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Abstract

In [Studia Sci. Math. Hungar. 41 (2004) 39–58] we constructed for a completely simple
groupC an expansionS(C), which is isomorphic to the Birget–Rhodes expansionCPr [J. Algebra
120 (1989) 284–300], ifC is a group. Analogous to the fact, proven in [J. Algebra 120 (1989) 2
300], thatCPr contains a copy of the free inverse semigroup in caseC is the free group onX, we
show thatS(C) contains a copy of the bifree locally inverse semigroup, ifC is the bifree completely
simple semigroup onX. As a consequence, among other things, we obtain a new proof of a
due to F. Pastijn [Trans. Amer. Math. Soc. 273(1982) 631–655] which says that each locally inverse
semigroup divides a perfect rectangular band ofE-unitary inverse monoids.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Following Birget and Rhodes [9] anexpansion of a semigroupS is informally speaking
a way of writingS as a homomorphic image of another semigroupS, such that the latte
and the homomorphismηS : S → S have some nice properties. One of the major feat
of the Birget–Rhodes group expansionGPr [9] is the property that ifG is the free group on
a setX, thenGPr contains a copy of the free inverse semigroup onX. So, in the context o
varieties,GPr shifts free objects from the variety of groups up to free objects in the va
of inverse semigroups.
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Motivated by a recent paper due to Kellendonk and Lawson [13], in [7] we constr
a kind of expansionS(C) for a completely simple semigroupC, which generalizes som
important properties ofGPr. For example, as a consequence of the definitionGPr is em-
beddable into a semidirect product of a semilattice byG. AnalogouslyS(C) embeds into
a restricted semidirect product of a semilattice byC. The aim of this paper is to show th
also the shifting property for free objects has an analogon, even in the theory ofe-varieties,
which was introduced by Hall [10] and independently by Kad̆ourek and Szendrei [12] t
study regular semigroups from a universal algebraic viewpoint.

An e-variety is a class of regular semigroups closed under taking direct products re
subsemigroups and homomorphic images. In this theory the bifree object on a setX is the
natural counterpart of the free object in a usualvariety. Its definition,first given for ortho-
dox semigroups in [12], reads as follows: letX be a nonempty set andX′ = {x ′: x ∈ X} be
a disjoint copy ofX, x �→ x ′ being a bijection. LetS be a regular semigroup. A mappin
θ : X∪X′ → S is matched if x ′θ is an inverse ofxθ in S for eachx ∈ X. LetV be a class o
regular semigroups. A semigroupF ∈ V together with a matched mappingι : X ∪X′ → F

is a bifree object on X in V if for any S ∈ V and any matched mappingθ : X ∪ X′ → S

there is a unique homomorphismθ : F → S extendingθ , that is,ιθ = θ .
It was proven in [12] that in eache-variety of orthodox semigroups bifree objects ex

and are unique up to isomorphism. For the nonorthodox case Yeh [26] has shown tha
objects exist in ane-variety if and only if it is contained in thee-variety of all E-solid
or all locally inverse semigroups. Three models of the bifree locally inverse semig
BFLI(X) on a setX have been obtained up to now by Auinger [1,2].

Let BFCS(X) denote the bifree completely simple semigroup onX. In our main result
we show that the expansionS(BFCS(X)) contains a copy ofBFLI(X). From this we in-
fer that the latter is embeddable into a Rees matrix semigroup over anE-unitary inverse
monoid as well as into a restricted semidirect product of a semilattice byBFCS(X). Fur-
ther, sinceS(BFCS(X)) is a perfect rectangular band ofE-unitary inverse monoids, w
recapture a well-known deep result of Pastijn [21], which says that each locally in
semigroup divides a perfect rectangular band ofE-unitary inverse monoids.

2. Preliminaries

For the standard notions and notations in semigroup theory, the reader is referre
textbooks of Howie [11], Lawson [14], and Petrich [23]. In particular, ifs belongs to a
semigroupS, thens′ denotes an inverse ofs in S, andV (s) denotes the set of all invers
of s.

A semigroupS is calledlocally inverse, if for each idempotente ∈ S the submonoid
eSe is an inverse semigroup. For important papers on the subject see, e.g., Pastijn [
and Nambooripad [19]. It was shown by Trotter [24] that a regular semigroupS is locally
inverse if and only if for anys, t ∈ S the setsV (s)V (V (t)tsV (s))V (t)t is independen
of the choice of the inversess′, t ′, (t ′tss′)′. This gives rise to define a binary operation∧,
the so-calledsandwich operation on S by s ∧ t = ss′(t ′tss′)′t ′t for all s, t ∈ S, see, e.g.
Auinger [1] and Yeh [26].
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A semigroupS is called a (perfect) rectangular band I × Λ of inverse semigroups
(monoids) Siλ, (i, λ) ∈ I ×Λ, if S is the disjoint union of the inverse semigroups (mono
Siλ, and ifSiλSjµ ⊆ Siµ (SiλSjµ = Siµ) for all (i, λ), (j,µ) ∈ I ×Λ. Obviously each suc
semigroupS is locally inverse. The structure of rectangular bands of inverse semig
(monoids) was developed by Pastijn [20], by Pastijn and Petrich [22], and from a uni
algebraic viewpoint by Meakin [16–18]. In particular, it was shown in [22] that a rec
gular band of inverse semigroups is perfect if and only if eachs ∈ Siλ has a (necessarily
unique inverse inSjµ. Note that a rectangular band of groups is automatically pe
whence completely simple.

Let C be a completely simple semigroup which acts on a regular semigroupT by en-
domorphisms on the left vias �→ us, s ∈ T , u ∈ C. Define a multiplication on the se
T ∗rr C = {(s, u) ∈ T ×C: uu′

s = s, for someu′ ∈ V (u)}, by (s, u)(t, v) = (s ut, uv). Then
T ∗rr C is a regular semigroup, termed arestricted semidirect product of T by C. Note in
particular thatuu′

s = s impliesuu∗
s = s for all u∗ ∈ V (u), sinceuu∗

s = uu∗
(uu′

s) = uu′
s = s.

The restricted semidirect product of a regular semigroup by a completely simple
group was introduced by Auinger and Polák [4] as a straightforward generalization
λ-semidirect product for inverse semigroups, introduced in [5]; for an excellent surv
the subject, concerning inverse semigroups, see also the textbook [14]. It was later
alized to locallyR-unipotent semigroups in the second component in [6].

The following construction stems from [7]:

Result 0. Let C = ⋃{Giλ: (i, λ) ∈ I × Λ} be a completely simple semigroup, whereiλ
denotes the identity element of the maximal subgroupGiλ. LetF(C) be the free semigrou
on the alphabetC, whose multiplication shall be denoted by· . Forw = u1 · · · · ·un ∈ F(C)

let w ∈ C be defined byw = u1 . . . un. Let finallyρ′ denote the congruence onF(C) which
is generated by the pairs

(1) (1iµ · u,u), for all u ∈ ⋃{Giλ: λ ∈ Λ},
(2) (u · 1jλ, u), for all u ∈ ⋃{Giλ: i ∈ I },
(3) (u · u′ · v,u · u′v), for all u,v ∈ C, u′ ∈ V (u),

(4) (v · u′ · u,vu′ · u), for all u,v ∈ C, u′ ∈ V (u).

PutS(C) = F(C)/ρ′. ThenS(C) is a perfect rectangular bandI × Λ of theE-unitary in-
verse monoidsSiλ = {wρ′: w ∈ Giλ}. Moreover, the mappingηC : S → C, ηC : wρ′ �→ w

is a surjective homomorphism with the property that the inverse images of idempote
semilattices.

3. A model of the bifree locally inverse semigroup

We begin with an observation on locally inverse semigroups which is crucial and
plifies our construction considerably. It will be utilized in the proof of the main theore
the paper, Theorem 9.
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Proposition 1. Let S be a locally inverse semigroup, and let u = s1 . . . sn ∈ S. Let fur-
ther {ki: 0 � i � m} be a set of natural numbers such that 1 = k0 < k1 < · · · < km = n,
and let (ski . . . ski+1)

′ be an inverse of ski . . . ski+1 , 0 � i � m − 1. Then the product
u′ = (skm−1 . . . skm)′skm−1(skm−2 . . . skm−1)

′ . . . sk1(sk0 . . . sk1)
′ is an inverse of u.

Proof. We proceed by induction onn. For n = 1 the assertion is trivial. Assume that t
assertion is satisfied forn � 1, and letu = s1 . . . sn+1 and 1= k0 < k1 < · · · < km = n + 1.
Let s′

k1
∈ V (sk1) and put

e = s′
k1

sk1 . . . sn+1(skm−1 . . . sn+1)
′skm−1(skm−2 . . . skm−1)

′ . . . sk2(sk1 . . . sk2)
′sk1 and

f = s′
k1

sk1(s1 . . . sk1)
′s1 . . . sk1.

Then e and f are idempotents, belonging to the submonoids′
k1

sk1Ss′
k1

sk1. The for-
mer follows from the fact that(skm−1 . . . sn+1)

′skm−1(skm−2 . . . skm−1)
′ . . . sk2(sk1 . . . sk2)

′ is
an inverse ofsk1 . . . sn+1 by hypothesis, the latter by an easy direct calculation.
(skm−1 . . . skm)′skm−1(skm−2 . . . skm−1)

′ . . . sk1(sk0 . . . sk1)
′. We compute

uu′u = s1 . . . sk1ef s′
k1

sk1 . . . sn+1 = s1 . . . sk1f es′
k1

sk1 . . . sn+1 = u.

Similarly it follows thatu′uu′ = u′, completing the proof. �
We continue with a simplified computation rule for the sandwich element.

Proposition 2. Let S be a locally inverse semigroup, let s, t ∈ S, and let (st)′ ∈ V (st).
Then s ∧ t is equal to s(ts)′t .

Proof. By definition,s ∧ t = ss′(t ′tss′)′t ′t , wheres′, t ′, and(t ′tss′)′ are arbitrary inverse
of s, t , andt ′tss′. Now an easy direct calculation yields thats(ts)′t is an inverse oft ′tss′,
whences ∧ t = ss′s(ts)′tt ′t = s(ts)′t follows. �

In particular, Proposition 2 implies that the elements(ts)′t is independent of the choic
of the inverse(ts)′ ∈ V (ts). Moreover, Proposition 1 in connection with Proposition 2 tell
us that foru = s1 . . . sn the elementu′ = s′

n(sn ∧ sn−1) . . . s′
2(s2 ∧ s1)s

′
1 is an inverse ofu.

It was proven in [26] that, given a locally inverse semigroupS, and a subsetA ⊆ S

such thatV (a) ∩ A is nonempty for eacha ∈ A, then there exists the least locally i
verse subsemigroupU of S containingA. In fact, by Proposition 1 and the remark beh
Proposition 2, we see that the elements ofU are just the productss1 . . . sn, wheresi ∈ A or
si = a ∧ b, for somea, b ∈ A.

We collect some properties of the sandwich operation∧ which partly can be found
in [3].

Proposition 3. Let S be a locally inverse semigroup, and let s, t ∈ S. Then the following
holds:

(i) s ∧ t is an idempotent of S.
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(ii) ss′(s ∧ t) = s ∧ t = (s ∧ t)t ′t , for all s′ ∈ V (s), t ′ ∈ V (t).
(iii ) s(t ∧ s)t = st , for all s, t ∈ S.
(iv) For each s ∈ S the set {s ∧ t : t ∈ S} ({t ∧ s: t ∈ S}) is a right (left) normal subband

of S.

Proof. The assertions (i)–(iii) directly follow from the definition of∧ or more easier from
Proposition 2.

We prove (iv). Lets, t1, t2, t3 ∈ S, and lets′ ∈ V (s). Then(s ∧ t1)ss
′ and(s ∧ t2)ss

′ are
idempotents belonging to the submonoidss′Sss′. We compute

(s ∧ t1)(s ∧ t2)(s ∧ t3) = (
(s ∧ t1)ss

′)((s ∧ t2)ss
′)(s ∧ t3)

= (
(s ∧ t2)ss

′)((s ∧ t1)ss
′)(s ∧ t3)

= (s ∧ t2)(s ∧ t1)(s ∧ t3). �
We recall some notations and results due to Auinger [2]:

X a nonempty set;
X′ = {x ′: x ∈ X} a disjoint copy ofX;
F the free semigroup onX ∪ X′ ∪ {(a ∧ b): a, b ∈ X ∪ X′};
λw the first letter fromX ∪ X′ in w ∈ F ;
wρ the last letter fromX ∪ X′ in w ∈ F .

In addition, we shall writeI instead ofX ∪ X′, and(I ∧ I) instead of{(a ∧ b): a, b ∈
X ∪ X′}. If a = x ′ ∈ X′, thena′ shall denote the elementx ∈ X. A word w ∈ F is called
reduced if it does not contain a subword of one of the following forms:

(1) a(b ∧ a),
(2) (b ∧ a)b,
(3) (a ∧ b)(a ∧ c),
(4) (b ∧ a)(c ∧ a),
(5) aa′,

wherea, b, c ∈ I . For a wordw ∈ F we denote the number of its letters fromI ∪ (I ∧ I)

by f (w). Further lets(w) denote the uniquely determined word which is obtained fromw

by a successive application of the following reductions:

(1) a(b ∧ a) → a,
(2) (b ∧ a)b → b,
(3) (a ∧ b)(a ∧ c) → (a ∧ c),
(4) (b ∧ a)(c ∧ a) → (b ∧ a),
(5) aa′ → (a ∧ a′),

wherea, b, c ∈ I . s(w) is calledreduced. On the sets(F ) of all reduced words an ass
ciative binary operation
 may be defined byu 
 v = s(uv). The following theorem wa
proven in [2].
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Theorem 4. The semigroup (s(F ),
) together with the matched mapping ι : X ∪ X′ →
s(F ), x �→ x , x ′ �→ x ′ is a model of BFCS(X).

In what follows, the letterBFCS(X) solely stands for the representation, given in Th
rem 4. In fact,BFCS(X) is a perfect rectangular bandI × I of groupsGab, a, b ∈ I , where
(a ∧ b) is the identity element ofGab. A word w = a1 . . . an ∈ s(F ) belongs toGab if and
only if λw = a andwρ = b. Further forw = a1 . . . an ∈ s(F ) the uniquely determine
inverse ofw in the maximal subgroupGcd is

s
(
(c ∧ anρ)an(λan ∧ an−1ρ)an−1 . . . (λa2 ∧ a1ρ)a1(λa1 ∧ d)

)
,

whereai = a′
i , if ai ∈ I , andai = ai , if ai ∈ (I ∧ I).

Note that our point of view slightly differs from the one in [2], in that we consi
BFCS(X) as a semigroup rather than a binary semigroup. For our purpose there is n
to work with the sandwich operation on the whole ofBFCS(X).

The rest of the section is devoted to show thatS(BFCS(X)) contains a subsemigrou
which is isomorphic to the bifree locally inverse semigroup onX. LetS be a locally inverse
semigroup, and letθ : I → S be a matched mapping. Fora ∈ I let â be the image ofa
underθ . Note in particular that by the definition of a matched mapping,â′ ∈ V (â) for
a ∈ I . For each wordw = u1 · · · · · un of the free semigroupF(BFCS(X)) on the alphabe
BFCS(X) let (w)π be the word inF(FBCS(X)) which is obtained fromw by successively
replacing all subwords, which are of the formu(λv∧a) ·v, respectivelyv ·(a∧vρ)u, a ∈ I ,
by u · v [v], respectively byv · u [v] (in caseu is empty). It is easy to see that the ord
in which the replacing process takes placedoes not affect the final result, whence(w)π is
well-defined. Let now(w)ψ be the element ofS, which is obtained by substituting ea
lettera from I occurring in a factorui of (w)π , by â, and each letter(a ∧ b) from (I ∧ I)

occurring in a factorui of (w)π by â ∧ b̂. Obviouslyψ is a mapping fromF(BFCS(X))

into S. Note in particular that ifui ∈ (I ∧ I), then

(w)ψ = (u1 · · · · · ui−1 · ui 
 ui+1 · ui+2 · · · · · un)ψ

= (u1 · · · · · ui−2 · ui−1 
 ui · ui+1 · · · · · un)ψ,

and ifui = av, respectivelyui = va, a ∈ I , we have

(w)ψ = (
u1 · · · · · ui−1 
 (a ∧ a′)

)
ψ(ui · · · · · un)ψ,

respectively

(w)ψ = (u1 · · · · · ui)ψ
(
(a′ ∧ a) 
 ui+1 · · · · · un

)
ψ.

We will use these facts in the sequel without further reference.
Let ρ′ denote the congruence defined in Result 0, whereC = BFCS(X). In what

follows we show thatρ′ is contained in kerψ , which enables us to define a mappi
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ψ̂ : S(BFCS(X)) → S, by wρ′ �→ wψ , w ∈ F(BFCS(X)). With respect to the genera
ing set ofρ′ given in Result 0, and the way in whichρ′ is built up from this set (see, e.g
the textbook [11]), it suffices to establish the following equalities:

(1) (u1 · (λw ∧ a) · w · u2)ψ = (u1 · w · u2)ψ ,
(2) (u1 · w · (a ∧ wρ) · u2)ψ = (u1 · w · u2)ψ ,
(3) (u1 · u · u′ · w · u2)ψ = (u1 · u · u′ 
 w · u2)ψ ,
(4) (u1 · w · u′ · u · u2)ψ = (u1 · w 
 u′ · u · u2)ψ ,

for all a ∈ I , u,u1, u2,w ∈ s(F ), u′ ∈ V (u). By the remark behind the definition ofψ ,
and since(λw ∧ a) 
 w = w = w 
 (a ∧ wρ) for eacha ∈ I , we directly see that (1
and (2) are satisfied. To prove (3) and (4) we need some prerequisites. In the seq
following notation comes in handy. Fora ∈ (I ∧ I) let â denote the element̂λa ∧ âρ ∈ S.
If u = a1 . . . an ∈ s(F ), thenû shall denote the elementâ1 . . . ân ∈ S.

We continue with a slight modification of an important definition in [2]. Fora ∈
I ∪ (I ∧ I) let a = a′ if a ∈ I and a = a if a ∈ (I ∧ I). For u = a1 . . . an ∈ s(F ) let
u = s(an(λan ∧ an−1ρ)an−1 . . . (λa2 ∧ a1ρ)a1). Note thatu is obtained froman(λan ∧
an−1ρ)an−1 . . . (λa2∧a1ρ)a1 by deleting each letterai , whereai ∈ (I ∧I), and by deleting
the letter(λai+1 ∧ aiρ), if eitherai ∈ I , ai+1 ∈ (I ∧ I), andλai+1 = a′

i , or if ai ∈ (I ∧ I),
ai+1 ∈ I , andaiρ = a′

i+1. In particular, no reduction of the formaa′ → (a ∧a′), a ∈ I , oc-
curs in performingu. This important fact can easily be seen, by checking some significa
examples, keeping in mind thatu is reduced. If for exampleu = ab(b′ ∧ c)(d ∧ e), then

u = s
(
(d ∧ e)(d ∧ c)(b′ ∧ c)(b′ ∧ b)b′(b ∧ a)a′) = (d ∧ c)b′(b ∧ a)a′.

Lemma 5. Let u ∈ s(F ). Then (u)ψ(u)ψ(u)ψ = (u)ψ .

Proof. We prove the assertion by induction onf (u) = n. Forn = 1 the assertion is trivial
Assume that it is true for somen � 1, and letu = a1 . . . an+1. Put v = a2 . . . an+1. We
distinguish two main cases.

Let first a1 ∈ I . By the above remark, we haveu = v(λa2 ∧ a1)a
′
1 or u = va′

1. In the
first case it follows

(u)ψ(u)ψ(uψ) = â1(v)ψ(v)ψ(λ̂a2 ∧ â1)â
′
1â1(v)ψ

= â1(v)ψ(v)ψ(λ̂a2 ∧ â1)(v)ψ

= â1(v)ψ(v)ψ(λ̂a2 ∧ â1)λ̂a2(λ̂a2)
′(v)ψ.

Pute = (λ̂a2 ∧ â1)λ̂a2(λ̂a2)
′. Thene and(v)ψ(v)ψ are idempotents belonging to the su

monoidλ̂a2(λ̂a2)
′Sλ̂a2(λ̂a2)

′. The former follows by Proposition 3(i) combined with (i
the latter by the induction hypothesis. We proceed

(u)ψ(u)ψ(u)ψ = â1(v)ψ(v)ψe(v)ψ

= â1e(v)ψ(v)ψ(v)ψ
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= â1λ̂a2(λ̂a2)
′(v)ψ(v)ψ(v)ψ by Proposition 3(iii)

= â1(v)ψ by hypothesis

= (u)ψ.

If on the other handu = va′
1, thenλa2 = a′

1, and we get

(u)ψ(u)ψ(u)ψ = â1(v)ψ(v)ψ(v)ψâ′
1â1(v)ψ

= â1(v)ψ(v)ψλ̂a2(λ̂a2)
′(v)ψ

= â1(v)ψ(v)ψ(v)ψ

= â1(v)ψ by hypothesis

= (u)ψ.

Let nowa1 ∈ (I ∧ I). Again by the above remark, we haveu = v(λa2 ∧ a1ρ) or u = v.
In the first case we compute

(u)ψ(u)ψ(u)ψ = (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(λ̂a2 ∧ â1ρ)(λ̂a1 ∧ â1ρ)(v)ψ

= (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(λ̂a2 ∧ â1ρ)(λ̂a1 ∧ â1ρ)λ̂a2(λ̂a2)
′(v)ψ.

Put f = (λ̂a2 ∧ â1ρ)(λ̂a1 ∧ â1ρ)λ̂a2(λ̂a2)
′. Thenf and (v)ψ(v)ψ are idempotents be

longing toλ̂a2(λ̂a2)
′Sλ̂a2(λ̂a2)

′ and it follows

(u)ψ(u)ψ(u)ψ = (λ̂a1 ∧ â1ρ)(v)ψ(v)ψf (v)ψ

= (λ̂a1 ∧ â1ρ)f (v)ψ(v)ψ(v)ψ

= (λ̂a1 ∧ â1ρ)(λ̂a2 ∧ â1ρ)(λ̂a1 ∧ â1ρ)λ̂a2(λ̂a2)
′(v)ψ(v)ψ(v)ψ

= (λ̂a1 ∧ â1ρ)(λ̂a2 ∧ â1ρ)λ̂a2(λ̂a2)
′(v)ψ(v)ψ(v)ψ

by Proposition 3(iv)

= (λ̂a1 ∧ â1ρ)(â1ρ)′â1ρλ̂a2(λ̂a2)
′(v)ψ(v)ψ(v)ψ

by Proposition 3(iii)

= (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(v)ψ = (λ̂a1 ∧ â1ρ)(v)ψ = (u)ψ.

If on the other handu = v, thena2 ∈ I anda1ρ = a′
2, whence we get

(u)ψ(u)ψ(u)ψ = (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(λ̂a1 ∧ â1ρ)(v)ψ

= (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(â1ρ)′â1ρ(λ̂a1 ∧ â1ρ)(v)ψ.

Putg = (â1ρ)′â1ρ(λ̂a1 ∧ â1ρ). Theng and(v)ψ(v)ψ are idempotents in the submono
(â1ρ)′â1ρS(â1ρ)′â1ρ, which implies
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(u)ψ(u)ψ(u)ψ = (λ̂a1 ∧ â1ρ)(v)ψ(v)ψg(v)ψ = (λ̂a1 ∧ â1ρ)g(v)ψ(v)ψ(v)ψ

= (λ̂a1 ∧ â1ρ)(v)ψ(v)ψ(v)ψ = (λ̂a1 ∧ â1ρ)(v)ψ = (u)ψ. �
Lemma 6. Let u = a1 . . . an, where n � 2, and let a1, an ∈ I . Put v = a2 . . . an. Then
(u · u · w)ψ = (u · v · (λa2 ∧ a1) 
 a′

1 
 w)ψ , for each w ∈ s(F ).

Proof. Let w = b1 . . . bm and putw1 = (λa2 ∧ a1) 
 a′
1 
 w. Assume first thata1 = b1. In

this case we havew1 = (λa2 ∧ a1) 
 w. Let M = {l: 2 � l, ai = bi andai ∈ (I ∧ I) for all
i ∈ {2, . . . , l}}. We distinguish two main cases.

(1) The setM is not empty. Letk be the maximum ofM. We obtain

(u · v · w1)π = (
u · ak+1 . . . an 
 (λak+1 ∧ akρ) · bk+1 . . . bm

)
π.

Now, if

(i) ak+1 ∈ I andakρ = a′
k+1, we get

ak+1 . . . an 
 (λak+1 ∧ akρ) = ak+1 . . . an,

whence

(u · v · w1)π = u · ak+1 . . . an · bk+1 . . . bm

follows. Further, if
(ii) λak+1 = λbk+1, we also have

(u · v · w1)π = u · ak+1 . . . an · bk+1 . . . bm.

In all the other cases(u · v · w1)π is equal to

u · ak+1 . . . an(λak+1 ∧ akρ) · bk+1 . . . bm.

We compute(u ·u ·w)ψ . Note that sinceak ∈ (I ∧I), we haveu = ak+1 . . . an a1 . . . ak if
and only ifak+1 ∈ I andakρ = a′

k+1, andu = ak+1 . . . an(λak+1 ∧akρ)a1 . . . ak otherwise.
Since

̂ak+1 . . . an(âk+1 ∧ â′
k+1) = ̂ak+1 . . . an âk+1â

′
k+1 = ̂ak+1 . . . an,

in any case we get

û = ̂ak+1 . . . an(λ̂ak+1 ∧ âkρ) ̂a1 . . . ak.

Further from(u · u · w)π = u · u · w we infer

(u · u · w)ψ = û ̂ak+1 . . . an(λ̂ak+1 ∧ âk) ̂a1 . . . ak â1 . . . âkb̂k+1 . . . b̂m.
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Put

e = (̂akρ)′âkρâk+1 . . . ân
̂ak+1 . . . an(λ̂ak+1 ∧ âkρ),

and put

f = (̂akρ)′âkρ ̂a1 . . . ak â1 . . . âk.

Thene andf are idempotents belonging to(âkρ)′âkρS(âkρ)′âkρ, and we obtain

(u · u · w)ψ = â1 . . . âk ef b̂k+1 . . . b̂m = â1 . . . âkf eb̂k+1 . . . b̂m

= û ̂ak+1 . . . an(λ̂ak+1 ∧ âkρ)b̂k+1 . . . b̂m by Lemma 5.

Now, if none of (i) and (ii) is satisfied or if (i) is satisfied, then(u ·u ·w)ψ = (u ·v ·w1)ψ

directly follows from the above. It remains to show the assertion in case (ii). Put

g = âk+1 . . . ân
̂ak+1 . . . anλ̂ak+1(λ̂ak+1)

′,

and put

h = (λ̂ak+1 ∧ âkρ)λ̂ak+1 ̂(λak+1)′.

We compute

(u · u · w)ψ = û ̂ak+1 . . . an(λ̂ak+1 ∧ âkρ)b̂k+1 . . . b̂m

= û ̂ak+1 . . . an(λ̂ak+1 ∧ âkρ)λ̂ak+1(λ̂ak+1)
′b̂k+1b̂m

= â1 . . . âkghb̂k+1 . . . b̂m = â1 . . . âkhgb̂k+1 . . . b̂m

= â1 . . . âk(âkρ)′âkρ(λ̂ak+1 ∧ âkρ)λ̂ak+1(λ̂ak+1)
′gb̂k+1 . . . b̂m

= â1 . . . âk(âkρ)′âkρλ̂ak+1(λ̂ak+1)
′gb̂k+1 . . . b̂m by Lemma 3(iii)

= â1 . . . ân
̂ak+1 . . . anb̂k+1 . . . b̂m

= (u · v · w1)ψ,

completing the proof in caseM �= ∅.

(2) The setM is empty. We then have eithera2 = b2 anda2 ∈ I or a2 �= b2. Assume first
thata2 = b2 anda2 ∈ I . It follows (u · v ·w1)ψ = (u · v · a2b3 . . . bm+1)ψ = ûv̂â2b̂3 . . . b̂m.
On the other hand, we get

(u · u · w)ψ = ûv̂â1â2b̂3 . . . b̂m = ûv̂(â2 ∧ â1)â
′
1â1â2b̂3 . . . b̂m

= ûv̂(â2 ∧ â1)â2b̂3 . . . b̂m.
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e

e

to
Put e = v̂v̂, and putf = (â2 ∧ â1)â2â
′
2. Thene andf are idempotents belonging to th

submonoid̂a2â
′
2Sâ2â

′
2, and we compute

(u · u · w)ψ = â1ef â2b̂3 . . . b̂m = â1f eâ2b̂3 . . . b̂m = â1(â2 ∧ â1)v̂v̂â2b̂3 . . . b̂m

= â1â2 . . . ânv̂â2b̂3 . . . b̂m by Lemma 3(iii)

= (u · v · w1)ψ.

Assume now thata2 �= b2. Note that(u · v · w1)π = u · v · (λa2 ∧ a1) 
 b2 . . . bm in
this case. If additionallyλa2 �= λb2, we get(u · v · w1)ψ = ûv̂(λ̂a2 ∧ â1)b̂2 . . . b̂m. On the
other hand,(u · u · w)ψ = ûv̂(λ̂a2 ∧ â1)â

′
1â1b̂2 . . . b̂m, which implies the assertion, sinc

(λ̂a2 ∧ â1)â
′
1â1 = λ̂a2 ∧ â1.

Moreover, ifλa2 = λb2, then(u · v · w1)ψ = ûv̂b̂2 . . . b̂m. On the other hand putg =
v̂v̂λ̂a2(λ̂a2)

′ andh = (λ̂a2 ∧ â1)λ̂a2(λ̂a2)
′. Theng andh are idempotents belonging

λ̂a2(λ̂a2)
′Sλ̂a2(λ̂a′

2), whence

(u · u · w)ψ = â1ghb̂2 . . . b̂m = â1hgb̂2 . . . b̂m = â1(λ̂a2 ∧ â1)v̂v̂λ̂a2(λ̂a2)
′b̂2 . . . b̂m

= ûv̂b̂2 . . . b̂m = (u · v · w1)ψ.

It remains to handle the casea1 �= b1. Herea′
1 
 w is obtained froma′

1w by possibly
applying one reduction of the forma(b ∧ a) → a. Keeping in mind the definition ofπ , we
directly see that

(u · u · w)ψ = (
u · v 
 (λa2 ∧ a1) 
 a′

1 · w)
ψ = (

u · v · (λa2 ∧ a1) 
 a′
1 
 w

)
ψ. �

Lemma 7. Let u = a1 . . . an, where n � 2 and a1, an ∈ I . Let further v = a2 . . . an. Then
(u1 · u · w · u2)ψ = (u1 · u · v · (λa2 ∧ a1) 
 a′

1 
 w · u2)ψ for all u1, u2 ∈ s(F ).

Proof. The assertion will be proved by induction onf (w) = m. Let m = 1 andw = b ∈
I ∪(I ∧I). Note first that sinceu ends witha′

1 ∈ I in any case we have(u1 ·u ·u ·b ·u2)ψ =
(u1 ·u · u · b 
u2)ψ , which is equal tou1 ·u · v · (λa2 ∧ a1)
 a′

1 
 b 
u2)ψ by Lemma 6.
Assume now thata1 = b. We get

(
u1 · u · v · (λa2 ∧ a1) 
 a′

1 
 b 
 u2
)
ψ = (

u1 · u · v · (λa2 ∧ a1) · u2
)
ψ.

Since(λa2 ∧ a1) = (λa2 ∧ a1) 
 a′
1 
 a1, the assertion follows.

On the other hand, ifa1 �= b, we directly see that

(u1 · u · u · b · u2)ψ = (
u1 · u · v · (λa2 ∧ a1) 
 a′

1 · b · u2
)
ψ

= (
u1 · u · v · (λa2 ∧ a1) 
 a′

1 
 b · u2
)
ψ.

Assume that the assertion is true form � 1 and letw = b1 . . . bm+1. If bm+1 ∈ (I ∧ I),
then
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(u1 · u · u · w · u2)ψ = (u1 · u · u · b1 . . . bm · bm+1 
 u2)ψ

= (
u1 · u · v · (λa2 ∧ a1) 
 a′

1 
 b1 . . . bm · bm+1 
 u2
)
ψ

by hypothesis

= (
u1 · u · v · (λa2 ∧ a1) 
 a′

1 
 w · u2
)
ψ.

Let finally bm+1 ∈ I and putw1 = (λa2 ∧ a1) 
 a′
1 
 w. Sincea1 ∈ I , we get

(u1 · u · u · w · u2)ψ = (
u1 
 (

a1 ∧ a′
1

))
ψ(u · u · w)ψ

((
b′
m+1 ∧ bm+1

) 
 u2
)
ψ and

(u1 · u · v · w1 · u2)ψ = (
u1 
 (

a1 ∧ a′
1

))
ψ(u · v · w1)ψ

((
b′
m+1 ∧ bm+1

) 
 u2
)
ψ.

Since(u · u · w)ψ is equal to(u · v · w1)ψ by Lemma 6, the assertion follows, completi
the proof. �

The next proposition will be crucial for establishing equality (3).

Proposition 8. (u1 · u · u · w · u2)ψ = (u1 · u · u 
 w · u2)ψ , for all u1, u2, u,w ∈ s(F ).

Proof. We prove the assertion by induction onf (u) = n. If n = 1, it follows by a simple
direct case checking which is left to the reader.

Assume that the assertion is true forn � 1 and letu = a1 . . . an+1. Let firsta1 ∈ (I ∧ I)

and putv = a2 . . . an+1. It follows

(u1 · u · u · w · u2)ψ = (
u1 
 a1 · v · v · (λa2 ∧ a1ρ) 
 w · u2

)
ψ

= (
u1 
 a1 · v · v 
 (λa1 ∧ a1ρ) 
 w · u2

)
ψ by hypothesis

= (u1 · u · u 
 w · u2)ψ.

Similarly if an+1 ∈ (I ∧ I), we obtain withv = a1 . . . an,

(u1 · u · u · w · u2)ψ = (u1 · v · v · w · u2)ψ by definition ofπ

= (u1 · v · v 
 w · u2)ψ by hypothesis

= (u1 · u · u 
 w · u2)ψ by definition ofπ.

It remains to handle the casea1, an ∈ I . Putv = a2 . . . an+1. We compute

(u1 · u · u · w · u2)ψ = (
u1 
 (

a2 ∧ a′
1

))
ψ(u · u · w · u2)ψ

= (
u1 
 (

a1 ∧ a′
1

))
ψ

(
u · v · (λa2 ∧ a1) 
 a′

1 
 w · u2
)
ψ

by Lemma 7

= (
u1 
 (

a1 ∧ a′
1

))
ψ

(
a1 · v · v · (λa2 ∧ a1) 
 a′

1 
 w · u2
)
ψ
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n

p
dy
by definition ofv, and sincea1 ∈ I

= (
u1 
 (

a1 ∧ a′
1

))
ψ

(
a1 · v · v 
 (λa2 ∧ a1) 
 a′

1 
 w · u2
)
ψ

by hypothesis

= (
u1 
 (

a1 ∧ a′
1

))
ψ(u · u 
 w · u2)ψ

= (u1 · u · u 
 w · u2)ψ,

completing the proof. �
Now we are ready to establish equality (3). For this letu,u1, u2,w ∈ s(F ), and letu′

be the inverse ofu in the maximal subgroupGab of BFCS(X). Thenu′ = (a ∧ uρ) 
 u 

(λu ∧ b), whence it follows,

(u1 · u · u′ · w · u2)ψ = (
u1 · u · (a ∧ uρ) 
 u 
 (λu ∧ b) · w · u2

)
ψ

= (
u1 · u · u · (λu ∧ b) 
 w · u2

)
ψ

= (
u1 · u · u 
 (λu ∧ b) 
 w · u2

)
ψ by Proposition 8

= (u1 · u · u′ 
 w · u2)ψ.

Equality (4) holds by a dual argument.
Summarizing, we have shown thatψ̂ : S(BFCS(X)) → S, wρ′ �→ wψ is a uniquely de-

fined mapping. Obviouslŷψ is not a homomorphism in general, since for(a ∧ b)ρ′, aρ′ ∈
S(BFCS(X)), wherea, b ∈ I , we get

(
(a ∧ b)ρ′aρ′)ψ̂ = (

(a ∧ b) · a)
ψ = (a)ψ = â,

whereas((a ∧ b)ρ′)ψ̂(aρ′)ψ̂ = (â ∧ b̂)â, which is not equal tôa in general. However, we
may define a regular subsemigroupT of S(BFCS(X)) with the property that the restrictio
ψ̂ |T of ψ̂ to T is a homomorphism.

Let T be the set of all wordsa1 · · · · · an ∈ F(s(F )), wherea1 andan belong toI ,
and whereai either belongs toI , or ai ∈ (I ∧ I) andai−1 = (λai)

′ and (aiρ)′ = ai+1,
i ∈ {2, . . . , n−1}. Let furtherTρ′ be the set of allwρ′, w ∈ T . ThenTρ′ is a subsemigrou
of S(BFCS(X)) and by the definition ofψ , ψ̂ |T is a homomorphism. In fact, we are rea
now to formulate the main result of the paper.

Theorem 9. The semigroup Tρ′ together with the matched mapping ι : I → Tρ′, a �→ aρ′,
is a model of the bifree locally inverse semigroup BFLI(X) on X.

Proof. We show first thatTρ′ is regular whence it follows thatTρ′ is locally inverse as a
subsemigroup ofS(BFCS(X)). Let a, b ∈ I . Thenb′ 
 (b ∧ a) 
 a′ is an inverse ofa 
 b

in BFCS(X), and it follows by [7, Proposition 1(i)] that

(a · b)ρ′ = (
a · b · b′ 
 (b ∧ a) 
 a′ · a · b)

ρ′ = (
a · b · b′ · (b ∧ a) · a′ · a · b)

ρ′,
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and likewise

(
b′ · (b ∧ a) · a′ · a · b · b′ · (b ∧ a) · a′)ρ′ = (

b′ · (b ∧ a) · a′ · a 
 b · b′ · (b ∧ a) · a′)ρ′

= (
b′ · (b ∧ a) · a′)ρ′,

sincea
b ∈ V (b′ 
 (b∧a)
a′). Consequently(b′ · (b∧a) ·a′)ρ′ is an inverse of(a ·b)ρ′
in Tρ′. Utilizing Proposition 1, we see that forwρ′ = (a1 · · · · · an)ρ

′ ∈ Tρ′ the product

(
a′
n · (an ∧ an−1ρ) · a′

n−1 · (λan−1 ∧ an−2ρ) · a′
n−2 · · · · · (a2ρ ∧ a1) · a′

1

)
ρ′,

where the letter(λai ∧ ai−1ρ) occurs, if and only ifai−1, ai ∈ I , is an inverse ofwρ′
belonging toTρ′. If for examplewρ′ = (a · (a′ ∧ b′) · b · c)ρ′, then(c′ · (c ∧ b) · b′ · a′)ρ′
is an inverse ofwρ′ which lies inTρ′. HenceTρ′ is regular.

It remains to show thatθ := ψ̂ |T is the unique homomorphism extendingθ . Since
(a)ιθ = (aρ′)ψ̂ |T = aψ = â = aθ , for a ∈ I , we obviously have thatθ extendsθ . Further,
sinceaρ′ ∧ bρ′ = (a · a′ · (a ∧ b) · b′ · b)ρ′, by the above, we observe thatTρ′ is multi-
plicatively generated by the elementsaρ′ andaρ′ ∧ bρ′, a, b ∈ I . It is well known [26] and
easily follows from Proposition 2, that the operation∧ is preserved by any homomorphis
between locally inverse semigroups. Consequentlyθ is unique, completing the proof.�

4. Two applications

This section is devoted to infer two consequences of Theorem 9. First, we obt
embedding ofBFLI(X) into a Rees matrix semigroup over an inverse monoid, and se
we show thatBFLI(X) is embeddable into a restricted semidirect product of a semilattic
by BFCS(X). A similar representation is due to Auinger [2].

We know from the results in [7] thatS(BFCS(X)) is a perfect rectangular bandI × I

of E-unitary inverse monoidsMab, a, b ∈ I , where(u1 · · · · · un)ρ
′ belongs toMab if and

only if λu1 = a and unρ = b. Further, the identity element ofMab is (a ∧ b)ρ′. If N

denotes the subsemigroup ofS(BFCS(X)) which is generated by the elementsaρ′, where
a ∈ I ∪ (I ∧ I), thenN is a perfect rectangular bandI × I of inverse monoidsNab. In
particular, for(a1 · · · · · an)ρ

′ ∈ Nab, the element

(
(c ∧ anρ) · an · (λan ∧ an−1ρ) · · · · · a2 · (λa2 ∧ a1ρ) · a1 · (λa1 ∧ d)

)
ρ′,

whereai = a′
i if ai ∈ I andai = ai , if ai ∈ (I ∧ I), is the uniquely determined invers

of (a1 · · · · · an)ρ
′ in Ncd . This follows from a similar argument as used in the proo

Theorem 9.
As was shown by Pastijn [22] each perfect rectangular bandI × Λ of inverse monoids

Siλ can be embedded into a Rees matrix semigroup over an inverse monoid as follow
(i, λ) ∈ I × Λ let eiλ denote the identity element of the submonoidSiλ. We may assum
that there is an element 0∈ I ∩ Λ. Let P = (pλj ) be defined bypλj = e0λej0. Then all
elementse0λej0, j ∈ I , λ ∈ Λ are units inS00 andS is isomorphic to the Rees matr
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semigroupM[S00; I,Λ;P ] with sandwich matrixP , via siλ �→ (i, e00siλe00, λ), where
siλ ∈ Siλ.

We apply this result to our situation. LetN be defined as above. Choosez ∈ I . Then

Nzz = {(
(z ∧ z) · w · (z ∧ z)

)
ρ′: w = a1 · · · · · an, ai ∈ I ∪ (I ∧ I)

}

is an inverse monoid with identity(z ∧ z)ρ′. Let P = (pab), a, b ∈ I be defined bypab =
((z ∧ a) · (b ∧ z))ρ′. ThenP is anI × I matrix which entirely consists of units ofNzz. As
an immediate consequence of Theorem 9, we obtain

Corollary 10. The bifree locally inverse semigroup, represented by Tρ′, is embeddable
into the Rees matrix semigroup M[Nzz; I, I ;P ] over the E-unitary inverse monoid Nzz,
via wρ′ �→ (a1, ((z ∧ z) · w · (z ∧ z))ρ′, an), where w = a1 · · · · · an ∈ T .

We refer to some results of [7]. LetC be a completely simple semigroup and let〈EC〉 be
the subsemigroup ofC, generated by the set of idempotentsEC . We define a binary relatio
∼ on C by u ∼ v ⇔ ue = v, for somee ∈ 〈EC〉. Obviously∼ is an equivalence relation
Moreover,∼ is a left congruence contained in Green’s relationR on C. This gives rise to
define a left action ofC onPfin(C/∼), the∪-semilattice of all finite subsets ofC/∼, via
uB = {ũv: ṽ ∈ B}, u ∈ C, B ∈ Pfin(C/∼), wherez̃ denotes the∼-class ofz ∈ C. Hence we
may define the restricted semidirect productPfin(C/∼) ∗rr C with respect to this action
Foru ∈ C let Ru be theR-class containingu. Put

C̃R = {
(A,u) ∈Pfin(C/∼) × C: ũu′, ũ ∈ A, andṽ ⊆Ru for eachṽ ∈ A

}
.

Then C̃R with multiplication (A,u)(B, v) = (A ∪ uB,uv) is a subsemigroup o
Pfin(C/∼) ∗rr C. Moreover, it was shown in [7] thatS(C) is isomorphic tõCR via

ψ̃ : (u1 · · · · · un)ρ
′ �→ ({

ũ1u
′
1ũ1, ũ1u2, . . . , ˜u1 . . .un

}
, u1 . . .un

)
.

With respect to Theorem 9 we infer

Corollary 11. The bifree locally inverse semigroup, represented by Tρ′, is embeddable
into the restricted semidirect product Pfin(BFCS(X)/∼) ∗rr BFCS(X) via

ψ̃ |Tρ′ : (a1 · · · · · an)ρ
′ �→ ({ ˜(

a1 ∧ a′
1

)
, ã1, ˜a1 
 a2, . . . , ˜a1 
 · · · 
 an

}
, a1 
 · · · 
 an

)
.

From Corollary 11 we may pass to an Auinger [2] like semidirect product represen
of BFLI(X), since this special case admits to work with certain subsets ofBFCS(X),
rather than sets of∼-classes, in the first component of the restricted semidirect pro
of Corollary 11. To specify this more precisely, letPfin(s(F )) be the∪-semilattice of all
finite subsets ofBFCS(X), the latter being represented ass(F ). Sinces(F ) naturally acts
onPfin(s(F )) by multiplication on the left, we may form the restricted semidirect produ
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Pfin(s(F )) ∗rr s(F ). Let noww = a1 · · · · · an ∈ T . We know from Corollary 11 that(a1 ·
· · · · an)ρ

′ is mapped onto

({ ˜(
a1 ∧ a′

1

)
, ã1, ã1 
 a2, . . . , ˜a1 
 · · · 
 an

}
, a1 
 · · · 
 an

)

underψ̃|Tρ′ . Put

Ã = { ˜(
a1 ∧ a′

1

)
, ã1, ã1 
 a2, . . . , ˜a1 
 · · · 
 an

}
.

We assign a subsetA ⊆ s(F ) to Ã as follows: letA be the set, consisting of all unique
determined shortest membersu of the∼-classes occurring iñA together with the elemen
u 
 (uρ)′. In particular, by the shortest member of a∼-class containing an idempote
(a∧b), say, we mean(a∧a′). ObviouslyA is uniquely defined, which gives rise to define
mappingτ : (Tρ′)ψ̃|Tρ′ → Pfin(s(F ))∗rr s(F ) by (Ã, a1
· · ·
an) �→ (A,a1
· · ·
an).
It is not hard to show thatτ is an injective homomorphism.

We end this section with some concluding remarks. Utilizing a result of Szendrei
it was shown in [13] thatS(C) is isomorphic toCPr in caseC is a group. Since bifre
and free groups are just the same, our considerations yield a new proof of the fact
Birget and Rhodes [9] thatFG(X)Pr, (FG(X) the free group onX), contains a copy of th
free inverse semigroup onX. Further, if we apply our construction to the free complet
simple semigroupFC(X), we infer thatS(FC(X)) contains a copy of the free (perfec
rectangular band of inverse semigroups (monoids). This was elaborated in [7]. In [
constructed expansions of inverse semigroups in a similar way, obtaining a factorizat
dual prehomomorphisms; see also Lawson, Margolis, and Steinberg [15]. Summa
the concept of expansion as introduced in [9], together with its modifications, seems
a powerful tool in semigroup theory.
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[12] J. Kădourek, M.B. Szendrei, A new approach in the theory of orthodox semigroups, Semigroup For
(1990) 257–296.

[13] J. Kellendonk, M.V. Lawson, Partial actions of groups, Internat. J. Algebra Comput. 14 (1) (2004) 87–11
[14] M.V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific, Singapore, 1
[15] M.V. Lawson, S.W. Margolis, B. Steinberg, Expansions of inverse semigroups, J. Austral. Math. Soc.

press.
[16] J. Meakin, Perfect rectangular bands of inverse monoids, J. Pure Appl. Algebra 40 (1986) 149–162.
[17] J. Meakin, Regular expansions of completely simple semigroups, J. Pure Appl. Algebra 40 (1986) 16
[18] J. Meakin, The free rectangular band of inverse semigroups on a set, J. Pure Appl. Algebra 40 (1986) 2

273.
[19] K.S.S. Nambooripad, Structure of regular semigroups, Mem. Amer. Math. Soc. 224 (1979).
[20] F. Pastijn, Rectangular bands of inverse semigroups, Simon Stevin 56 (1982) 3–95.
[21] F. Pastijn, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. 273 (1982) 631–65
[22] F. Pastijn, M. Petrich, Straight locally inverse semigroups, Proc. London Math. Soc. (3) 49 (1984) 30
[23] M. Petrich, Inverse Semigroups, Wiley, New York, 1984.
[24] P.G. Trotter, Normal partitions of idempotents of regular semigroups, J. Austral. Math. Soc. 26 (1978

114.
[25] M.B. Szendrei, A note on Birget–Rhodes’ expansion of groups, J. Pure Appl. Algebra 58 (1989) 93–99.
[26] Y.T. Yeh, The existence ofe-free objects ine-varieties of regular semigroups, Internat. J. Algebra Comput.

(1992) 471–484.


