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Abstract

In [Studia Sci. Math. Hungar. 41 (2004) 39-58] we constructed for a completely simple semi-
groupC an expansiors (C), which is isomorphic to the Birget-Rhodes expangidii [J. Algebra
120 (1989) 284-300], i€ is a group. Analogous to the fact, proven in [J. Algebra 120 (1989) 284—
300], thatCP" contains a copy of the free inverse semigroup in dass the free group orX, we
show thatS(C) contains a copy of the bifree locally inverse semigrou; i§ the bifree completely
simple semigroup oiX. As a consequence, among other things, we obtain a new proof of a result
due to F. Pastijn [Trans. Amer. Math. Soc. 41882) 631-655] which says theach locally inverse
semigroup divides a perfect rectangular ban& efnitary inverse monoids.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Following Birget and Rhodes [9] axpansion of a semigroud is informally speaking,
a way of writing S as a homomorphic image of another semigréyguch that the latter
and the homomorphisms : S — S have some nice properties. One of the major features
of the Birget-Rhodes group expansiGfi' [9] is the property that if5 is the free group on
a setX, thenG™ contains a copy of the free inverse semigrouptoro, in the context of
varieties,G™" shifts free objects from the variety of groups up to free objects in the variety
of inverse semigroups.
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Motivated by a recent paper due to Kellendonk and Lawson [13], in [7] we constructed
a kind of expansiois (C) for a completely simple semigroup, which generalizes some
important properties o™ . For example, as a consequence of the defini6h is em-
beddable into a semidirect product of a semilatticeGbyAnalogouslyS(C) embeds into
a restricted semidirect product of a semilatticethyThe aim of this paper is to show that
also the shifting property for free objects has an analogon, even in the thespadgties,
which was introduced by Hall [10] and independently bydigarek and Szendrei [12] to
study regular semigroups from a universal algebraic viewpoint.

An e-variety is a class of regular semigroups closed under taking direct products regular
subsemigroups and homomorphic images. In this theory the bifree object ol asstte
natural counterpart of the free object in a useaiety. Its definitionfirst given for ortho-
dox semigroups in [12], reads as follows: }ébe a nonempty set and = {x": x € X} be
a disjoint copy ofX, x > x’ being a bijection. Lef be a regular semigroup. A mapping
0 : XUX — Sismatchedif x’0 is aninverse o6 in S for eachx € X. LetV be a class of
regular semigroups. A semigroupe V together with a matched mappingX U X' — F
is abifree object on X in V if for any S € V and any matched mappirtg: X U X' — §
there is a unique homomorphigm F — S extending, that is,.f = 6.

It was proven in [12] that in eachrvariety of orthodox semigroups bifree objects exist
and are unique up to isomorphism. For the nonorthodox case Yeh [26] has shown that bifree
objects exist in are-variety if and only if it is contained in the-variety of all E-solid
or all locally inverse semigroups. Three models of the bifree locally inverse semigroup
BFLZ(X) on a setX have been obtained up to now by Auinger [1,2].

Let BFCS(X) denote the bifree completely simple semigroup¥rin our main result
we show that the expansidh(BFCS (X)) contains a copy oBFLZ(X). From this we in-
fer that the latter is embeddable into a Rees matrix semigroup ovEF@mtary inverse
monoid as well as into a restrictednsiglirect product of a semilattice lIBFCS(X). Fur-
ther, sinceS(BFCS(X)) is a perfect rectangular band &funitary inverse monoids, we
recapture a well-known deep result of Pastijn [21], which says that each locally inverse
semigroup divides a perfect rectangular band afinitary inverse monoids.

2. Preliminaries

For the standard notions and notations in semigroup theory, the reader is referred to the
textbooks of Howie [11], Lawson [14], and Petrich [23]. In particulats ibelongs to a
semigroups, thens’ denotes an inverse 6fin S, andV (s) denotes the set of all inverses
of s.

A semigroups is calledlocally inverse, if for each idempotent € S the submonoid
eSe is an inverse semigroup. For important papers on the subject see, e.g., Pastijn [20,21],
and Nambooripad [19]. It was shown by Trotter [24] that a regular semig§daapocally
inverse if and only if for any, ¢ € S the setsV(s)V(V()tsV (s))V (¢)t is independent
of the choice of the inverses, ¢/, (¢'tss’)’. This gives rise to define a binary operation
the so-calledsandwich operation on S by s A t = ss'(t'tss’)'t't for all s,t € S, see, e.g.,
Auinger [1] and Yeh [26].
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A semigroups is called a perfect) rectangular band I x A of inverse semigroups
(monoids) S;, (i, 2) € I x A, if S is the disjoint union of the inverse semigroups (monoids)
Sir, and ifS; S, S Sip (SinSj = Sip) forall (i, 1), (j, n) € I x A. Obviously each such
semigroupS is locally inverse. The structure of rectangular bands of inverse semigroups
(monoids) was developed by Pastijn [20], by Pastijn and Petrich [22], and from a universal
algebraic viewpoint by Meakin [16—18]. In particular, it was shown in [22] that a rectan-
gular band of inverse semigroups is perfect if and only if eaehs;, has a (necessarily)
unique inverse inS;,. Note that a rectangular band of groups is automatically perfect
whence completely simple.

Let C be a completely simple semigroup which acts on a regular semigrdupen-
domorphisms on the left via— “s, s € T, u € C. Define a multiplication on the set
T C={(s,u) €T x C: “'s =5, for someu’ € V(u)}, by (s, u)(t, v) = (s “t, uv). Then
T %, C is a regular semigroup, termedestricted semidirect product of T by C. Note in
particular that's = s implies““"s = s for all u* € V (u), since*’s = uu"(ui's)y = uw'yg = g,
The restricted semidirect product of a regular semigroup by a completely simple semi-
group was introduced by Auinger and Polak [4] as a straightforward generalization of the
A-semidirect product for inverse semigroups, introduced in [5]; for an excellent survey on
the subject, concerning inverse semigroups, see also the textbook [14]. It was later gener-
alized to locallyR-unipotent semigroups in the second component in [6].

The following construction stems from [7]:

Result 0. Let C = | J{G;x: (i, 1) € I x A} be a completely simple semigroup, whejg 1
denotes the identity element of the maximal subgrGyp Let F(C) be the free semigroup
on the alphabet’, whose multiplication shall be denoted hyForw =u1 - - - - - u, € F(C)
letw € C be defined byw = u1...u,. Letfinally o’ denote the congruence @i C) which
is generated by the pairs

1) Qi -u,u),forallu e J{Gir: A € A},
(2) (u-1j5,u),forallu e J{Gi:iel},
Q) w-u'-v,u-u'v),forallu,veC,u V),
@) (v-u-u,vu -u),forallu,veC,u V).

PutS(C) = F(C)/p’. ThenS(C) is a perfect rectangular barddx A of the E-unitary in-

verse monoids;; = {wp’: w € G;,}. Moreover, the mappingc : S — C, n¢c : wp' +—> w

is a surjective homomorphism with the property that the inverse images of idempotents are
semilattices.

3. A model of the bifreelocally inver se semigroup

We begin with an observation on locally inverse semigroups which is crucial and sim-
plifies our construction considerably. It will be utilized in the proof of the main theorem of
the paper, Theorem 9.
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Proposition 1. Let S be a locally inverse semigroup, and let u = s1...s, € S. Let fur-
ther {k;: 0 <i < m} bea set of natural numberssuchthat 1 =kg <k1 <--- <k, =n,
and let (s ...sx.,) be an inverse of s, ...s,,, 0 <i <m — 1. Then the product
u = (Sk,_q--Skyy) Skyy_1(Skyy_n -+ Skyy_ 1)+ - Sky Sk - - - Skp)” iS@NINVerse of u.

Proof. We proceed by induction om. Forn = 1 the assertion is trivial. Assume that the
assertion is satisfied far> 1, and letu =51 ...s,41and 1=ko <k1 < --- <k, =n+ 1.
Let s,/{l € V(sx,) and put

/ / / /
€ =Sk, Sky + - Sn+1(Skyy g -+ - Sn+1) Sk 1 Sk -+ Skyy 1)+ Skp (Sky - k) 'Sk, @ND

/ /
f= sklskl(sl. o Sky) 81 Sk -

Then e and f are idempotents, belonging to the submonqgklss;qskl. The for-
mer follows from the fact tha€sx, , ...Sn4+1) sk, 1Sk, 5 ---Sky 1) « -+ Sko(Sky - - - Skp) IS

an inverse ofsy, ...s,+1 by hypothesis, the latter by an easy direct calculation. Put
(St « - Sk ) Sk Sk - - .skm_l)' oo Skq (Skg - - .Sk,) . We compute

u'u=s1.. .sklefs,’qskl e Syl =51.. .sklfes,/qskl c Syl =U.
Similarly it follows thatu’'uu’ = u’, completing the proof. O
We continue with a simplified computation rule for the sandwich element.

Proposition 2. Let S be a locally inverse semigroup, let s, € S, and let (st)’ € V(st).
Thens At isequal to s(zs)'z.

Proof. By definition,s At = ss'(t'tss’)'t't, wheres’, ¢’, and(¢'tss’)’ are arbitrary inverses
of s, t, andt’tss’. Now an easy direct calculation yields thdts)'r is an inverse of'zss’,
whences At =ss's(ts)'tt't =s(ts)'t follows. O

In particular, Proposition 2 implies that the elemegt)’s is independent of the choice
of the inversets)’ € V (ts). Moreover, Proposition 1 inannection with Proposition 2 tells
us that foru = s1....s, the element’ = s, (s, A sp—1) ...55(s2 A s1)s7 iS an inverse ofi.

It was proven in [26] that, given a locally inverse semigraijpand a subseft € §
such thatV(a) N A is nonempty for eacla € A, then there exists the least locally in-
verse subsemigroup of S containingA. In fact, by Proposition 1 and the remark behind
Proposition 2, we see that the elementé/adire just the products . . .s,, wheres; € A or
si =a A b, forsomea, b € A.

We collect some properties of the sandwich operatiowhich partly can be found
in [3].

Proposition 3. Let S be a locally inverse semigroup, and let s, r € S. Then the following
holds:

(i) s At isanidempotent of S.
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(i) ss’"sAt)y=sAt=(s Attt forall s" e V(s),t' e V().

(iii) st As)t=st,forall s,teS.

(iv) Foreachs e Stheset {s At: t € S} ({t As: t € S}) isaright (Ieft) normal subband
of S.

Proof. The assertions (i)—(iii) directly follow from the definition of or more easier from
Proposition 2.

We prove (iv). Lets, 11, 12, 13 € S, and lets’ € V(s). Then(s A r1)ss” and(s A r2)ss” are
idempotents belonging to the submongsdSss’. We compute

(s A1) (s At2)(s Atg) = ((s At)ss”)((s At2)ss”) (s Ata)
= ((s At2)ss")((s At1)ss") (s At3)
=BAR) A AL3). O

We recall some notations and results due to Auinger [2]:

X a nonempty set;
X' ={x": x € X} adisjoint copy ofX;
F the free semigroupoR U X' U{(a Ab): a,be X UX'};

rw the first letter fromX U X’ inw € F;
wp the last letter fronXK U X' in w € F.

In addition, we shall writd instead ofX U X’, and(I A I) instead of{(a A b): a,b €
X UX'}. If a=x" € X/, thena’ shall denote the elemente X. A word w € F is called
reduced if it does not contain a subword of one of the following forms:

Q) abAra),

(2) (bAna)b,

(3) (@nb)anc,
4 (bAra)cna),
(5) ad/,

wherea, b, ¢ € I. For a wordw € F we denote the number of its letters franu (I A 1)
by f(w). Further lets(w) denote the uniquely determined word which is obtained from
by a successive application of the following reductions:

Q) a(bra)— a,
(2 (bra)b— b,
B) (anb)yanc)— (anc),
@ (bAa)(cnrna)— (bAa),
(5) aa’ — (and'),

wherea, b, c € I. S(w) is calledreduced. On the ses(F) of all reduced words an asso-
ciative binary operatio® may be defined by © v = s(uv). The following theorem was
provenin [2].
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Theorem 4. The semigroup (s(F), ®) together with the matched mapping ¢ : X U X' —
S(F), x — x, x' — x’ isamodel of BFCS(X).

In what follows, the letteBFCS(X) solely stands for the representation, given in Theo-
rem 4. In factBFCS(X) is a perfect rectangular bardk I of groupsG., a, b € I, where
(a A b) is the identity element o7 ,,. Aword w = a3 . ..a, € S(F) belongs toG,; if and
only if Aw =a andwp = b. Further forw = aj...a, € S(F) the uniquely determined
inverse ofw in the maximal subgrou@ ., is

S((c A anp)an(Aay A an—1p)an—1...(raz Aaip)ai(rai Ad)),

wherea; :alf, ifajeI,anda; =a;,ifa; e I AN).

Note that our point of view slightly differs from the one in [2], in that we consider
BFCS(X) as a semigroup rather than a binary semigroup. For our purpose there is no need
to work with the sandwich operation on the wholeBHCS (X).

The rest of the section is devoted to show tR@BFCS (X)) contains a subsemigroup
which is isomorphic to the bifree locally inverse semigroupkoriet S be a locally inverse
semigroup, and le# : I — S be a matched mapping. Fare I let a be the image ofi
underd. Note in particular that by the definition of a matched mappitigs V (a) for
acl.Foreachwordv =uq----- u, of the free semigroup’'(BFCS (X)) on the alphabet
BFCS(X) let (w)m be the word inF (FBCS (X)) which is obtained fromw by successively
replacing all subwords, which are of the foruthv Aa) - v, respectively - (a Avp)u,a € 1,
by u - v [v], respectively by - u [v] (in caseu is empty). It is easy to see that the order
in which the replacing process takes plaoes not affect the final result, whenge)r is
well-defined. Let now(w)y be the element of, which is obtained by substituting each
lettera from I occurring in a factor; of (w)m, by a, and each letteta A b) from (I A 1)
occurring in a factor; of (w)xr by a A b. Obviouslyyr is a mapping fronF (BFCS (X))
into S. Note in particular that ifi; € (I A I), then

respectively

W)Y =(ug----- updY (@ Ana)Qujyr -+ Un) Y.

We will use these facts in the sequel without further reference.
Let o’ denote the congruence defined in Result 0, whére BFCS(X). In what
follows we show thato’ is contained in keyr, which enables us to define a mapping
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1/7 : S(BFCS(X)) — S, by wp' = wyr, w € F(BFCS(X)). With respect to the generat-
ing set ofp’ given in Result 0, and the way in whigh is built up from this set (see, e.qg.,
the textbook [11]), it suffices to establish the following equalities:

D w1-AwAa) - w-u)y = u1-w-uy,
(2) (u1-w-(aAwp) -u)y = (uy-w-u)y,
Q) (wr-u-u-w-uy =@y -u-u'Ow-ux,
@ (wr-w-u -u-u)y=@r-woOu -u-u)y,

forallael, u,ui,uz,w € S(F), u’ € V(u). By the remark behind the definition af,
and since(Aw Aa) Ow =w = w O (a A wp) for eacha € I, we directly see that (1)
and (2) are satisfied. To prove (3) and (4) we need some prerequisites. In the sequel the
following notation comes in handy. Fare (I A I) leta denote the elementz A ap € 8.
If u=ay...a, € S(F), theni shall denote the elemedit...a, € S.

We continue with a slight modification of an important definition in [2]. FoE
Iu(InDleta=ad ifael anda=aifae (I ANI). Foru=aj...a, € S(F) let
i =S(a,(la, A an_1p)an—1...(Aaz A a1p)ai). Note thatu is obtained froma, (Aa, A
an—1p)an—1...(Aaz Aaip)ai by deleting each letter;, whereq; € (I AT), and by deleting
the letter(ia; 1 A a;p), if eithera; € I, a;y1 € (I A1), andra; 1 =a),orifa; € (I A1),
ai+1 € I, anda; p = aj . In particular, no reduction of the foraw’ — (a Aa’), a € I, oc-
curs in performingd:. This important fact can easily been, by checking some significant
examples, keeping in mind thatis reduced. If for example = ab(b’ A ¢)(d A e), then

i=s(d Ae)dAc)D Ac)B AD (b Aa)a') =(d Ac)D'(bAa)d.
Lemma5. Let u € S(F). Then (u)y (i)Y (W) ¥ = ().

Proof. We prove the assertion by induction ¢itu) = n. Forn = 1 the assertion is trivial.
Assume that it is true for some > 1, and letu = aj...a,4+1. Putv =az...a,4+1. We
distinguish two main cases.

Let firsta; € 1. By the above remark, we have= v( a2 A a1)aj or i = vaj. In the
first case it follows

WY @Y y) = a1 () ()¢ (Raz A a1)ajar(v)y
= a1 ()Y (D) Y (haz A G (V)Y
= a1(0) ¥ (D) ¥ (haz A d1)raz(haz) ().
Pute = (Aaz A 41)raz(raz) . Thene and(v)y () are idempotents belonging to the sub-

monoidiaz(raz)' Skaz(xaz)' . The former follows by Proposition 3(i) combined with (ii),
the latter by the induction hypothesis. We proceed

WY @Y )y =ai()y @) ye)y
= a1e()Y Oy (V)Y
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= d1raz(haz) (W)Y D)y (v)y by Proposition 3(iii)
=ai1(v)¥ by hypothesis
= @)y

If on the other hand = va}, theniaz = a7, and we get

WY @Y )Y = a1 )y @)Y ) Yaias )y
=a1()y (V)Y raz(raz) (V)Y
= a1 (V@)Y ()Y
=ai1(v)¥ by hypothesis
= w)y.

Let nowasi € (I A I). Again by the above remark, we hawve= v(Aax A a1p) OF it = v.
In the first case we compute

WY @Y @)Y = (har A aip) ()Y (D) ¥ (haz A aip)(hai A aip) (v)y
= (ka1 A a1p) (V)Y ()Y (az A @ip) (rai A arp)raz(haz) (V).

Put f = (Aaz A @1p) (ka1 A @ip)raz(raz)’. Then f and (v)y(9)y are idempotents be-
longing toiaz(ra2)’ Shaz(raz)’ and it follows
WY @Y )Y = (kay A azp) W)Y @) f (V)
= (ha1 A @ip) f ()Y @)Y ()Y
= (ha1 A a1p)(haz A aip) (a1 A aip)raz(haz) (V) (@) ()Y
= (ha1 A a1p)(haz A aip)raz(raz) (V) (0 () ¥
by Proposition 3(iv)
= (ka1 A a1p)(a@ip) awpraz(haz) (V) (@)Y ()Y
by Proposition 3(iii)
= (hay A@Ip) W)Y DY (W)Y = (ka1 Aa@ip) (V) = W)y

If on the other hand = v, thenaz € I andayp = a5, whence we get
WY @Y @)Y = (hai A aip) (V)Y (@)Y (ar A aip) (v)y
= (ha1 A aip) ()Y (0) ¥ (@ip) aip(rai A aip) (v)y.

Putg = (aip) aip (ka1 A aip). Theng and (v)y (v)¥ are idempotents in the submonoid
(a1p) a1pS(aip) aip, which implies
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W)Y @)y () = (hag A aip) ()Y (@) ¥g ()Y = (ar A aip)g )y @)y ()Y
= (a1 A @ip) (W)Y @)Y W)Y = (Rar Aa@ip) (WY = Wy, O

Lemma 6. Let u =aj1...a,, wheren > 2, and let a1,a, € I. Put v =a>...a,. Then
(u-i-w)y =-v-(haz Aar) ©ay ©w)y, for each w € s(F).

Proof. Letw =by...b, and putwy = (Aaz A a) © a; © w. Assume first thaty = b1. In
this case we have1 = (lax Aar) O w. LetM ={l: 2<1,a; =b; anda; € (I A I) for all
i €{2,...,1}}. We distinguish two main cases.
(1) The setM is not empty. Lek be the maximum oM. We obtain
(-0 -w)m = (u- a1 --an © Aags1 A agp) - bgg1...bm)7.
Now, if
() axy1 €1 andagp = a,/{+1, we get
Ag+1---an © (Aag+1 A agp) = Gg+1- - - dn,
whence
(u-v-w)T=u-akx1---an bi+1...bm

follows. Further, if
(i) Aags1=Abry1, We also have

u-v-w))m=u-aks1...an br+1...by.

In all the other case@: - v - w1)7 is equal to

U-ags1---an(Aag+1 Aagp) - bgs1...by.

We computdu -ii-w)y. Note thatsince, € (I AT),we havei = agy1...a, a1...ax if
and only ifax11 € I andayp = a;{H, andi = ax+1...a,(Aag+1 Aagp)az...ax otherwise.
Since

— —_ —_— -

=~ A 7 — A / —
A1 - an(Ar41 N Ay ) = Afg 1. An Ak410) g = Afy1 - - - O,

in any case we get

U=ak+1..-ap(Aag41 A agp)ai . ..ay.

Further from(u - it - w)m = u - u - w we infer

~

(u-u-w)Yy =idags1...an(Aag+1 A ar)ay...axai...agbgs1...by.
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Put

/\/A,\ A e —
e = (akp) apPak+1- . -An Qk+1- - - Ay (A1 A Ak ),
and put
T~ A ~
f=(arp)arpar...aras...a.

Thene and f are idempotents belonging t@xp) ax o S(axp) axp, and we obtain

(w-iw-w)y=ay...axefbgs1...byy=a1...arfebgs1...by

— A1 an (a1 A aip)bisr . . by by Lemmas

Now, if none of (i) and (ii) is satisfied or if (i) is satisfied, thén- it - w)y¥ = (u-v-w1)y
directly follows from the above. It remains to show the assertion in case (ii). Put

g =Qk41...AnGk11- - - dniak+1(Aars1),
and put
h = (Aagy1 A agp)ragr1(Aags1)'.

We compute

_ A — 7 ~
(u-u-w)y =aagy1---ap(Aags1 A arp)bis1...by
—_—

—_— A —_— //\ A
+1- - - Gn(Aaky1 A A p)Aag+1(Aag+1) br+1bm

I
<>

=ai.. .&kghl;k+1 .. l;m =aj.. .&khgl;k+1. . .I;m

= a1...ax(@rp) @ p(agr1 A @ip)rax+1Gtir 1) ghist - b
—a1...a0(arp) arprarii(vags1) gbisr . . .by by Lemma 3(iii)
=01 anT T Gnbis1. b

=W -v-w)y,

completing the proof in casél # .

(2) The setM is empty. We then have eithes = b, andap € I or az # b». Assymejirst
thatay = bp andagp € I. It follows (i - v - w1)y = (u - -azb3...byy1)¥ = itvazbs. .. by,.
On the other hand, we get

-w)Y =uvaidbz...by, = uv(az A &1)&/1511&2193 ...by

<

(u -

LAHQ)(&Z A &1)&253 .. l;m
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Pute = 90, and putf = (42 A ai)a2a,. Thene and f are idempotents belonging to the
submonoidizajSaza;,, and we compute

(u-u-wy= &1ef&2l;3 .. l;m = &1f€&2l;3 .. l;m =ay(az A &1)135&21;3. . l;m
=da1d2...an0a2b3. .. b,y by Lemma 3(iii)
=(u-v-w)y.

Assume now thatip # bp. Note that(u - v - wi))mr =u - U- (haz ANay) © bp...by in
this case. If additionallyaz # Abz, we get(u - v - w)y = uv(kaz Ad1)bs .. .by. Onthe
other hand(u - u - w)iﬁ = uv(Aaz A al)alalbz .b,,, which implies the assertion, since
()»az A al)alal = kaz Aai.

Moreover, if hap = Abp, then(u - o - w1y = Givby . .. b,. On the other hand put =

vvkaz(kaz)/ andh = (raz A a1)haz(raz)’. Theng andh are idempotents belonging to
)»az()»az) Skaz(kaz) whence

(u-it - W)WY = dighbo .. .by = a1hgbs ... by = G10uan A G1)00rao(kaz) by . . . by,
=00by.. . by =(u-0-w)V.

It remains to handle the casg # b1. Herea; © w is obtained fromzjw by possibly
applying one reduction of the form(» A a) — a. Keeping in mind the definition of, we
directly see that

w-u-wyp=u-10MRazAa) Oay-w)y =(u-1-(AazAa1) ©a;Ow)y. O

Lemma7.Letu=ay...a,, wheren > 2 and a1, a, € I. Let further v=a5...a,. Then
(uy-it-w-up)y = uy-u-v-(Aaz Aay) ©ay O w-uz)y for all uy, uz € S(F).

Proof. The assertion will be proved by induction ¢gitw) =m. Letm =1 andw =b €

IU(I AT). Note first that sinca ends withay € I inany case we hav@ - u-ii-b-uz)y =

(ur-u-it-bOuz)y, whichis equal tory - u - v- (Aaz Aa1) ©a; © b O uz)y by Lemma 6.
Assume now that; = b. We get

(ul'uot7~(kaz/\al)Ga/le@uz)l/f=(u1'uoﬁ'()\a2/\a1)'uz)w.

Since(haz A a1) = (a2 A a1) © aj © az, the assertion follows.
On the other hand, if1 # b, we directly see that

(uy-u-i-b-u)y=(ur-u-v-(hag Aar) ©ay-b-uz)yr
=(ul-u-i-(kaz/\al)(Da/lOb-uz)iﬁ.

Assume that the assertion is true for> 1 and letw = b1 ...by41. If byyp1 € (I A T),
then
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(uy-u-uw-w-u)y =@y -u-it-by...by bpy1 Qua)y
=(ul-u-i-(kazAal)Ga/l(Dbl...bm-bm+1®u2)1//
by hypothesis

=(up-u-v-(AazAa1) ©a; O w - uz)y.

Letfinally b,,11 € I and putwy = (Aa2 A a1) © aj © w. Sinceay € I, we get

i-u-i-w-u)y = (u1 © (e A ay))(u- it - w)y ((b), 11 Abmy1) Ouz)y  and
cwi-u)y = (u1 O (ar A ay)) (-0 w) Y ((b),41 A bmr1) O u2)y.

<

Since(u - u - w)y is equal to(u - v - w1)y by Lemma 6, the assertion follows, completing
the proof. O

The next proposition will be crucial for establishing equality (3).
Proposition 8. (w1 -u-it-w-u2)y =y -u-u©w-u)y, for all uy, uz, u, w € s(F).
Proof. We prove the assertion by induction giu) = n. If n =1, it follows by a simple
direct case checking wtt is left to the reader.

Assume that the assertionis true fop 1 and letu = aj . ..a, 1. Letfirstay e (I A1)
and putv =ay...a,41. It follows

(wr-u-it-w-u)y =u1Oar-v-v-(hag Aaip) O w - uz)y
= (ul Qar-v-vORarANaip) OQw - uz)l// by hypothesis
=L -u-u®Ow-u)y.
Similarly if a,+1 € (I A I), we obtain withv = a3 .. . a,,
ui-u-a-w-u)yy =w1-v-v-w-uz)y by definition ofr
=@1-v-vOw-uz)y byhypothesis

=1 -u-u@w-u2)y by definition ofr.

It remains to handle the case, a, € I. Putv =ay...a,+1. We compute

|

r-u-ii-w-up)y = (u10 (a2 Aay))¥u-
= (w10 (axnay))y (u-

by Lemma7

“w - u2)Y

-()\az/\al)(Da/l(Dw-uz)l//

<

= (u1® (al/\a'l))w(al -v-U- (Aa2 Aal) Qa/l(D w - uz)l//
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by definition ofv, and sincei; € 1
= (ul 0) (al /\a/l))w(al V1O a2 Aa1) Oa;Ow- uz)l/f
by hypothesis
=(u10 (a1 Ana))¥u-uOw-u)y
=1 -u-LQw-u)y,
completing the proof. O

Now we are ready to establish equality (3). For thisugts, u2, w € S(F), and letu’
be the inverse af in the maximal subgroug,;, of BFCS(X). Thenu' = (a Aup) @ u ©
(Au A b), whence it follows,

(g u-u -w-udy = ul'uo(a/\up)C)IZG()»u/\b)ow'uz)l/f
=(u1-u-ﬁ-(kuAb)®w-u2)1//
=(u1-u-u®Ounb)Ow-uz)y by Proposition 8
=(

ui-u-u Qw-uy.

Equality (4) holds by a dual argument.

Summarizing, we have shown that S(BFCS(X)) — S, wp' — wy isa uniquely de-
fined mapping. Obviously is not a homomaorphism in general, since farn b)p’, ap’ €
S(BFCS(X)), wherea, b € I, we get

((a A b)p/ap/)l/} =((aAb)-a)y =(a)y =a,

whereas(a A b)p)Y (ap’) ¥ = (@ A b)d, which is not equal té in general. However, we
may define a regular subsemigralipf S(BFCS (X)) with the property that the restriction
V|7 of ¥ to T is a homomorphism.

Let T be the set of all worday - --- - a, € F(S(F)), wherea; anda, belong to/,
and whereg; either belongs td, ora; € (I A I) anda;—1 = (Aa;)’ and (a;p)’ = a;41,
i €{2,...,n—1}. LetfurtherTp’ be the set of allvp’, w € T. ThenTp' is a subsemigroup
of S(BFCS (X)) and by the definition off, 1/}|T is a homomorphism. In fact, we are ready
now to formulate the main result of the paper.

Theorem 9. The semigroup T p’ together with the matched mappingc: I — Tp’, a — ap’,
isa model of the bifree locally inverse semigroup BFLZ(X) on X.

Proof. We show first thaf'p’ is regular whence it follows thato’ is locally inverse as a
subsemigroup o (BFCS(X)). Leta,b e 1. Thenb' © (b Aa) ®d’ is aninverse ofi © b
in BFCS(X), and it follows by [7, Proposition 1(i)] that

(a-b),o':(a-b-b’@(b/\a)@a’-a-b)p'z(a-b-b/-(b/\a)-a’-a-b),o',
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and likewise

(b'-(b/\a)-a'-a-b-b’-(b/\a)-a’)p’z(b’-(b/\a)-a’-a@b-b/-(b/\a)-a/)p/
=(b"-(bAra)-d)p,

sincea®b e V(b'© (bAa)®a’). Consequentlyh’ - (bAa)-a’)p’ is aninverse ofa - b)p’
in Tp'. Utilizing Proposition 1, we see that faro’ = (ag - - - - - an)p’ € Tp' the product

(aj, - (@n ANan—1p) - aj_q - (AMan—1 A an—2p) ~dp_o -+ (azp Aai) - ay)p’,

where the letteAa; A a;_1p) occurs, if and only ifa;_1,a; € I, is an inverse ofwp’
belonging toT'po’. If for examplewp’ = (a - (a’ AD') -b-c)p’, then(c’- (c Ab) - b -a’)p’
is an inverse ofvp’ which lies inTp’. HenceT p’ is regular.

It remains to show tha := /|7 is the unique homomorphism extendifig Since
(a)h = (ap)Y|r =ay =a =ab, fora € I, we obviously have that extends. Further,
sinceap’ Abp' = (a-a’ - (a Ab)-b'-b)p’, by the above, we observe thHEp' is multi-
plicatively generated by the elemenis andap’ A bp’, a, b € I. Itis well known [26] and
easily follows from Proposition 2, that the operatiofis preserved by any homomorphism
between locally inverse semigroups. Consequéhttyunique, completing the proof.0

4. Two applications

This section is devoted to infer two consequences of Theorem 9. First, we obtain an
embedding oBF LZ(X) into a Rees matrix semigroup over an inverse monoid, and second
we show thaBF LZ (X) is embeddable into a restrictedhsielirect product of a semilattice
by BFCS(X). A similar representation is due to Auinger [2].

We know from the results in [7] th&8(BFCS (X)) is a perfect rectangular barddx 7
of E-unitary inverse monoida?,,, a, b € I, where(uz - - - - - u,) p’ belongs toM,;, if and
only if Au3 = a andu,p = b. Further, the identity element afl,;, is (a A b)p’. If N
denotes the subsemigroup®BFCS (X)) which is generated by the elemenjs, where
aelU(( AI), thenN is a perfect rectangular barfdx I of inverse monoidsV,;. In
particular, for(ag - - - - - a,)p’ € Ngyp, the element

((c Aapp)-an - (han Aan—1p) -+ az- (haz Aaip)-ay- (hazAd))p’,

whered; = a] if a; € I anda; = a;, if a; € (I A1), is the uniquely determined inverse
of (a1 -----ay)p’ in N. This follows from a similar argument as used in the proof of
Theorem 9.

As was shown by Pastijn [22] each perfect rectangular HardA of inverse monoids
S;» can be embedded into a Rees matrix semigroup over an inverse monoid as follows. For
(i,») € I x A lete;, denote the identity element of the submon8gigd. We may assume
that there is an elementd/ N A. Let P = (p,;) be defined byp;; = epyrejo. Then all
elementsegrejo, j € I, L € A are units inSgp and S is isomorphic to the Rees matrix
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semigroupM|[Soo; I, A; P] with sandwich matrixP, via s;, +— (i, eoosixeo0, ), Where
Sin € Si.
We apply this result to our situation. Lat be defined as above. Choase I. Then

No={(Gr2) - w-zAD)p w=ar---- an, ai € 1U( A1)}

is an inverse monoid with identitiz A z)p’. Let P = (pap), a, b € I be defined by, =
((zAa)-(bAZ))p'. ThenP is anl x I matrix which entirely consists of units of,,. As
an immediate consequence of Theorem 9, we obtain

Corollary 10. The bifree locally inverse semigroup, represented by To’, is embeddable
into the Rees matrix semigroup M[N.;; I, I; P] over the E-unitary inverse monoid N,_,
viawp' = (a1, (zAz)-w-(ZA2))p, an), Wherew =ag - ---- a, €T.

We refer to some results of [7]. L€t be a completely simple semigroup and(Et) be
the subsemigroup af, generated by the set of idempotefts. We define a binary relation
~onC byu~v <& ue=v, for somee € (Ec). Obviously~ is an equivalence relation.
Moreover,~ is a left congruence contained in Green’s relatfdoion C. This gives rise to
define a left action o€ on Ps, (C/~), theU-semilattice of all finite subsets @f/~, via
“B = {uv: v € B},u € C, B € Psn(C/~), wherez denotes the--class of; € C. Hence we
may define the restricted semidirect prod#gs (C/ ~) *,» C with respect to this action.
Foru € C let R, be theR-class containing. Put

CR = (A, u) € Pin(C/~) x C: uw', it € A, andi C R, for eachi € A}.

Then CR with multiplication (A, u)(B,v) = (A U “B,uv) is a subfemigroup of
Piin(C/~) %,» C. Moreover, it was shown in [7] tha&(C) is isomorphic taC ™ via

—~

voiQup--- un)p' > ({uauiin, utito, ..., uz. unl,us...up).
With respect to Theorem 9 we infer

Corollary 11. The bifree locally inverse semigroup, represented by 7o', is embeddable
into the restricted semidirect product Psin (BFCS(X)/~) *,» BFCS(X) via

—_~—

1/7|Tp/: (a----- an)p’ ({(al/\a’l),&l,aléaz,...,a1®~~©an}, a1®~~®an).

From Corollary 11 we may pass to an Auinger [2] like semidirect product representation
of BFLZ(X), since this special case admits to work with certain subseBF61S(X),
rather than sets of-classes, in the first component of the restricted semidirect product
of Corollary 11. To specify this more precisely, [Bfn(S(F)) be theU-semilattice of all
finite subsets o0BFCS(X), the latter being representeds($’). Sinces(F) naturally acts
on Psin(S(F)) by multiplication on the left, we may fn the restricted semidirect product
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Prin(S(F)) #,+ S(F). Let noww =aq - -« - - a, € T. We know from Corollary 11 thaga; -
-+ -ap)p’ is mapped onto

—~—

({(a1ndy),a1,a1Caz,....,a10 - Oap},a1®--- O ay)

undery |7, . Put

~ P ——

A:{(al/\a’l),&l,m@az,...,a1®o~©an}.

We assign a subset C s(F) to A as follows: letA be the set, consisting of all uniquely
determined shortest membearsf the ~-classes occurring iA together with the elements
u © (up)'. In particular, by the shortest member of-aclass containing an idempotent
(a Ab), say, we mealu Aa’). ObviouslyA is uniquely defined, which gives rise to define a
mappinge : (Tp" )Y |7, — Phin(S(F)) *r S(F) by (A, 10+ - Qan) = (A, a10- - Oay).
Itis not hard to show that is an injective homomorphism.

We end this section with some concluding remarks. Utilizing a result of Szendrei [25],
it was shown in [13] thatS(C) is isomorphic toC™" in caseC is a group. Since bifree
and free groups are just the same, our considerations yield a new proof of the fact due to
Birget and Rhodes [9] thatG(X)P", (FG(X) the free group orX), contains a copy of the
free inverse semigroup aXi. Further, if we apply our construction to the free completely
simple semigrougFC(X), we infer thatS(FC (X)) contains a copy of the free (perfect)
rectangular band of inverse semigroups (monoids). This was elaborated in [7]. In [8] we
constructed expansions of inverse semigroups in a similar way, obtaining a factorization for
dual prehomomorphisms; see also Lawson, Margolis, and Steinberg [15]. Summarizing,
the concept of expansion as introduced in [9], together with its modifications, seems to be
a powerful tool in semigroup theory.
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