattern, we 3rst write a function univ coerce, which performs

the coercions on tagged values. The function coerce then wraps up function univ coerce,
by embedding the input argument and projecting the output. For brevity, we have
omitted the obvious de3nition of the related datatypes, and the type interpretations as
embedding=projection functions and type expressions of Int, Str, List, -->, **, some
of which have already appeared in previous examples.
The example below builds a subtype coercion C : str→ str❀ int→ str from a base

coercion int❀ str, so that, e.g., the expression C (fn x => x ^ x) 123 evaluates to "123

123".

val C = coerce [(tINT, tSTR,
fn (INT x) => STR (Int.toString x))]

(Str --> Str) (Int --> Str)

Again, this approach can be combined with type-directed partial evaluation to obtain
2-level functions, as done by Danvy for coercion functions and by Vestergaard for
“Za la Kennedy” conversion functions [25,39].

5. Related work

5.1. Using more expressive type systems

The problem of programming type-indexed values in a statically typed language like
ML motivated several earlier works that introduce new features to the type systems. In
the following sections, we brie1y go through some of these frameworks that provide
solutions to type-indexed values.

5.1.1. Dynamic typing
Realizing that static typing is too restrictive in some cases, there is a line of work on

adding dynamic typing [1,2] to languages with static type systems. Such an approach
introduces a universal type Dynamic along with two operations for constructing values
of type Dynamic and inspecting the type tag attached to these values. A dynamic typing
approach extends user-de3ned datatypes in several ways: the set of type constructions
does not need to be known in advance—the type Dynamic is extensible; it also allows
polymorphism in the represented data. Processing dynamic values is however similar
to processing tagged values of user-de3ned type—both require operations that wrap
values and case analysis that removes the wrapping.
A recent approach along the line of dynamic typing, staged type inference [35]

proposes to defer the type inference of some expressions until run-time when all related
information is available. In particular, this approach is naturally combined with the
framework of staged computation [10,37] to support type-safe code generation at run-
time. Staged programming helped to solve some of the original problems of dynamic
typing, especially those concerning the ease of use.
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However, the way type errors are prevented at run-time is to require users to provide
‘default values’ that have expected types of expressions whose actual types are inferred
at run-time; when type inference fails, or the inferred type does not match the context,
the default values are used. This is e/ectively equivalent to providing default exception
handlers for run-time exceptions resulting from type inference. The approach is still
a dynamic-typing approach, so that the bene3t of static debugging o/ered by a static
typing system is lost. For example, the formatting function in [35] will simply return an
error when 3eld speci3ers do not match the function arguments. On the other hand, it is
also because of this possibility of run-time ‘type error’ that dynamic typing disciplines
provide extra 1exibility, as shown in applications such as meta-programming and high-
level data=code transfer in distributed programming.

5.1.2. Intensional type analysis
Intensional type analysis [15] directly supports programming with type-indexed fam-

ilies of values in the language �MLi in order to compile polymorphism into eMcient
unboxed representations. The language �MLi extends a predicative variant of Girard’s
System F! with primitives for intensional type analysis, by providing facilities to de-
3ne constructors and terms by structural induction on monotypes. However, the lan-
guage �MLi is explicitly polymorphic, requiring pervasive type annotations through-
out the program and thus making it inconvenient to directly program in this lan-
guage. Not surprisingly, the language �MLi is mainly used as a typed intermediate
language.

5.1.3. Haskell type classes
The type-class mechanism in Haskell [14] also makes it easy to program type-

indexed family of values: the declaration of a type class should include all the type-
indexed value needed, and every value construction ei should be implemented as an
instance declaration for the constructed type, assuming the component types are already
instances of the type class. One way of implementing type classes is to translate the use
of type classes to arguments of polymorphic functions (or in logic terms, to translate
existential quanti3ers to universal quanti3ers at dual position), leading to programs in
the same style as handwritten ones following the ad hoc approach of Section 3. The
type-class-based solution, like the ad hoc approach, is not value-independent, because
all indexed values need to be declared together in the type class. Also, because each
type can only have one instance of a particular type class, it does not seem likely to
support, e.g., de3ning various formatting functions for the same types of arguments.
It is interesting to note that type classes and value-independent types (or type en-

codings) form two dimensions of extensibility.
• A type class 3xes the set of indexed values, but the types in the type classes can
be easily extended by introducing new instances.

• A value-independent type 3xes the family of types, but new values indexed by the
family can be de3ned without changing the type declarations.

It would be nice to allow both kinds of extensibility at the same time. But this seems to
be impossible—consider the problem of de3ning a function when possible new types of
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arguments the function need to handle are not known yet. A linear number of function
and type de3nitions cannot result in a quadratic number of independent variations.

5.1.4. Conclusion
The approaches above (described in Sections 5.1.1–5.1.3) give satisfactory solutions

to the problem of type-indexed values. However, since ML-like languages dominate
large-scale program development in the functional-programming community, our ap-
proach is often immediately usable in common programming practice.

5.2. Type-directed partial evaluation

Partial evaluation is an automatic program transformation technique that removes the
run-time interpretive overhead of a general-purpose program and generates an eMcient
special-purpose program. A traditional partial evaluator is syntax-directed, intensionally
working on the program text by propagating constant values through the program text
and carrying out static computations to yield a simpli3ed program. On the contrary,
type-directed partial evaluation is an extensional approach which amounts to normal-
izing the expression through evaluating the given expression in a suitable context,
given the type of residual program. Guided by the type information, the functions de-
3ned in Fig. 2 eta-expand a value into a two-level lambda expression. The underlined
constructs are dynamic constructs, which represent code-generating computations, while
other constructs are static constructs, which represent computations during partial
evaluation (hence the alternative name normalization by evaluation [9]).
Apart from raising the interest of programming type-indexed families in ML, 5 type-

directed partial evaluation shares an interesting common pattern with the embedding=
projection-based approach: both use types as external tags (see Section 4.3.3). Loosely
speaking, one external type tag in type-directed partial evaluation replaces perva-
sive binding-time annotations in the pre-processed program texts. The two-level eta-
expansion process then follows the external type tag to place appropriate binding-time
annotations to the program.

6. Conclusions

We have presented a notion of type-indexed family of values that captures functions
that take type arguments. We have formulated type-encoding-based implementations of
type-indexed values in terms of type interpretations. According to this formulation, we

5 Andrzej Filinski 3rst implemented type-directed partial evaluation in ML in 1995. In his presentations
of type-directed partial evaluation, Danvy always challenged the attendees to program it in a typed language
such as ML or Haskell. The author answered the challenge in 1996, which, according to Danvy, is the 3rst
solution after Filinski’s. The third person to have solved it is Morten Rhiger [33]. Since then, Kristo/er
Rose has programmed it in Haskell, using type classes [34].
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presented three approaches that enable type-safe programming of type-indexed values
in ML or similar languages.
• The 3rst approach directly uses the speci3c values of a given type-indexed family
of values as the type interpretation. It gives value-dependent type encodings, not
sharable by di/erent families indexed by the same family of types. However, its
eMciency makes it a suitable choice both for applications where all type-indexed
values using the same family of types are known in advance, and for the target
form of a translation from a source language with explicit support for type-indexed
values.

• The second approach is value-independent, abstracting the speci3cation of a type-
indexed value from the 3rst approach. Though simple in theory, it might be not very
practical because it requires 3rst-class and higher-order polymorphism. But with some
e/orts, such advanced forms of polymorphism are embeddable in some dialects of
ML, such as SML=NJ and Moscow ML.

• The third approach applies the 3rst approach to tune a usual tagged-value-based,
type-unsafe approach to give a type-safe and yet syntactically convenient approach,
by interpreting types as embedding=projection functions. Though it is less eMcient
than the 3rst approach due to all the tagging=untagging operations, it allows di/erent
type-indexed values to be combined without going beyond the Hindley–Milner type
system.
On one hand, we showed in this article that with appropriate type encodings, type-

indexed values can be programmed in ML-like languages; on the other hand, our
investigation also feeds back to the design of new features of type systems. For exam-
ple, implicit 3rst-class and higher-order polymorphism seem to be useful in applications
such as type encodings. The question of what is an expressive enough and yet conve-
nient type system will only be answered by various practical applications.
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