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Planck spectrum of black body radiation is usually derived by considering of quantized free electro-
magnetic field at a finite temperature. The minimum-length deformed quantization affects field theory 
both at the first and second quantization levels. Performing an exact calculation to the first order in 
deformation parameter, both of the corrections turn out to be of the same order. Nevertheless, the 
correction at the second quantization level has some qualitative difference, that may be interesting for 
future study to differentiate between these two sorts of corrections. In itself the correction to the black 
body radiation seems to be innocuous in light of the big-bang nucleosynthesis whenever the minimum 
length is less or equal to 10−19 cm.

© 2011 Elsevier B.V. Open access under CC BY license.

1. Introduction

The minimum-length deformed quantum mechanics results in generalized uncertainty relation implying the existence of a minimum 
length below which the uncertainty in position cannot be reduced [1]. The generalized uncertainty relation has appeared in the context 
of perturbative string theory as a consequence of the fact that strings cannot probe distances below the string scale (string length) [2]. 
Further motivation for this generalized uncertainty relation was found in the framework of Gedankenexperiments combining quantum 
theory and general relativity [3].

In what follows we will assume system of units h̄ = c = kB = 1. The minimum-length modified commutation relation has the form [1]

[ X̂i, P̂ j] = i
(
δi j + β P̂ 2δi j + β ′ P̂ i P̂ j

)
. (1)

This modified quantum mechanics imposes lower bound on position uncertainty δx

δxmin = √
3β + β ′,

where the minimum length is usually set by the quantum gravity scale δxmin = lP � 10−33 cm or by the string length in string-gravity
framework which is as small as lP (string length is defined by means of the string tension σ (i.e., energy per unit of length) as lS = σ−1/2).
In a particular case β ′ = 2β , i.e.,

[ X̂i, P̂ j] = i
(
δi j + β P̂ 2δi j + 2β P̂ i P̂ j

)
,

the realization of this algebra to the linear order in β can be done in a simple way in terms of the standard position and momentum 
operators [x̂i, p̂ j] = iδi j [4]

X̂i = x̂i, P̂ i = p̂i
[
1 + β(p̂)2 ]. (2)

In the classical limit Eq. (2) admits simple physical interpretation that due to quantum-gravitational fluctuations of the background metric 
the momentum p acquires the increment βp2p yielding the modified dispersion relation

ε2 = p2 + m2 + 2βp4. (3)
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In this Letter we analyse the corrections to the free quantum field theory due to minimum-length deformed quantum mechanics
and subsequent consequences for the black body radiation. The effect of modified dispersion relation on black body radiation have been
studied in much detail [5–7]. Let us notice one more paper [8] where the classical limit of minimum-length deformed quantum mechanics
and its consequences for black body radiation has been studied. The new point that is the main focus of our Letter is related to the field
quantization with respect to the minimum-length deformed quantum mechanics.

Albeit there are several approaches to quantum gravity, one may hope that the generalized uncertainty relation suggested in [2], and a
particular construction of the deformed quantum mechanics based on it, Eq. (2), catches certain features of quantum gravity.

2. Quantum field theory in light of the minimum-length deformed quantum mechanics

The departure from usual quantum field theory (QFT) takes place in two ways. First, the modified dispersion relation affects the
classical field theory. Second, the modified quantum mechanics will come into play when we are quantizing the field.

2.1. Imprints of modified dispersion relation on a classical field

Usually, in constructing of relativistic quantum mechanics the energy and momentum operators Ê = −i∂t , p̂ = −i∂r are setting the
stage through the energy-momentum four-vector operator p̂μ = −i∂μ [9]. Following this prescription one can write the action as [10]

A[Φ] = −
∫

d4x

[
Φ∂2

t Φ

2
+ ΦP̂2Φ

2
+ U (Φ)

]
, (4)

that results in the equation of motion

∂2
t Φ + P̂2Φ + U ′(Φ) = 0,

where the prime denotes differentiation with respect to Φ . Substituting the Eq. (2), the modified equation of motion to the lowest order
in β takes the form

∂2
t Φ − �Φ + 2β��Φ + U ′(Φ) = 0.

The energy functional looks now like

E[Φ] =
∫

d3x

[
(∂tΦ)2

2
+ β∂i∂kΦ ∂i∂kΦ + ∂iΦ∂iΦ

2
+ U (Φ)

]
,

where the summation over i, k indices are implied.

2.2. The effect of modified quantum mechanics on a quantum field

We set U (Φ) = 0 as for our further purposes it does not play any role. Putting the field in a box with sides of length l, imposing
periodic boundary conditions, Φ(xi + l) = Φ(xi), where i = 1,2,3, and using the Fourier expansion

Φ(r) = 1√
l3

∑
kn

ϕ(kn)e−iknr, kn ≡ 2π

l
(n1,n2,n3),

from Eq. (4) one finds

A[Φ] =
∑

kn�0

t2∫
t1

dt
[∣∣ϕ̇(kn)

∣∣2 − (
k2

n + 2βk4
n

)∣∣ϕ(kn)
∣∣2]

. (5)

We have zero mode, kn = 0, plus oscillators which we have to quantize with respect to the modified quantum mechanics. This is the
second related departure from usual theory.

3. Dynamical system in thermal equilibrium: harmonic oscillator and black body radiation

Assume that the Hamiltonian Ĥ, the eigenvalues En and the eigenstates |n〉 of the system are known. In thermal equilibrium, the
probability of finding the system in the n-th state at the temperature T is given by the Boltzmann distribution [11]

Wn = e−En/T∑
n e−En/T

. (6)

The mean values of energy and pressure at a temperature T can be simply estimated by means of this expression

E =
∑

n

En Wn, P = −
∑

n

Wn
∂ En

∂V
. (7)

The harmonic oscillator

Ĥ = p̂2

+ mω2q̂2

,

2m 2



D. Mania, M. Maziashvili / Physics Letters B 705 (2011) 521–528 523
has well-known energy spectrum

En = ω

(
n + 1

2

)
,

for which one gets∑
n

e−ω(n+ 1
2 )/T = e−ω/2T

1 − e−ω/T
⇒ Wn = 1 − e−ω/T

eωn/T
.

Using Eq. (7), the mean value of energy at temperature T takes the form

E = ω

2
+ ω

eω/T − 1
. (8)

Now let us turn to field theory. The free electromagnetic field enclosed into the box l3 is usually represented (upon making the Fourier
transform) as a sum of (one-dimensional) harmonic oscillators [12]

Ĥ = 1

2

∑
α,kn�0

[
l p̂2

α,kn
+ k2

n

l
q̂2
α,kn

]
, (9)

where the length scale l may in fact be arbitrary,

kn ≡ 2π

l
(n1,n2,n3) and α = 1,2. (10)

Let us digress a moment to point out the meaning and importance of length scale l . The point is that in the standard quantization
the energy spectrum of harmonic oscillator does not depend on mass, so in the standard case the explicit value of the length scale l is
of little interest. But a remarkable feature of minimum-length deformed quantization is that the energy spectrum of harmonic oscillator
becomes mass dependent, see Eq. (12) below. Lets us notice that the only length scale we have in the case of a free, massless QFT at a
finite temperature is T −1. So it is straightforward to identify the length scale l for the problem under consideration.

Each term in the sum (9) corresponds to a definite wave vector, kn , and polarization α. Knowing the energy spectrum of harmonic
oscillator we can therefore immediately write down the field mean energy at a temperature T

E = 2
∑
kn

[
ωkn

2
+ ωkn

eωkn /T − 1

]
, (11)

where the pre-factor 2 accounts for the polarization degrees of freedom and ωkn =
√

k2
n . Defining the occupation number

n̄kn = 1

eωkn /T − 1
,

and omitting the zero-point energy, Eq. (11) takes the form

E = 2
∑
kn

ωkn

eωkn /T − 1
= 2

∑
kn

n̄knωkn .

If l is sufficiently large then the momentum spacing 2π/l becomes small and we can replace this sum by the integral. The total number
of possible values of the vector kn in the interval k, k + dk is equal to d3k l3/(2π)3, i.e., for a spherical layer 4πk2dk l3/(2π)3. In this case
the energy density takes the form

ρ = E

l3
= 8π

(2π)3

∞∫
0

ω3 dω

eω/T − 1
= π2T 4

15
.

One easily finds the pressure by observing that energy levels of Hamiltonian equation (9) depend on the volume through the wave vectors
kn = V −1/32π(n1,n2,n3); so the factor ∂ EN/∂V entering the expresson of pressure in Eq. (7) takes the form ∂ En/∂V = −En/3V and
respectively for the pressure one finds

P = 1

3V

∑
n

En Wn = ρ

3
.

4. Black body radiation corrected due to minimum-length deformed quantum mechanics

4.1. Harmonic oscillator

The lowest order correction to the energy spectrum of (one-dimensional) harmonic oscillator due to minimum-length modified quan-
tum mechanics has the following form [13]

Ẽn = ω

(
n + 1

)
+ mω2β

(
n2

+ n + 1
)

. (12)

2 2 2 4
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The Boltzmann distribution, Eq. (6), in the first approximation takes the form

W̃n = e−(En+δEn)/T∑
n e−(En+δEn)/T

=
(

e−En/T − e−En/T δEn

T

)(
1∑

n e−En/T
+

∑
n e−En/T δEn

T [∑n e−En/T ]2

)
= Wn − δEn

T
Wn + δE

T
Wn, (13)

where Wn denote zero-order values and δE stands for mean value of energy correction

δE =
∑

n

δEn Wn.

For mean energy, in the first approximation one finds the following expression∑
n

(En + δEn)W̃n = E + δE −
∑

n

δEn

T
En Wn + δE

T
E, (14)

where all averages are taken with respect to the Wn . Using the relations∑
n

nWn = e−ω/T

1 − e−ω/T
,

∑
n

n2Wn = e−ω/T + e−2ω/T

(1 − e−ω/T )2
,

∑
n

n3Wn = e−ω/T + 4e−2ω/T + e−3ω/T

(1 − e−ω/T )3
,

one finds

δE = mω2β

2

∑
n

(
n2 + n + 1

2

)
Wn = mω2β

4
+ mω2β

2

2e−ω/T

(1 − e−ω/T )2
, (15)

∑
n

δEn En Wn = ω

2

∑
n

δEn Wn + ω
∑

n

nδEn Wn = ω

2
δE + mω3β

4

5e−ω/T + 6e−2ω/T + e−3ω/T

(1 − e−ω/T )3
. (16)

Using Eqs. (8), (15), (16), for Eq. (14) one gets∑
n

(En + δEn)W̃n = E + δE + δE

T

ωe−ω/T

1 − e−ω/T
− mω3β

4T

5e−ω/T + 6e−2ω/T + e−3ω/T

(1 − e−ω/T )3

= ω

2
+ mω2β

4
+ ωe−ω/T

1 − e−ω/T
+ mω2β

e−ω/T

(1 − e−ω/T )2

+
[

mω2β

4T
+ mω2β

T

e−ω/T

(1 − e−ω/T )2

]
ωe−ω/T

1 − e−ω/T
− mω3β

4T

5e−ω/T + 6e−2ω/T + e−3ω/T

(1 − e−ω/T )3

= ω

2
+ mω2β

4
+ ωe−ω/T

1 − e−ω/T
+ mω2β

e−ω/T

(1 − e−ω/T )2
− mω3β

4T

e−ω/T + 10e−2ω/T − 3e−3ω/T

(1 − e−ω/T )3
. (17)

4.2. Turning to the field theory

Turning now to the field theory, from Eq. (5) one finds that the Hamiltonian of free electromagnetic field, Eq. (9), takes the form

Ĥ = 1

2

∑
α,kn�0

[
l p̂2

α,kn
+ k2

n + 2βk4
n

l
q̂2
α,kn

]
. (18)

Upon quantizing with respect to the minimum-length deformed quantum mechanics each oscillator entering the Hamiltonian (18) results
in

Ẽkn = (
kn + βk3

n

)
(N + 1

2
) + βk2

n

l

(
N2

2
+ N

2
+ 1

4

)
. (19)

Now for estimating of energy density we have to drop zero-point energy in Eq. (17), make the replacements m → l−1
 ,ω → ωkn + βω3

kn

and take the sum over all kn modes (see Appendix A)

ρ = 2

l3

∞∫
0

4π l3ω2 dω

(2π)3

[
(ω + βω3)e−(ω+βω3)/T

1 − e−(ω+βω3)/T
+ βω2

l

e−ω/T

(1 − e−ω/T )2
− βω3

4lT

e−ω/T + 10e−2ω/T − 3e−3ω/T

(1 − e−ω/T )3

]

= π2

15
T 4 − 40π4

63
βT 6 − [74ζ(4)Γ (4) − 3ζ(6)Γ (6)]

4lπ2
βT 5

= π2

T 4 − 40π4

βT 6 −
(

74π2

− 24π4 )
βT 5

. (20)

15 63 15 63 4l
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For finding pressure one notices that energy levels Ẽkn in Eq. (19) depend on the volume through the wave vectors kn =
V −1/32π(n1,n2,n3); so the factor ∂ Ẽkn /∂V entering the expression of pressure in Eq. (7) takes the form

∂ Ẽkn

∂V
= − 1

3V

[(
kn + 3βk3

n

)(
N + 1

2

)
+ 2βk2

n

l

(
N2

2
+ N

2
+ 1

4

)]
.

Let us first focus on the correction coming from the l term. The modification as compared to the above calculations is that the term given
by Eq. (15) will enter the pressure with the additional factor 2/3. So, now we will have

1

π2

∞∫
0

ω2 dω

[
2βω2

3l

e−ω/T

(1 − e−ω/T )2
− βω3

4lT

e−ω/T + 10e−2ω/T − 3e−3ω/T

(1 − e−ω/T )3

]

= 2

3

16ζ(4)Γ (4)

4lπ2
βT 5 − [80ζ(4)Γ (4) − 3ζ(6)Γ (6)]

4lπ2
βT 5

= −
(

208π2

45
− 24π4

63

)
βT 5

4l
. (21)

The remaining terms to the first order in β can be estimated straightforwardly

∞∫
0

ω2 dω
ω/3 + βω3

exp(
ω+βω3

T ) − 1
=

∞∫
0

ω2 dω
(
ω/3 + βω3)( 1

eω/T − 1
− β

ω3eω/T

T (eω/T − 1)2
+ O

(
β2))

= 1

3

∞∫
0

ω3 dω
1

eω/T − 1
− β

3T

∞∫
0

ω6 dω
eω/T

(eω/T − 1)2
+ β

∞∫
0

ω5 dω
1

eω/T − 1

= ζ(4)Γ (4)

3
T 4 − βζ(6)Γ (6)T 6 = π4

45
T 4 − 8π6

63
βT 6.

Thus the final result takes the form

P = π2

45
T 4 − 8π4

63
βT 6 −

(
208π2

45
− 24π4

63

)
βT 5

4l
. (22)

Now let us specify the length scale l . The natural characteristic energy scale for the problem under consideration is the temperature T .
Moreover, that is the only energy scale at hand. So, to fix l , we have to identify l = T −1. Then Eqs. (20), (22) take the form

ρ = π2

15
T 4 −

(
18.5π2

15
+ 34π4

63

)
βT 6, (23)

P = π2

45
T 4 −

(
54π2

45
+ 2π4

63

)
βT 6. (24)

Entropy density gets the following correction

s = ρ + P

T
= 4π2

45
T 3 −

(
109.5π2

15
+ 36π4

63

)
βT 5. (25)

The validity condition for using Eqs. (23), (24), (25) is set by the requirement the β terms to be much smaller than the leading term

βT 2 � 1.

5. Cosmological constraints on β in light of Eqs. (23), (24)

The expansion rate of the universe is determined by the Friedmann and energy conservation equations

H2 ≡
(

ȧ

a

)2

= 8π

3m2
P

ρ, ρ̇ + 3H(ρ + P ) = 0. (26)

In view of Eqs. (23), (24) the radiation energy density and pressure encompassing all relativistic particle species take the form

ρ = g∗(T )

[
π2

30
T 4 −

(
18.5π2

30
+ 17π4

63

)
βT 6

]
,

P = g∗(T )

[
π2

90
T 4 −

(
27π2

45
+ π4

63

)
βT 6

]
, (27)

where g∗(T ) as usual denotes effective number of relativistic species at temperature T . The factor g∗(T ) increases with increasing the
temperature but it varies relatively slowly over the range g∗(T < 1 MeV) � 4, g∗(1 MeV < T < 300 MeV) � 10, g∗(300 MeV < T ) � 100
[14].
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It is convenient to write Eq. (26) in the form(
ȧ

a

)2

= 8π

3m2
P

ρ0

(
1 + δρ

ρ0

)
,

where ρ0 ≡ g∗(T )π2 T 4/30 and δρ denotes the correction β term in Eq. (27). The big bang nucleosynthesis is very sensitive to the
expansion rate of the Universe at temperatures of the order of a few MeV, at this temperature the ratio δρ/ρ0 is of the order of ∼
β(1 MeV)2. By taking

√
β � 1014lP one finds β(1 MeV)2 � 10−3. The limitations on δρ/ρ0 due to big bang nucleosynthesis are of the

order ∼ 10−2 [15].
It is worth noticing that the limitation on β coming from the inflationary perturbations spectrum is more severe [16–20]. Namely,

estimating the tensor metric perturbations and imposing the observational bound for gravitational waves one gets βH2 � 10−4, where H
denotes Hubble parameter during the inflation.

6. Concluding remarks

First let us notice that (qualitatively) Eqs. (23), (24), (25) can be viewed as obtained from the standard expressions by the replacement
T → T − 25βT 3. This generic feature was clearly emphasized in the recent papers devoted to the corrections to black body radiation due
to modified dispersion relations [6,7]. The main point of our study was to distinct corrections arising due to minimum-length deformed
quantization of an electromagnetic field. In general there are two types of corrections due to minimum-length deformed quantum me-
chanics, first quantization corrections and second quantization corrections, respectively, which should be contrasted. In the case of a black
body radiation both of these corrections appear to be of the same magnitude and sign. But in general these corrections are rather unlike.
Let us touch this question in a bit more detail. A little care is needed in extending of minimum-length deformed formalism, Eq. (1), to
the second quantization level. Looking at field theory as a limit of a discrete system (a straightforward and natural way for doing so is to
represent spatial integral as a Riemann-sum over the discrete set of points)

L =
∫

d3x L(Φ, Φ̇,�Φ) ∼
∑

xi

(δx)3 L
(
Φi, Φ̇i, [�Φ]i

)
,

one finds

pi = ∂L

∂Φ̇i
= Π(xi)(δx)3,

and Eq. (1)

[Φi, p j] = i
(
δi j + βp2δi j + β ′pi p j

)
,

takes the form[
Φi,Π(x j)

] = i

(
δi j

(δx)3
+ β(δx)3 δi j

(δx)3

∑
k

(δx)3[Π(xk)Π(xk)
] + β ′(δx)3Π(xi)Π(x j)

)
.

In the limit (δx)3 → 0 one finds

[
Φ(x),Π

(
x′)] = i

(
δ
(
x − x′) + lim

(δx)3→0

[
β(δx)3δ

(
x − x′)∫

d3 y Π2(y) + β ′(δx)3Π(x)Π
(
x′)])

= iδ
(
x − x′),

that is, the corrections to the commutator disappear. So, at the first glance it may seem that minimum-length deformed formalism does
not affect the field quantization. But the oscillator expansion of the field, see Eq. (5), shows an obvious way for applying of minimum-
length deformed formalism at the second quantization level. That is the way used in a foregoing discussion. Following this way one can
estimate corrections to the black hole radiation as well [21]. Remarkably enough, the corrections to the black hole entropy appear to
be in complete agreement with the results obtained previously in the framework of loop quantum gravity and in a tunneling formalism
approach to the black hole emission. Let us notice that, one can easily expand the present analyses to a system of coupled harmonic
oscillators, which naturally appears after putting the field in a spherical box and expanding it in terms of the spherical harmonics, and try
to estimate the corrections to the entanglement entropy.
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Appendix A

To simplify the reading of the Letter, we quote some basic integrals that enter the corrections to the energy density and pressure. By
using Eq. (19) (without l terms) and the integral

∞∫
xn−1

ex − 1
dx = ζ(n)Γ (n),
0
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to the first order in β one finds

∞∫
0

ω2 dω
ω + βω3

exp(
ω+βω3

T ) − 1
=

∞∫
0

ω2 dω
(
ω + βω3)( 1

eω/T − 1
− β

ω3eω/T

T (eω/T − 1)2
+ O

(
β2))

=
∞∫

0

ω3 dω
1

eω/T − 1
− β

T

∞∫
0

ω6 dω
eω/T

(eω/T − 1)2
+ β

∞∫
0

ω5 dω
1

eω/T − 1

= ζ(4)Γ (4)T 4 − 5βζ(6)Γ (6)T 6

= π4

15
T 4 − β

40π6

63
T 6,

where we have used

ζ(4)Γ (4) = π4

15
, ζ(6)Γ (6) = 8π6

63
.

The other integrals we need look as follows:

∞∫
0

dx
x4e−x

(1 − e−x)2
=

∞∫
0

dx
x4ex

(ex − 1)2
= −

∞∫
0

x4 d
1

ex − 1
= − x4

ex − 1

∣∣∣∣∞
0

+ 4

∞∫
0

dx
x3

ex − 1
= 4ζ(4)Γ (4),

∞∫
0

dx
x5e−x

(1 − e−x)3
=

∞∫
0

dx
x5e2x

(ex − 1)3
= −1

2

∞∫
0

x5ex d
1

(ex − 1)2
= −1

2

x5ex

(ex − 1)2

∣∣∣∣∞
0

+ 1

2

∞∫
0

dx
x5ex + 5x4ex

(ex − 1)2

= 5ζ(5)Γ (5)

2
+ 10ζ(4)Γ (4),

∞∫
0

dx
x5e−2x

(1 − e−x)3
=

∞∫
0

dx
x5ex

(ex − 1)3
= −1

2

x5

(ex − 1)2

∣∣∣∣
∞

0
− 5

2

∞∫
0

dx
x4

ex − 1
+ 5

2

∞∫
0

dx
x4ex

(ex − 1)2
= 10ζ(4)Γ (4) − 5ζ(5)Γ (5)

2
,

∞∫
0

dx
x5e−3x

(1 − e−x)3
=

∞∫
0

dx
x5

(ex − 1)3
=

∞∫
0

dx
x5

ex − 1
−

∞∫
0

dx
x5ex

(ex − 1)2
+

∞∫
0

dx
x5ex

(ex − 1)3

= ζ(6)Γ (6) − 5ζ(5)Γ (5) + 10ζ(4)Γ (4) − 5ζ(5)Γ (5)

2
.
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