
Discrete Applied Mathematics 155 (2007) 945–970
www.elsevier.com/locate/dam

Scheduling orders for multiple product types to minimize total
weighted completion time

Joseph Y.-T. Leunga, Haibing Lia, Michael Pinedob

aDepartment of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
bStern School of Business, New York University, 40 West Fourth Street, New York, NY 10012, USA

Received 2 September 2005; received in revised form 24 May 2006; accepted 27 September 2006
Available online 20 November 2006

Abstract

We consider the problem of scheduling orders for multiple different product types in an environment with m dedicated machines
in parallel. The objective is to minimize the total weighted completion time. Each product type is produced by one and only one of
the m dedicated machines; that is, each machine is dedicated to a specific product type. Each order has a weight and may also have
a release date. Each order asks for certain amounts of various different product types. The different products for an order can be
produced concurrently. Preemptions are not allowed. Even when all orders are available at time 0, the problem has been shown to be
strongly NP-hard for any fixed number (�2) of machines. This paper focuses on the design and analysis of efficient heuristics for
the case without release dates. Occasionally, however, we extend our results to the case with release dates. The heuristics considered
include some that have already been proposed in the literature as well as several new ones. They include various static and dynamic
priority rules as well as two more sophisticated LP-based algorithms. We analyze the performance bounds of the priority rules and
of the algorithms and present also an in-depth comparative analysis of the various rules and algorithms. The conclusions from this
empirical analysis provide insights into the trade-offs with regard to solution quality, speed, and memory space.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Order scheduling; Approximation algorithms; Design and analysis of algorithms

1. Introduction

Consider a facility with m different machines in parallel with each machine being dedicated to produce one and only
one particular product type. Assume there are n orders that come in from n different clients at different times (release
dates). Order j, j = 1, 2, . . . , n, requests the product type i, i = 1, 2, . . . , m, a quantity which requires a production or
processing time pij �0 on machine i. The processing of the various products for order j may be done on the dedicated
machines concurrently. Order j has a weight wj and may also have a release date rj . Preemptions are not allowed. If
the orders have different release dates, then unforced idleness is allowed, i.e., the decision-maker is allowed to keep a
machine idle in anticipation of an order with a high weight coming in, even though another order may be waiting for
its products. The completion time of order j is denoted by Cj and is the time when the processing of all the products
for order j have been completed. If we denote Clj as the finish time of job l of order j, it is clear that Cj = maxl{Clj }.

E-mail addresses: leung@njit.edu (J.Y.-T. Leung), hl27@njit.edu (H. Li), mpinedo@stern.nyu.edu (M. Pinedo).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.09.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82308439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:leung@njit.edu
mailto:hl27@njit.edu
mailto:mpinedo@stern.nyu.edu

946 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

With this notation, various objective functions of Cj can be defined similar to those for the classic scheduling model.
However, in this paper we focus on the total weighted completion time objective, i.e.,

∑
wjCj .

The problem described above is classified as the Order Scheduling Model, which has numerous application areas,
see Leung et al. [10,11] and Sung and Yoon [18]. The application areas range from order scheduling in manufacturing
environments to the maintenance of large airplanes. Following the notation proposed by Leung et al. [10], we refer to
the problem described above as PD‖∑wjCj when the number of machines m is arbitrary, and as PDm‖∑wjCj when
m is fixed. If release date presents, we denote the two cases as PD|rj |∑wjCj and PDm|rj |∑wjCj , respectively.

When all rj are zero an important structural property can be shown to hold for this class of problems, see Wagneur and
Sriskandarajah [19]. It can be shown that, if the cost function fj (Cj) is increasing in Cj for each order j = 1, 2, . . . , n,
then there exists an optimal schedule for the objective function fmax as well as an optimal schedule for the objective
function

∑
fj (Cj) in which all machines process the orders in the same sequence. Thus, if all rj are zero it suffices to

consider permutation schedules.
The total weighted completion time order scheduling problem was addressed first by Ahmadi and Bagchi [2]. With

regard to its complexity, Ahmadi and Bagchi [3] and Sung and Yoon [18] independently showed that the problem
PD2‖∑wjCj is strongly NP-hard. Ahmadi and Bagchi [3] also showed that the problem PD‖∑Cj is ordinary NP-
hard. Wagneur and Sriskandarajah [19] presented a proof claiming that PD2‖∑Cj is strongly NP-hard. Unfortunately,
their proof turned out to be incorrect, see Leung et al. [12]. Chen and Hall [6] showed that PD4‖∑Cj is strongly NP-
Hard, Leung et al. [10] showed that PD3‖∑Cj is strongly NP-hard, and finally, Roemer [16] showed that PD2‖∑Cj

is strongly NP-hard.
As for the algorithmic aspect, Leung et al. [10] introduced two priority rules for PDm‖∑Cj and compared their

two rules with three other priority rules which were proposed earlier by Sung and Yoon [18] and by Wang and Cheng
[20]. All but one of the five priority rules have an approximation ratio of m (the exception having an approximation
ratio that is unbounded). Ahmadi et al. [4] also presented four m-approximation heuristics for PDm‖∑wjCj . From
the performance analyses of the simple heuristics, it is not clear whether they have tighter approximation ratios. Wang
and Cheng [20] presented an LP-based algorithm which has an approximation ratio of 16

3 . Recently, we realized that
Chen and Hall [6] had also obtained a 2-approximation LP-based algorithm. Their result is also among the results that
we present in what follows (we obtained our results independently from Chen and Hall).

In this paper, we focus on the performance of a number of priority rules and approximation algorithms for
PDm‖∑wjCj . Occasionally, however, we extend our results to PDm|rj |∑wjCj . Note that a �-approximation
algorithm is a polynomial-time algorithm that produces a solution with a cost that is at most � times the optimal
cost. Usually, � is referred to as the performance ratio (or approximation ratio, performance guarantee, worst-case
ratio, etc.) of the algorithm. The algorithms considered in this paper are of two types: priority rules (either static or
dynamic) and LP-based algorithms. The priority rules are only applicable to PDm‖∑wjCj , i.e., only when rj = 0
for all j. An analysis of the priority rules shows that they are sensitive to the characteristics of the processing times
of the orders. It appears that the more sophisticated LP-based algorithms are not as sensitive to the characteristics
of the processing times. In order to obtain some insights into the performance of these algorithms when applied to
PDm‖∑wjCj instances in practice, we present an extensive comparative analysis that takes into consideration solu-
tion quality, speed, memory space, and implementation complexity. The observations from our empirical analysis may
facilitate the selection of an appropriate rule or algorithm in a real life situation.

This paper is organized as follows. Section 2 presents five priority rules and analyzes their performance. Section 3
studies the performance of these rules assuming additional constraints on the characteristics of the processing times of
each order. Section 4 focuses on two LP-based approximation algorithms and in Section 5, we conduct an empirical
analysis of the rules and algorithms. Finally, some concluding remarks are presented in Section 6.

2. Priority rules for PDm‖ ∑
wjCj

It is clear that for m = 1 the problem PDm‖∑wjCj can be solved by the weighted shortest processing time first
(WSPT) rule due to Smith [17]. However, when m�2, the problem PDm‖∑wjCj becomes NP-hard in the strong
sense [18]. Thus, it is of interest to develop good heuristics.

Let � denote the set of orders that have not yet been scheduled. Assuming a partial schedule �, we consider five
greedy ways of selecting the next order j∗ ∈ � that has to be added to the partial schedule. The first two methods
described below are basically static priority rules, i.e., the entire sequence can be determined at time t =0 based only on

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 947

information pertaining to the orders. The third method is a two-pass rule, which schedules the orders in two passes (the
schedule information obtained in the first pass provides the data necessary for doing the second pass). The fourth and
fifth method are single pass dynamic priority rules. That is, the schedule can be developed in a single pass; however, it
cannot be done using only information pertaining to the orders. In order to add an additional order to a partial schedule,
information pertaining to the existing partial schedule has to be taken into account as well. The first two methods were
first proposed by Sung and Yoon [18] for two machines, and generalized by Wang and Cheng [20] for m machines.
The third method was introduced by Wang and Cheng [20]. The remaining two algorithms are new. The reason that
we put the first three algorithms together with our two new ones as below is that, we would like to have analyze and
compare these algorithms with ours in this paper, both theoretically and empirically. As we will show later, our WECT
rule seems to outperform all others most of the time.

• The weighted shortest total processing time first (WSTP) rule schedules the orders in increasing order of
∑m

i=1pij /wj .
Ties are broken arbitrarily.

• The weighted shortest maximum processing time first (WSMP) rule schedules the orders in increasing order of
maxi{pij }/wj . Ties are broken arbitrarily.

• The weighted smallest maximum completion time first (WSMC) rule first sequences the orders on each machine,
i = 1, 2, . . . , m, in increasing order of pij /wj . (Note that the sequences of the orders on the various machines may
be different.) The rule then computes the completion time for order j as C′

j = maxm
i=1{Cij }. In a second pass, the

rule schedules the orders in increasing order of C′
j . Ties are broken arbitrarily.

• The rule that applies WSPT first to the machine with the largest current load (WSPL); it functions as a dynamic
priority rule that generates a sequence of orders one at a time, each time selecting as the next order the order j∗ ∈ �
such that

j∗ = arg min
j∈�

{
pi∗j
wj

}
,

where i∗ is the machine with the largest workload under the partial schedule � (if there are more than one machine
which have the largest current load, for simplicity we just choose the one with the smallest label). Ties for jobs are
broken arbitrarily.

• The weighted earliest completion time first (WECT) rule selects as the next order j∗ which satisfies

j∗ = arg min
j∈�

{
Cj − Ck

wj

}
,

where Ck is the finish time of the order that was scheduled immediately before order j∗. Ties may be broken
arbitrarily.

For each heuristic described above, after the next order has been chosen, a postprocessing procedure can be applied.
Let [j] be the order scheduled in position j of S; for convenience, we denote this order as j∗. The postprocessing
procedure works as follows: interchange order j∗ with order [j − 1] if Cj∗ �C[j−1]. Such an interchange generates a
solution that is at least as good as the original sequence. Note that the case Cj∗ �C[j−1] occurs only when pi∗j∗ = 0,
where i∗ refers to the machine that determines the completion time of order [j − 1] (i.e., machine i∗ has, among all
machines, the latest finishing time for order [j − 1]). If, after the swap of the two orders, Cj∗ �C[j−2], then we follow
up with an additional interchange of order j∗ with order [j − 2]. We continue with this interchange until Cj∗ is larger
than the completion time of the order that immediately precedes it. Note that after each swap, the finish time of j∗ either
decreases or remains unchanged, while the finish time of each order that is swapped with j∗ remains unchanged. This
is due to the fact that order j∗ has zero processing time on the machine on which the swapped order has its largest finish
time. Thus, the postprocessing, if any, produces a solution that is no worse than the one prior to the postprocessing.

Note that in each heuristic, there may at times be ties. Since ties may be broken arbitrarily, each heuristic could, for
the same input, lead to various different schedules with different values of objective functions.

The above heuristics were developed based on various perspectives of the problem. Both WSTP and WSMP are
generalizations of the well-known WSPT rule, which is optimal on a single machine for minimizing

∑
wjCj . WSTP

treats the m machines as a single machine, and applies the WSPT rule to the total processing time, i.e.,
∑m

i=1pij . On the

948 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

other hand, WSMP takes the largest processing time, i.e., maxi{pij }, and then applies the WSPT rule to this processing
time. WSMC decomposes the problem into m single-machine problems, and then solves each single-machine problem
by the WSPT rule. Finally, it integrates the solutions by taking the largest completion time C′

j and schedules the orders
in ascending order of C′

j . WSPL tries to equalize the workload of the machines by dynamically assigning the order with
the smallest weighted processing time to the machine with the largest current work load. Finally, WECT is a dynamic
rule that assigns the next order with the smallest weighted completion time.

Due to the greedy nature of these algorithms, they run very fast. Indeed, through a sorting algorithm, both WSTP and
WSMP can be implemented to run in O(mn + n lg n) time, and WSMC can be implemented to run in O(mn lg n) time.
Both WSPL and WECT can be implemented in a rather straightforward manner to run in O(mn2) time.

Now let us consider the performance of the five rules. When m = 2, Sung and Yoon [18] showed that both WSTP
and WSMC have an approximation ratio of 2. Actually, Wang and Cheng [20] obtained the following result:

Theorem 1. WSTP, WSMP and WSMC are all m-approximation algorithms for PDm‖∑wjCj .

As for WSPL, Leung et al. [10] showed that the algorithm is unbounded even when all wj =1. However, an empirical
analysis showed that it performs very well in practice when wj = 1. The WECT algorithm is in a sense a generalization
of the m-approximation ECT algorithm introduced in Leung et al. [10]. If all wj = 1, then WECT reduces to ECT. In
what follows, we show that WECT is also an m-approximation algorithm for PDm‖∑wjCj .

Let �j = max(p1j , . . . , pmj), j = 1, 2, . . . , n. Let Cj (WECT) and Cj (OPT) denote the completion time of order
j in the WECT schedule and the optimal schedule, respectively. We assume without loss of generality that the orders
are labeled in such a way that

�1

w1
� �2

w2
� · · · � �n

wn

. (1)

Furthermore, let [j] refer to the order that appears in position j of a schedule.
First, we show the following lemma that is a key observation with regard to WECT:

Lemma 2. For any schedule generated by WECT,

C[j](WECT) − C[j−1](WECT)

w[j]
�

�j

wj

, j = 2, 3, . . . , n.

Proof. 1 By WECT, the first job is scheduled in position 1. Suppose we want to schedule a job in the j∗th position
which is larger than 2. It is clear that at least one job j ′, 2�j ′ �j∗, should be in the unscheduled job set �. For any
position j, 1�j �n, it is easy to see that

C[j](WECT) − C[j−1](WECT)��[j]. (2)

Let C′ be the completion time of job j ′ if it is put in position j∗. By the ordering in (2) and the WECT rule, we have

C[j∗](WECT) − C[j∗−1](WECT)

w[j∗]
� C′ − C[j∗−1](WECT)

wj ′
�

�j ′

wj ′
�

�j∗

wj∗
.

This completes the proof. �

Based on Lemma 2, we can establish the following upper bound on the objective of the schedule generated by WECT.

Lemma 3. For any schedule generated by WECT,

n∑
j=1

w[j]C[j](WECT)�
n∑

j=1

wj

j∑
k=1

�k .

1 This simpler proof was suggested by one of the referees.

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 949

Proof. Let �′[1] = �1, w[1] = w1 and let

�′[j] = C[j](WECT) − C[j−1](WECT), j = 2, 3, . . . , n.

Note that, from Lemma 2, we have

�′[j]
w[j]

�
�j

wj

, j = 2, 3, . . . , n; (3)

and

�′[j] ��[j], j = 2, 3, . . . , n. (4)

It is clear that from the WECT schedule each �′[j] can be determined easily. Based on this notation, we have

n∑
j=1

w[j]C[j](WECT) =
n∑

j=1

w[j]
j∑

k=1

�′[k]. (5)

In order to prove the lemma, it suffices to show that

n∑
j=1

w[j]
j∑

k=1

�′[k] �
n∑

j=1

wj

j∑
k=1

�k . (6)

In order to prove inequality (6), consider an artificial instance of the classical problem 1‖∑wjCj with jobs that
have the following pairs of processing times and weights:

(�1, w1), (�2, w2), . . . , (�n, wn).

Here, each pair of �j and wj are exactly the same as those in (1). Clearly, if we sequence the above jobs according to
the classical WSPT rule, then the objective of the schedule is

n∑
j=1

wj

j∑
k=1

�k ,

due to the assumption of the ordering in (1). For convenience, we refer to this very first sequence as

S1 : 〈1, 2, . . . , n〉.
We now change in S1 the processing time of the job with the same label as that of the order scheduled in the second

position of WECT. Note that this order is labeled as [2] in WECT and it corresponds to one specific job scheduled in S1.
For convenience and consistency, we refer the label of this job in S1 as [2]. Since the WECT algorithm always chooses
order 1 as [1], it is clear that [2] ∈ {2, 3, . . . , n}. With [2], we can rewrite S1 as

S1 : 〈1, 2, . . . , [2] − 1, [2], [2] + 1, . . . , n〉.
Now, for job [2] in S1, we reset �[2] to be a new value �′[2]. According to (4), the new value of �[2] is equal to or smaller
than its original value, while w[2] remains unchanged. It follows that the objective cost of S1 remains unchanged or
decreases after setting �[2] = �′[2], i.e.,

∑
wjCj (S1)�

n∑
j=1

wj

j∑
k=1

�k . (7)

Note that if [2] = 2, the above inequality still holds and this case is simple. Thus, we need to focus only on the case
[2] �= 2. After letting �[2] = �′[2], we obtain from (1) and (3) a new ordering of �j /wj as follows:

�1

w1
�

�[2]
w[2]

� �2

w2
� · · · �

�[2]−1

w[2]−1
�

�[2]+1

w[2]+1
� · · · � �n

wn

. (8)

950 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

If we swap in S1 the position of job [2] with that of job [2] − 1, we obtain a new sequence

S2 : 〈1, 2, . . . , [2] − 2, [2], [2] − 1, [2] + 1, . . . , n〉.
According to (8), since

�[2]
w[2]

� · · · �
�[2]−1

w[2]−1
,

it is easy to show via an adjacent interchange argument [14] that∑
wjCj (S2)�

∑
wjCj (S1). (9)

We keep on swapping the position of job [2] with that of the job positioned immediately before it until we obtain the
sequence

S3 : 〈1, [2], 2, . . . , [2] − 1, [2] + 1, . . . , n〉,
and we have∑

wjCj (S3)�
∑

wjCj (S2). (10)

After repeating the above procedure for jobs [3], [4], . . . , [n] corresponding to the labels of the orders in WECT, we
finally obtain a sequence

S4 : 〈1, [2], [3], . . . , [n − 1], [n]〉
and we have∑

wjCj (S4)�
∑

wjCj (S3). (11)

From (7),(9),(10) and (11), we have

∑
wjCj (S4)�

n∑
j=1

wj

j∑
k=1

�k . (12)

Note that in S4, for each j = 2, 3, . . . , n,

�[j] = �′[j].

It follows that

∑
wjCj (S4) =

n∑
j=1

w[j]
j∑

k=1

�′[k]. (13)

From (5), (12) and (13), the result follows. �

Theorem 4. For PDm‖∑wjCj ,∑
wjCj (WECT)∑

wjCj (OPT)
�m.

Proof. Even without the postprocessing we have from Lemma 3 that

∑
wjCj (WECT)�

n∑
j=1

wj

j∑
k=1

�k . (14)

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 951

For the optimal schedule we have

C[j](OPT) = max
1� i �m

⎧⎨⎩
j∑

k=1

pi[k]

⎫⎬⎭ �
j∑

k=1

(
m∑

i=1

pi[k]

)/
m�

j∑
k=1

max
1� i �m

{pi[k]}
/

m.

It follows that

n∑
j=1

wjCj (OPT)�
n∑

j=1

w[j]
j∑

k=1

max
1� i �m

{pi[k]}
/

m�
n∑

j=1

wj

j∑
k=1

�k

/
m. (15)

Note that the last “�” in (15) is due to Smith’s WSPT rule. It follows from (14) and (15) that the performance ratio of
WECT without postprocessing is at most m. Since the postprocessing procedure could lead to a better solution, it can
only help to improve the performance of WECT. �

3. Analysis of priority rules when processing times are restricted

There may be situations in which customers may place orders that are well-balanced in such a way that the processing
times of different product types are subject to constraints that ensure some form of regularity. It would not be surprising
that the priority rules would perform better under such constraints. Sung and Yoon [18] showed that for m = 2
the performance ratio of WSTP can be reduced to 3

2 when the processing times satisfy the additional constraint set
(p1j + p2j)/2� |p1j − p2j | for each j = 1, 2, . . . , n. In what follows we obtain tighter bounds for the priority rules
when the processing times are subject to certain additional constraints. In the remaining part of this section we use the
following notation:

• Let �j = max1� i �m{pij } − min1� i �m{pij } for each j = 1, 2, . . . , n.

• Let min(k)
1� i �m{ai} denote the kth smallest item among {a1, a2, . . . , am}.

• Let [j] denote the order scheduled in position j of a schedule.

3.1. Additional constraint set
∑m

i=1pij /m��j

With the additional constraint
∑m

i=1pij /m��j for each order j = 1, 2, . . . , n, we have the following result for
WSTP.

Theorem 5. If

m∑
i=1

pij /m��j

for j = 1, 2, . . . , n, then∑
wjCj (WST P)∑
wjCj (OPT)

�2 − 1

m
.

Proof. Without loss of generality, we may assume that

�1

w1
� �2

w2
� · · · � �n

wn

, (16)

where �j =∑m
i=1pij , j = 1, 2, . . . , n. According to such notation, we have

�j ��j /m. (17)

952 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

It is clear that∑
wjCj (OPT)�

n∑
j=1

w[j]
j∑

k=1

�[k]

/
m�

n∑
j=1

wj

j∑
k=1

�k

/
m. (18)

Again, the last “�” in (18) is due to Smith’s WSPT rule.
Now consider the schedule generated by WSTP. Clearly, in this schedule, the order scheduled in position j is order j

itself (if there are ties, we can always relabel the orders such that they satisfy the ordering in (16)). Suppose the latest
finishing time of order j takes place on machine i∗, and the earliest finishing time of order j is on machine i′. Now

max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭− min
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭=
j∑

k=1

pi∗k −
j∑

k=1

pi′k =
j∑

k=1

(pi∗k − pi′k)�
j∑

k=1

�k .

Therefore, we have for each i = 1, 2, . . . , m the following relationship:

max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭− (i)

min
1� l �m

⎧⎨⎩
j∑

k=1

plk

⎫⎬⎭ � max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭− min
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭=
j∑

k=1

�k .

Or, equivalently,

(i)

min
1� l �m

⎧⎨⎩
j∑

k=1

plk

⎫⎬⎭ � max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭−
j∑

k=1

�k . (19)

Since

j∑
k=1

�k =
m∑

i=1

(i)

min
1� l �m

⎧⎨⎩
j∑

k=1

plk

⎫⎬⎭= max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭+
m−1∑
i=1

(i)

min
1� l �m

⎧⎨⎩
j∑

k=1

plk

⎫⎬⎭ ,

we have

max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭=
j∑

k=1

�k −
m−1∑
i=1

(i)

min
1� l �m

⎧⎨⎩
j∑

k=1

plk

⎫⎬⎭
�

j∑
k=1

�k − (m − 1)

⎛⎝ max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭−
j∑

k=1

�k

⎞⎠ .

The “�” is due to (19). We rewrite the above inequality as

m

⎛⎝ max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭
⎞⎠ �

j∑
k=1

�k + (m − 1)

j∑
k=1

�k .

It follows that,

Cj (WSTP) = max
1� i �m

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ �
∑j

k=1�k + (m − 1)
∑j

k=1�k

m
.

By (17) we have

Cj (WSTP)�
j∑

k=1

(2m − 1)�k

m2 . (20)

From (18) and (20), the result follows. �

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 953

It is clear that the bound is monotonically increasing with m. When m = 1 it is 1 and when m = 2 it is 3
2 . When m

goes to ∞, the bound goes to 2. We have the following result for WSMP.

Theorem 6. If

m∑
i=1

pij /m��j

for j = 1, 2, . . . , n, then∑
wjCj (WSMP)∑
wjCj (OPT)

� 1

1 + H(m) − H(2m − 1)
,

where H(k) ≡ 1 + 1
2 + · · · + 1/k is the harmonic series.

Proof. Without loss of generality we may assume that

�1

w1
� �2

w2
� · · · � �n

wn

, (21)

where �j = max1� i �m{pij }, j = 1, 2, . . . , n.
In the schedule generated by WSMP, the order scheduled in position j is order j itself (again, if there are ties, we can

always relabel the orders to guarantee the ordering in (21)). It is easy to see that

∑
wjCj (WSMP)�

n∑
j=1

wj

j∑
k=1

�k . (22)

Now let us consider the order scheduled in the j th position of an optimal solution. Its completion time is

C[j](OPT) = max
1� i �m

⎧⎨⎩
j∑

k=1

pi[k]

⎫⎬⎭ �
∑j

k=1

∑m
i=1pi[k]

m
. (23)

For the order scheduled in the kth position of the optimal schedule we have

(m − 1)max1� i �m{pi[k]} + min1� i �m{pi[k]}
m

�
∑m

i=1pi[k]
m

� max
1� i �m

{pi[k]} − min
1� i �m

{pi[k]}.

It follows that

min
1� i �m

{pi[k]}�
�[k]

m + 1
.

More generally, for each i = 1, 2, . . . , m we have

(m − i)max1� i �m{pi[k]} + i · min(i)
1� l �m{pl[k]}

m
�
∑m

i=1pi[k]
m

� max
1� i �m

{pi[k]} − min
1� i �m

{pi[k]}

� max
1� i �m

{pi[k]} − (i)

min
1� i �m

{pi[k]}.

Or, equivalently,

(i)

min
1� i �m

{pi[k]}� i

m + i
· �[k].

954 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Therefore, by (23) we have

C[j](OPT)�
∑j

k=1(�[k] +∑m−1
i=1 (i/(m + i)) · �[k])

m
=
∑j

k=1(1 +∑m−1
i=1 (1 − (m/(m + i))) · �[k]

m

=
(

1 −
m−1∑
i=1

1

m + i

)
·

j∑
k=1

�[k] =
(

1 −
(

2m−1∑
i=1

1

i
−

m∑
i=1

1

i

))
·

j∑
k=1

�[k]

= (1 + H(m) − H(2m − 1)) ·
j∑

k=1

�[k].

Thus, ∑
wjCj (OPT) =

n∑
j=1

w[j]C[j](OPT)� (1 + H(m) − H(2m − 1))

n∑
j=1

w[j]
j∑

k=1

�[k]

�(1 + H(m) − H(2m − 1))

n∑
j=1

wj

j∑
k=1

�k . (24)

From (22) and (24), the result follows. �

Note that the bound increases with m. To see this, we consider the bound for m machines and for m + 1 machines,
respectively. For convenience, we let

� = (1 + H(m + 1) − H(2m + 1))(1 + H(m) − H(2m − 1)).

The gap between the two bounds for the respective number of machines is

	 = 1

1 + H(m + 1) − H(2m + 1)
− 1

1 + H(m) − H(2m − 1)

=
(

1

2m
+ 1

2m + 1
− 1

m + 1

)/
� = 3m + 1

2m(m + 1)(2m + 1) · �
> 0.

Clearly, when m = 1, the bound is 1 and when m = 2 the bound is 3
2 . Finally,

lim
m→∞

1

1 + H(m) − H(2m − 1)
= 1

1 − ln 2
≈ 3.259.

We now have the following result for WECT.

Theorem 7. If

m∑
i=1

pij /m��j

for each order j = 1, 2, . . . , n, then∑
wjCj (WECT)∑
wjCj (OPT)

� 1

1 + H(m) − H(2m − 1)
.

Proof. The result follows immediately from Lemma 3 and (24) in Theorem 6. �

3.2. Additional constraint set max1� i �m{pij }�a · min1� i �m{pij }
Now consider the processing times subject to the following constraints:

max
1� i �m

{pij }�a · min
1� i �m

{pij }, j = 1, 2, . . . , n,

where a�1. With these additional constraints, we obtain the following result for WSTP.

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 955

Theorem 8. For some a�1, if

max
1� i �m

{pij }�a · min
1� i �m

{pij }

for j = 1, 2, . . . , n, then∑
wjCj (WSTP)∑
wjCj (OPT)

�a − a2 − a

a + m − 1
.

Proof. Without loss of generality, we assume that

�1

w1
� �2

w2
� · · · � �n

wn

,

where �j =
m∑

i=1
pij , j = 1, 2, . . . , n. First of all, it is clear that

∑
wjCj (OPT)�

n∑
j=1

w[j]
j∑

k=1

�[k]

/
m�

n∑
j=1

wj

j∑
k=1

�k

/
m. (25)

Furthermore, it is easy to check that

∑
wjCj (WSTP)�

n∑
j=1

wj ·
j∑

k=1

max
i

{pik}. (26)

From the assumption that

min
1� i �m

{pij }� 1

a
max

1� i �m
{pij },

we have

max
1� i �m

{pij } + (m − 1)max1� i �m{pij }
a

� max
1� i �m

{pij } + (m − 1) min
1� i �m

{pij }�
m∑

i=1

pij = �j .

Or, equivalently,

max
1� i �m

{pij }� a · �j

a + m − 1
.

Thus, from (26) we have

∑
wjCj (WSTP)� a

a + m − 1

n∑
j=1

wj

j∑
k=1

�k . (27)

The result follows from (25) and (27). �

It is easy to see that the above bound increases monotonically in m. When m = 1 it is 1, and when m = 2 it is
2a/(a + 1). When m goes to ∞, the bound goes to a.

We now have for WSMP the following result.

956 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Theorem 9. If

max
1� i �m

{pij }�a · min
1� i �m

{pij }

for j = 1, 2, . . . , n, then∑
wjCj (WSMP)∑
wjCj (OPT)

�a − a2 − a

a + m − 1
.

Proof. Again, we assume without loss of generality that

�1

w1
� �2

w2
� · · · � �n

wn

,

where �j = max1� i �m{pij }, j = 1, 2, . . . , n.
It is clear that

∑
wjCj (WSMP)�

n∑
j=1

wj

j∑
k=1

�k . (28)

Now consider the order scheduled in the j th position of an optimal solution. Its completion time is

C[j](OPT) = max
1� i �m

⎧⎨⎩
j∑

k=1

pi[k]

⎫⎬⎭ �
∑j

k=1

∑m
i=1pi[k]

m
. (29)

For each i = 1, 2, . . . , m we have

(i)

min
1� l �m

{pl[k]}� min
1� l �m

{pl[k]}�
�[k]
a

. (30)

The last “�” in (30) is due to the assumption. Therefore, from (29) we have

C[j](OPT)�
∑j

k=1

∑m
i=1pi[k]

m
=
∑j

k=1(max1� i �m{pi[k]} +∑m−1
i=1 min(i)

1� l �m{pl[k]})
m

�
∑j

k=1(�[k] +∑m−1
i=1 �[k]/a)

m
= a + m − 1

a · m
·

j∑
k=1

�[k].

It follows that

∑
wjCj (OPT)� a + m − 1

a · m

n∑
j=1

w[j]
j∑

k=1

�[k] �
a + m − 1

a · m

n∑
j=1

wj

j∑
k=1

�k . (31)

The result follows from (28) and (31). �

Theorem 10. If

max
1� i �m

{pij }�a · min
1� i �m

{pij }

for each order j = 1, 2, . . . , n, then∑
wjCj (WECT)∑
wjCj (OPT)

�a − a2 − a

a + m − 1
.

Proof. The result follows immediately from Lemma 3 and (31) in Theorem 9. �

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 957

For the same performance bound in Theorems 8–10, if a = 3, then the performance bound becomes 3 − 6/(m + 2).
Note that when a = 3, these constraints are equivalent to

max1� i �m{pij } + min1� i �m{pij }
2

� max
1� i �m

{pij } − min
1� i �m

{pij }, j = 1, 2, . . . , n.

This imposes that the average of the maximum and minimum processing times of an order is always no less than their
difference, so that the processing times of the orders are “well-balanced”.

4. LP-based approximation algorithms

In this section we allow orders to have different release dates. Preemptions are not allowed. However, unforced
idleness of the machines is allowed. We present two approximation algorithms based on two different LP relaxations.
We use the following notation: let C̃1, C̃2, . . . , C̃n denote the completion times in the schedule generated by an LP-based
algorithm and let C∗

1 , C∗
2 , . . . , C∗

n denote the completion times in an optimal schedule.

4.1. Approximation algorithm based on completion times

Hall et al. [9] presented a 3-approximation LP-based algorithm for 1|rj |∑wjCj . The algorithm was also con-
sidered by Chekuri and Khanna [5]. In this section, we shall extend this algorithm to solve PDm|rj |∑wjCj . Thus,
PDm‖∑wjCj can also be solved as a special case.

Let O = {1, 2, . . . , n} denote the set of all orders. For any subset S ⊆ O, let

�i (S) =
∑
j∈S

pij , �2
i (S) =

∑
j∈S

p2
ij , i = 1, 2, . . . , m.

The PDm|rj |∑wjCj problem can be relaxed by the following linear program which we refer to in what follows as
LP1:

minimize
n∑

j=1

wjCj

subject to

Cj �rj + pij , i = 1, . . . , m, j = 1, . . . , n; (32)

Cj �Cij , i = 1, . . . , m, j = 1, . . . , n; (33)∑
j∈S

pijCij �
�2

i (S) + (�i (S))2

2
, i = 1, . . . , m, for each S ⊆ O. (34)

Constraint sets (32) and (33) are trivial. However, constraint set (34) needs some justification. Assume that S =
{1, 2, . . . , |S|}. It follows that for j ∈ S,

Cij �
∑
k � j

pik, i = 1, . . . , m.

The inequality is due to the fact that there may be some idle time in the schedule because of the release dates. Thus,

pijCij �pij

∑
k � j

pik .

Summing pijCij over all j ∈ S and simple algebra results in (34).
It is clear that (34) generates an exponential number of constraints. For the one-machine case, Queyranne [15] has

shown that such constraints can be separated polynomially so that the above linear program can be solved in polynomial
time by a variant of ellipsoid method [8]. This is the key observation that the above linear program can be used as a
relaxation for approximation algorithms.

958 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

In order to state an important lemma regarding the linear programming formulation, assume that C1, C2, . . . , Cn is
a solution to LP1 and assume without loss of generality that C1 �C2 � · · · �Cn.

Lemma 11. For each order j = 1, 2, . . . , n, the following inequality holds:

Cj � 1

2
max

i

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ . (35)

Proof. Let S = {1, 2, . . . , j}. Constraints (33) and (34) imply that

max
i

⎧⎨⎩
j∑

k=1

pik · Ck

⎫⎬⎭ � max
i

{
�2

i (S) + (�i (S))2

2

}
� max

i

{
(�i (S))2

2

}
. (36)

Since Ck �Cj , for each k = 1, 2, . . . , j we have

Cj · max
i

{�i (S)} = max
i

⎧⎨⎩
j∑

k=1

pikCj

⎫⎬⎭ � max
i

⎧⎨⎩
j∑

k=1

pikCk

⎫⎬⎭ � max
i

{
(�i (S))2

2

}
,

due to (36). Equivalently,

Cj � max
i

{
�i (S)

2

}
= 1

2
max

i

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ .

The result follows. �

Now consider the following algorithm:
An LP-based algorithm using completion times (HLP 1)
Step 1: Solve LP1 by the ellipsoid method; let the optimal solution be C1, C2, . . . , Cn.
Step 2: Schedule the orders in nondecreasing order of Cj . Ties are broken arbitrarily. Insert an idle time when rj is

greater than the completion time of the (j − 1)th order.
Assume without loss of generality that C1 �C2 � · · · �Cn. It is clear that

n∑
j=1

wjC
∗
j �

n∑
j=1

wjCj . (37)

In what follows, we shall analyze the performance guarantee of this algorithm for PDm‖∑wjCj and PDm|rj |∑wjCj .

Theorem 12. HLP 1 is a 2-approximation algorithm for PDm‖∑wjCj .

Proof. Since rj =0 for all j=1, 2, . . . , n, there is no idle time in the schedule generated by HLP 1. ForS={1, 2, . . . , j},
we have

C̃j = max
i

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ �2Cj ,

due to (35). Thus,

n∑
j

wj C̃j �2
n∑
j

wjCj . (38)

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 959

By (37) and (38), we have∑n
j=1wj C̃j∑n
j=1wjC

∗
j

�2.

The result follows. �

Theorem 13. HLP 1 is a 3-approximation algorithm for PDm|rj |∑wjCj .

Proof. Let S = {1, 2, . . . , j}; let rmax(S) = maxj∈S{rj }. Clearly, there is no idle time between rmax(S) and C̃j . It
is easy to see that

C̃j �rmax(S) + max
i

{�i (S)}.

By (32) and the assumption that C1 �C2 � · · · �Cn, we have that rmax(S)�Cj . Thus,

C̃j �Cj + maxi{�i (S)}�3Cj , (39)

due to Lemma 11. Therefore, by (37) and (39),∑n
j=1wj C̃j∑n
j=1wjC

∗
j

�3.

The result follows. �

4.2. Approximation algorithm based on time intervals

Inspired by the time interval indexed linear programming formulation for R|rj |∑wjCj by Hall et al. [9], Wang
and Cheng [20] presented a 16

3 -approximation algorithm for PDm‖∑wjCj . In what follows, we present an extension
of Wang and Cheng’s algorithm for PDm|rj |∑wjCj .

Given
 > 1, we divide the time horizon of potential completion times into the following intervals:

[1, 1], (1,
], (
,
2], . . . , (
L−1,
L],

where L is the smallest integer such that

L � max
1� j �n

{rj } + max
1� i �m

⎧⎨⎩
n∑

j=1

pij

⎫⎬⎭ .

For convenience, let

t0 = 1 and tl =
l−1, l = 1, . . . , L.

Thus, the lth interval runs from tl−1 to tl , l = 1, 2, . . . , L. Let the decision variable xjl be

xjl =
{

1 if order j is scheduled to complete within the interval (tl−1, tl];
0 otherwise.

960 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Consider the following linear programming relaxation which we refer to as LP2:

minimize
n∑

j=1

wj

L∑
l=1

tl−1xjl

subject to
L∑

l=1

xjl = 1, j = 1, . . . , n; (40)

l∑
k=1

n∑
j=1

pij xjk =
n∑

j=1

pij

l∑
k=1

xjk � tl , i = 1, . . . , m, l = 1, . . . , L; (41)

xjl = 0 if tl < rj + pij , j = 1, . . . , n, l = 1, . . . , L; (42)

xjl �0, j = 1, . . . , n, l = 1, . . . , L. (43)

Now consider the following algorithm:
An LP-based algorithm using time intervals (HLP 2)
Step 1: Given
, solve LP2 and let the optimal solution be x̄j l , j = 1, . . . , n, l = 1, . . . , L.
Step 2: Let Cj =∑L

l=1tl−1x̄j l , j = 1, . . . , n.
Step 3: Schedule the jobs in nondecreasing order of Cj . Ties are broken arbitrarily. Insert idle time when rj is greater

than the completion time of the (j − 1)th order.
Again, assume without loss of generality that C1 �C2 � · · · �Cn. In what follows, we shall analyze the performance

guarantee of the above algorithm for PDm|rj |∑wjCj .

Lemma 14. The optimal value of LP2 is a lower bound for the minimum cost of PDm|rj |∑wjCj . That is

n∑
j=1

wjC
∗
j �

n∑
j=1

wjCj . (44)

Proof. Consider an optimal schedule �∗ for PDm|rj |∑wjCj . We construct a solution � to LP2 by setting xjl = 1
if order j completes within the lth interval. Clearly, � is feasible to LP2, that is, constraints (40)–(43) are all satisfied.
Schedule � can never be better than the optimal solution to LP2. On the other hand, the objective cost of �∗ is larger
than that of �, since the completion time of order j is at least tl−1. It follows that the objective cost of �∗ is no better
than the optimal cost of LP2. �

Theorem 15 (Wang and Cheng, [20]). Given
 = 2, HLP 2 is a 16
3 -approximation algorithm for PDm‖∑wjCj .

Theorem 16. Given
 = 2, HLP 2 is a 19
3 -approximation algorithm for PDm|rj |∑wjCj .

proof. Following the same argument as the one in Wang and Cheng [20], it can be shown that

max
i

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ � 16

3
Cj l; (45)

C̃j � max
1�k � j

{rk} + max
i

⎧⎨⎩
j∑

k=1

pik

⎫⎬⎭ �Cj + 16

3
Cj � 19

3
Cj . (46)

Therefore,
n∑

j=1

wj C̃j � 19

3

n∑
j=1

wjCj . (47)

Thus, by (44) and (47), the result follows. �

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 961

For LP2, it would be of interest to investigate if a smaller
 leads to a better performance. In the next section, we
present an empirical analysis.

5. Empirical analysis of the algorithms

Since the priority rules have only been formulated for PDm‖∑wjCj , we focus our experiments on the problem
with all release dates equal to zero.

5.1. Generation of problem instances

For each problem size with n = 20, 50, 100, 200 orders and m = 2, 5, 10, 20 machines, 30 instances are randomly
generated using a factor called order diversity. The order diversity k is used to characterize the number of product types
each order requires. The following three cases of order diversity are considered:

k = 2: In problem instances 1–6 each order requests two different product types. We denote this group as G1.
k = m: In problem instances 7–24 each order requests the maximum number of different product types, namely m, i.e.,

the number of machines. However, these 18 instances are grouped into the following three subgroups:
For instances 7–12 in group G2, the processing times of each order have no additional constraints.

For instances 13–18 in group G3, the processing times of each order j are subject to the constraint

max
1� i �m

{pij }�3 min
1� i �m

{pij }.

For instances 19–24 in group G4, the processing times of each order j are subject to the constraints

m∑
i=1

pij

/
m� max

i
{pij } − min

i
{pij }.

k = r: In problem instances 25–30 in group G5 each order requests a random number (r) of different product types;
r is randomly generated from the uniform distribution [1, m].

When the number of product types, l, for each order j is determined, l machines are chosen randomly. For each machine i
that is selected, an integer processing time pij is generated from the uniform distribution [1, 100]. Note that for instances
13–24, the processing times of each order are generated in such a way that they satisfy the additional requirements.
In addition to the generation of processing times, for each order j, a weight is randomly generated from the uniform
distribution [1, 10]. In total, 4 × 4 × 30 = 480 instances are generated.

5.2. Experimental results and analysis

The algorithms are implemented in C + +. We used the GLPK 4.8 [13] callable library to solve the linear programs
in the HLP 2 algorithm. The running environment is based on the Windows 2000 operating system; the PC used was
a notebook computer (Pentium III 900 MHz plus 384 MB RAM). It should be noted that the time-interval LP-based
algorithm needs a significant amount of virtual memory. For example, for a problem instance with n=200 and m=20,
when we let
 = 21/4, the total memory usage for the time-interval LP-based algorithm could reach 1 GB. Because of
this we set the total file paging size for the hard disk equal to 1152 MB.

In what follows, we study the performance of the algorithms in terms of two aspects: the frequencies at which they
are the best, and comparisons of their average costs and average running times. To reduce the table size, we define the
following table fields to represent the nine heuristics:

H1: WSTP, H2: WSMP, H3: WSMC,

H4: WSPL, H5: WECT, LP1: HLP 1 ,

LP′
2: HLP 2 with
 = 21/4, LP′′

2: HLP 2 with
 = 21/2, LP′′′
2 : HLP 2 with
 = 2.

962 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Table 1
The frequency that each algorithm performs the best for instances of group G1

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2

20 2 0 0 0 0 2 2 2 2 0 0
5 0 0 0 0 1 1 3 1 1 0

10 0 0 0 0 2 2 2 1 1 0
20 0 0 0 0 2 2 3 1 0 0

50 2 0 0 0 0 1 1 3 2 0 0
5 0 0 0 0 2 2 1 2 1 0

10 0 0 0 0 1 1 2 2 1 0
20 0 0 0 0 2 2 2 1 0 1

100 2 0 0 0 0 0 0 0 6 0 0
5 0 0 0 0 0 0 1 5 0 0

10 0 0 0 0 1 1 0 5 0 0
20 0 0 0 0 0 0 1 5 0 0

200 2 0 0 0 0 0 0 0 6 0 0
5 0 0 0 0 0 0 0 6 0 0

10 0 0 0 0 0 0 0 6 0 0
20 0 0 0 0 0 0 0 6 0 0

Table 2
The frequency that each algorithm performs the best for instances of group G2

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2

20 2 0 0 0 0 1 1 3 2 0 0
5 0 0 0 0 2 2 1 3 0 0

10 0 0 0 0 3 3 2 1 0 0
20 0 0 0 0 2 2 2 1 0 1

50 2 0 0 0 0 1 1 2 3 0 0
5 0 0 0 0 2 2 1 2 1 0

10 0 0 0 0 2 2 1 3 0 0
20 0 0 0 0 1 1 2 3 0 0

100 2 0 0 0 0 0 0 2 4 0 0
5 0 0 0 0 0 0 1 5 0 0

10 0 0 0 0 1 1 0 5 0 0
20 0 0 0 0 2 2 1 3 0 0

200 2 0 0 0 0 0 0 1 5 0 0
5 0 0 0 0 0 0 0 6 0 0

10 0 0 0 0 0 0 0 6 0 0
20 0 0 0 0 0 0 0 6 0 0

In addition to the above fields, we use H6 to represent the best schedule obtained by the five greedy heuristics
H1, H2, . . . , H5. The reason that we take H6 here is that, the five greedy heuristics run very fast and are easy to
implement. Therefore, in practice, we can always take H6 to gain over an individual greedy heuristic.

The data in these fields are the number of instances (out of six for each combination of n and m) for which the
corresponding algorithms produce the best solutions. Tables 1–5 show the frequencies of each algorithm producing the
best solution.

Table 1 shows that for the instances of group G1 with k = 2, LP′
2, LP1, and WECT (which is the only contributor

to H6) have the best performance. A close study of Table 1 reveals that for instances with small n, LP1 is better than
both LP′

2 and WECT, and WECT is better than LP′
2. However, when n is large, LP′

2 is significantly better than all other

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 963

Table 3
The frequency that each algorithm performs best for instances of group G3

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2

20 2 0 1 1 0 0 2 2 2 0 0
5 0 1 0 1 2 4 0 2 0 0

10 0 0 0 0 3 3 1 2 0 0
20 1 0 0 0 2 3 1 1 1 0

50 2 0 0 0 0 3 3 2 1 0 0
5 0 0 0 0 1 1 2 3 0 0

10 0 0 0 0 3 3 1 3 0 0
20 0 0 0 0 1 1 2 3 0 0

100 2 0 0 0 0 6 6 0 0 0 0
5 0 0 0 0 2 2 1 3 0 0

10 0 0 0 0 3 3 1 2 0 0
20 0 0 0 0 3 3 0 3 0 0

200 2 0 0 0 0 6 6 0 0 0 0
5 0 0 0 0 4 4 1 1 0 0

10 0 0 0 0 4 4 0 2 0 0
20 0 0 0 0 5 5 0 1 0 0

Table 4
The frequency that each algorithm performs the best for instances of group G4

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2

20 2 0 1 1 0 2 4 0 1 0 1
5 0 0 0 0 3 3 2 0 1 0

10 0 0 0 0 3 3 1 2 0 0
20 0 0 0 0 4 4 1 1 0 0

50 2 0 0 0 0 3 3 2 1 0 0
5 0 0 0 0 3 3 1 2 0 0

10 0 0 0 0 4 4 0 2 0 0
20 0 0 0 0 3 3 1 2 0 0

100 2 0 0 0 0 3 3 1 2 0 0
5 0 0 0 0 1 1 2 3 0 0

10 0 0 0 0 5 5 0 1 0 0
20 0 0 0 0 5 5 0 1 0 0

200 2 0 0 0 0 5 5 0 1 0 0
5 0 0 0 0 6 6 0 0 0 0

10 0 0 0 0 3 3 1 2 0 0
20 0 0 0 0 5 5 0 1 0 0

algorithms. The table also reveals a counter-intuitive finding that LP1 does not perform better than the other algorithms
all the time, even though it has the best known worst-case performance bound (note that the performance ratios of LP′

2
and LP′′

2 are unknown yet). The subsequent tables will also exhibit this finding.
Table 2 shows that for the instances of group G2, for which k = m but there are no additional constraints on

the properties of processing times, LP′
2, LP1, and WECT (which is again the only contributor to H6) have the best

performance. For small n, it is hard to tell which one of the three algorithms is the best. However, for large n, LP′
2

performs better than LP1, which in turn performs better than WECT.
Table 3 shows that the best algorithm for G3 is H6 (with WECT being its biggest contributor). LP′

2 is second best,
and LP1 third best. When n is small, WSTP, WSMP, WSMC, and WSPL may occasionally beat the other algorithms and

964 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Table 5
The frequency that each algorithm performs best for instances of group G5

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2

20 2 0 0 0 0 1 1 3 1 1 0
5 0 0 0 0 0 0 2 2 1 0

10 0 0 0 0 1 1 2 2 0 1
20 0 0 0 0 2 2 2 2 0 0

50 2 0 0 0 0 0 0 2 4 0 0
5 0 0 0 0 0 0 3 3 0 0

10 0 0 0 0 0 0 2 3 1 0
20 0 0 0 0 1 1 3 2 0 0

100 2 0 0 0 0 0 0 1 5 0 0
5 0 0 0 0 0 0 2 4 0 0

10 0 0 0 0 0 0 1 5 0 0
20 0 0 0 0 0 0 0 6 0 0

200 2 0 0 0 0 0 0 0 6 0 0
5 0 0 0 0 0 0 1 5 0 0

10 0 0 0 0 0 0 1 5 0 0
20 0 0 0 0 0 0 0 6 0 0

becomes a contributor to H6. However, when n becomes large, the tendency is that WECT beats all other algorithms.
Table 4 shows similar findings for G4. These results are consistent with our theoretical analysis that the priority rules
exhibit a better performance with additional constraints on the processing times, except that the results for LP1 are
somehow counter-intuitive.

Table 5 shows that for the instances of group G5, for which k= r , the two best algorithms are LP′
2 and LP1. For small

n, LP1 slightly outperforms LP′
2. In addition, for occasional cases of small n, WECT (which is the only contributor to

H6), LP′′
2, and LP′′′

2 may beat the other algorithms. However, for large n, LP′
2 becomes significantly better than all other

algorithms.
From these tables, the comparison among LP′

2, LP′′
2, and LP′′′

2 shows that smaller
 leads to better performance of
the HLP 2 algorithm, even though there are some exceptions.

Now let us investigate the performance of the algorithms in terms of comparisons of average costs and average
running times. Tables 6–10 show the positive ratios of the algorithms that are higher than the average costs of the best
algorithms. In addition to the same field labels defined for Tables 1–5, we introduce five more fields:

T1: The average running time (seconds) per instance for all five priority rules together.
T2: The average running time (seconds) per instance for LP1.
T3: The average running time (seconds) per instance for LP′

2.
T4: The average running time (seconds) per instance for LP′′

2.
T5: The average running time (seconds) per instance for LP′′′

2 .
The entries in the columns of the above four fields are simply the average running time in seconds per instance, as

defined above. Now focus on the columns corresponding to the algorithms. For these columns, a “–” indicates that
an algorithm produces the minimum average objective cost. Note that each row has one and only one “–” for each
combination of n and m. In each row, the entries other than “–” are computed as

The average cost of corresponding algorithm − The minimum average cost

The minimum average cost
× 100.

In order to rank the performance of the algorithms, we use in what follows the notation A ≺ B to indicate that
algorithm A performs better than algorithm B. Furthermore, if algorithm A is comparable to algorithm B, we write
A ∼ B.

First of all, Tables 6–10 show that, for each n, the percentage of each priority rule (except for WECT) tends to increase
when m increases. This is consistent with our previous theoretical analysis which indicates that the performance of each
priority rule becomes worse when m becomes larger. In contrast, neither HLP 1 nor HLP 2 exhibit such a relationship

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 965

Table 6
Comparison of the algorithms for group G1 by percentages that the average costs are higher than those of the best ones and by average running times

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2 T1 T2 T3 T4 T5

20 2 5.40 6.06 3.28 5.39 0.39 0.38 0.21 – 0.30 2.62 0.00 0.91 1.34 0.23 0.04
5 8.51 10.8 5.14 22.4 0.66 – 0.48 2.69 2.55 2.98 0.2 2.72 4.24 1.05 0.37

10 8.40 8.84 3.95 17.1 2.72 – 2.81 3.46 3.54 3.56 0.07 5.23 7.38 1.29 0.23
20 18.8 17.2 15.2 25.5 2.7 2.57 – 12.8 12.8 12.9 0.07 12.9 20.8 2.63 0.46

50 2 4.85 5.84 3.82 7.56 1.09 0.93 – 0.45 1.41 2.41 0.06 7.63 9.20 1.88 0.61
5 12.2 14.7 8.54 30.7 – – 5.17 4.59 4.91 7.64 0.06 19.1 28.7 5.33 1.26

10 6.11 7.74 2.79 25.0 7.59 – 2.27 0.21 0.51 1.35 0.09 31.5 58.0 10.0 2.03
20 11.7 14.1 8.94 22.9 1.25 – 1.0 8.42 8.29 8.96 0.07 70.8 124 20.7 3.64

100 2 3.11 4.79 3.94 8.73 1.35 1.35 1.08 – 1.04 4.81 0.11 37.2 48.8 11.2 3.78
5 6.59 8.09 4.35 26.7 3.68 2.77 0.45 – 0.92 4.49 0.20 80.3 121 24.5 6.73

10 8.28 11.8 4.55 30.0 4.44 2.24 0.72 – 0.68 3.11 0.25 191 251 45.2 10.4
20 7.41 9.43 3.08 24.2 4.43 2.35 0.13 – 0.19 0.95 0.26 401 578 98.5 17.9

200 2 2.82 4.18 3.15 8.50 0.92 0.78 0.73 – 1.14 3.85 0.24 271 354 87.0 32.8
5 6.31 8.12 3.86 26.6 4.89 3.64 1.39 – 1.11 4.69 0.28 607 687 145 42.4

10 6.87 8.91 4.03 28.0 6.30 3.65 0.68 – 1.00 3.99 0.30 1152 1440 251 65.0
20 9.01 9.59 3.77 27.5 11.3 3.77 0.27 – 0.48 2.68 0.26 3059 4368 482 94.7

Table 7
Comparison of the algorithms for group G2 by percentages that the average costs are higher than those of the best ones and by average running times

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2 T1 T2 T3 T4 T5

20 2 3.94 5.01 3.67 6.72 1.53 1.48 – 0.11 0.53 2.66 0.00 0.92 1.37 0.26 0.04
5 3.47 4.49 3.26 12.3 0.05 – 0.22 0.08 0.49 1.69 0.01 2.38 4.95 0.68 0.13

10 4.25 5.06 2.83 8.24 0.12 – 0.24 0.36 0.49 1.97 0.05 6.05 18.1 1.52 0.30
20 3.54 4.06 3.24 7.94 0.03 0.03 – 0.22 0.31 1.25 0.06 15.2 43.5 5.31 0.81

50 2 3.01 4.02 2.76 8.44 0.81 0.68 0.29 – 0.57 3.04 0.07 4.11 9.34 2.05 0.65
5 6.78 7.65 4.76 11.5 0.02 0.02 0.62 – 0.56 2.55 0.07 28.8 30.1 5.24 1.18

10 5.37 7.16 5.30 10.3 0.56 0.30 0.58 – 0.76 2.31 0.10 85.3 104 12.6 2.44
20 4.42 4.41 3.71 13.3 0.16 0.14 0.21 – 0.68 1.87 0.16 362 518 36.8 6.42

100 2 2.90 4.63 3.77 7.20 1.44 1.25 0.35 – 1.16 3.46 0.07 32.3 48.6 11.7 3.80
5 4.80 5.95 4.29 12.6 0.93 0.88 0.95 – 1.02 3.36 0.16 70.9 139 25.0 6.22

10 5.64 7.44 4.94 13.5 0.40 0.33 0.74 – 1.34 2.71 0.29 329 503 54.5 12.0
20 4.65 5.44 3.83 13.2 0.04 – 0.62 0.03 0.87 2.84 0.28 846 1994 167 26.9

200 2 1.87 3.44 2.74 7.66 0.93 0.80 0.86 – 0.98 3.67 0.28 129 313 85.0 30.6
5 4.34 6.62 5.30 13.7 0.96 0.88 1.54 – 1.36 3.67 0.27 617 855 161 47.8

10 5.17 6.76 5.29 13.9 0.71 0.63 1.03 – 1.18 3.13 0.25 2278 3222 358 80.3
20 4.15 5.41 4.26 15.3 0.65 0.52 0.87 – 1.05 2.97 0.20 7390 15 865 1199 194

between their performance and the value of m. Secondly, these tables also show that a smaller
 leads to a better
performance of HLP 2 . This is consistent with a previous finding from Tables 1–5.

Now consider the performance of the algorithms for each group of problem instances. Table 6 shows that, for
group G1, when n�100, LP′

2 is overwhelmingly better than other algorithms. Although it is hard to fix a ranking of
performance when n is small, for large n we see that

LP′
2 ≺ LP1 ≺ LP′′

2 ≺ H6 ≺ WECT ≺ LP′′′
2 ∼ WSMC ≺ WSTP ≺ WSMP ≺ WSPL.

Table 7 shows that, for group G2, WECT (of course, H6 also) and LP1 can beat LP′
2 when n = 20 (but it is hard to tell

which one of the two algorithms is better.) However, when n�50, LP′
2 is much better than all other algorithms. For

966 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Table 8
Comparison of the algorithms for group G3 by percentages that the average costs are higher than those of the best ones and by average running times

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2 T1 T2 T3 T4 T5

20 2 2.01 1.92 1.48 2.64 0.44 0.37 0.09 – 0.30 1.48 0.00 0.43 1.50 0.13 0.03
5 1.98 1.66 1.55 3.57 0.05 0.03 0.24 – 0.25 1.01 0.00 2.41 3.70 0.30 0.05

10 2.13 2.55 1.32 3.40 0.05 – 0.41 0.32 0.58 1.29 0.01 7.22 10.4 0.69 0.14
20 1.59 1.83 1.41 4.11 0.02 – 0.2 0.23 0.36 1.37 0.01 16.1 24.4 1.43 0.30

50 2 1.32 1.94 1.46 3.06 – – 0.11 0.23 0.44 3.76 0.01 5.45 8.51 1.12 0.38
5 2.71 3.29 2.30 3.72 0.07 0.07 0.26 – 0.37 3.61 0.01 18.3 25.8 2.67 0.69

10 2.57 2.90 2.19 3.62 0.13 0.06 0.49 – 0.62 2.26 0.01 45.2 60.3 3.79 0.95
20 1.86 1.86 1.54 4.32 0.07 0.07 0.34 – 0.47 3.57 0.01 129 183 7.23 1.67

100 2 1.16 1.93 1.5 2.51 0.31 – 0.34 0.39 1.0 3.95 0.01 30.9 46.5 7.89 2.44
5 2.21 2.71 2.13 3.80 0.21 0.20 0.74 – 0.95 4.04 0.02 78.1 101 14.7 3.69

10 2.59 3.05 2.32 4.30 0.10 0.08 0.60 – 0.85 4.05 0.03 155 196 21.3 5.66
20 1.98 2.27 1.85 4.03 0.03 0.02 1.76 – 0.79 4.04 0.04 313 783 53.2 7.96

200 2 0.93 1.62 1.29 2.41 0.03 – 0.68 0.76 0.94 3.86 0.05 199 284 84.13 26.0
5 1.74 2.58 2.10 3.92 0.18 0.17 0.98 – 1.02 3.85 0.06 512 663 133 40.7

10 2.04 2.68 2.18 4.13 0.15 0.13 0.78 – 0.93 3.42 0.08 1784 2363 204 53.8
20 1.96 2.38 2.03 4.26 0.09 0.05 1.02 – 0.83 3.22 0.20 4003 10 941 674 101

Table 9
Comparison of the algorithms for group G4 by percentages that the average costs are higher than those of the best ones and by average running times

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2 T1 T2 T3 T4 T5

20 2 1.58 1.20 0.98 1.85 0.04 – 0.15 0.06 0.19 0.40 0.00 0.53 1.39 0.17 0.03
5 1.79 1.92 1.83 1.69 0.05 0.04 – 0.09 0.23 1.80 0.00 1.41 3.62 0.39 0.07

10 1.62 1.97 1.46 4.29 0.01 – 0.32 0.21 0.41 2.86 0.00 4.92 15.43 1.15 0.21
20 2.02 1.48 1.42 6.64 – – 0.55 0.27 0.68 1.10 0.01 14.5 27.90 2.05 0.36

50 2 1.04 1.53 1.22 1.81 – – 0.02 0.07 0.67 3.58 0.01 6.20 9.24 1.61 0.50
5 1.99 2.56 2.26 3.33 – – 0.48 0.02 0.59 2.96 0.01 17.7 23.65 3.17 0.80

10 1.99 2.30 1.76 4.38 0.01 – 1.09 0.01 0.52 3.58 0.01 50.3 72.96 7.64 1.62
20 1.59 2.20 1.89 6.25 – – 0.52 0.12 0.73 3.00 0.02 109 231 15.41 3.09

100 2 0.76 1.27 1.11 1.23 0.01 – 0.48 0.02 0.97 4.64 0.01 29.5 43.95 8.76 3.66
5 2.23 2.26 1.93 3.34 0.18 0.18 0.43 – 0.96 3.76 0.02 88.4 126 19.06 5.29

10 2.08 2.41 2.11 3.41 – – 0.75 0.10 0.82 3.75 0.03 209 339 31.20 7.92
20 1.15 2.28 2.05 4.27 – – 0.82 0.12 0.74 3.32 0.04 577 1127 98.07 16.16

200 2 0.76 1.22 1.09 1.43 – – 0.94 0.13 1.03 4.74 0.05 196 288 76.67 26.10
5 1.25 2.16 1.92 3.20 – – 1.33 0.10 1.13 4.11 0.06 430 647 147 47.63

10 1.60 2.37 2.08 4.57 0.04 0.04 0.77 – 0.87 4.08 0.08 981 2752 315 77.53
20 1.29 2.27 2.05 4.84 – – 0.71 0.03 0.92 3.92 0.22 3789 13 423 864 118

large n we see that

LP′
2 ≺ H6 ≺ WECT ≺ LP1 ≺ LP′′

2 ≺ LP′′′
2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ WSPL.

Note that the difference between WECT and LP′
2 is less than 1%, and H6 is only slightly better than WECT. Thus,

the performance of WECT is actually very close to that of LP′
2. However, the table shows that LP′

2 requires hours of
running time for large instances, while WECT requires only milliseconds. As stated before, the LP′

2 algorithm requires
virtual memory up to 1 GB. By contrast, WECT only requires several kilobytes of memory.

Table 8 shows that, for group G3, the best two algorithms are WECT (H6 is only slightly better than WECT) and
LP′

2. WECT tends to perform better than others when n is small, while LP′
2 performs well when n is large. From the

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 967

Table 10
Comparison of the algorithms for group G5 by percentages that the average costs are higher than those of the best ones and by average running times

n m H1 H2 H3 H4 H5 H6 LP1 LP′
2 LP′′

2 LP′′′
2 T1 T2 T3 T4 T5

20 2 5.08 4.06 2.47 12.93 0.14 0.05 – 0.11 0.32 1.37 0.00 0.34 1.05 0.22 0.04
5 6.01 9.51 4.61 9.42 2.58 1.49 – 0.09 0.38 1.87 0.00 1.62 3.97 0.64 0.12

10 5.39 7.54 5.04 16.19 0.39 0.31 0.03 – 0.23 1.71 0.07 4.70 9.93 1.52 0.31
20 5.40 9.17 5.66 12.47 0.02 – 0.26 0.43 0.88 2.02 0.08 11.5 40.58 5.47 0.84

50 2 4.03 5.59 3.71 12.09 2.32 1.92 0.37 – 0.61 4.14 0.06 5.33 8.56 1.76 0.57
5 7.05 9.78 7.47 15.84 2.49 2.41 0.20 – 0.49 2.81 0.07 19.1 27.17 4.59 1.08

10 7.68 11.53 8.63 13.37 2.65 2.65 0.75 – 0.68 2.89 0.06 50.5 96.88 17.93 2.91
20 9.03 15.40 9.31 18.17 1.86 1.86 0.09 – 0.65 2.63 0.26 178 324 47.02 7.04

100 2 3.01 5.02 3.39 15.01 2.12 1.46 1.28 – 1.09 5.14 0.10 15.9 44.18 10.59 3.56
5 7.40 10.04 7.38 17.12 2.18 2.18 0.59 – 1.00 4.62 0.06 45.7 125 23.05 6.61

10 7.99 13.35 10.72 15.86 2.40 2.40 0.83 – 0.73 3.46 0.28 186 373 65.16 12.25
20 6.07 17.11 13.97 16.16 1.63 1.63 0.44 – 0.65 2.93 0.19 694 2594 250 42.53

200 2 2.97 4.99 3.35 17.24 2.24 1.97 0.91 – 1.15 5.14 0.25 139 289 78.82 27.19
5 6.29 11.51 8.92 17.27 2.87 2.84 1.05 – 1.23 4.26 0.24 306 681 146 42.46

10 6.67 14.58 11.49 16.93 2.63 2.63 0.83 – 1.01 3.67 0.29 1330 2806 336 77.67
20 6.64 16.54 13.84 18.71 1.76 1.76 0.64 – 1.11 3.68 0.27 4507 16 300 1229 207

table, we see that

LP′
2 ≺ H6 ∼ WECT ≺ LP1 ≺ LP′′

2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ LP′′′
2 ∼ WSPL.

Note that the difference between WECT and LP′
2 is less than 0.5%. Thus, the performance of WECT is almost the same

as that of LP′
2. However, to achieve such performance, LP′

2 requires more computational resources than WECT. It is
also interesting to see that, WSTP, WSMC, and WSMP perform better than LP′′′

2 .
Table 9 shows that, for group G4, WECT (which might be the only contributor to H6) is the best. In details, the

algorithms are ranked as follows:

H6 ∼ WECT ≺ LP′
2 ≺ LP1 ≺ LP′′

2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ LP′′′
2 ∼ WSPL.

Again, WSTP , WSMC, and WSMP perform better than LP′′′
2 .

Table 10 shows that, for group G5, LP′
2 is the best. The algorithms are ranked as

LP′
2 ≺ LP1 ≺ LP′′

2 ≺ H6 ∼ WECT ≺ LP′′′
2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ WSPL.

Again, the results produced by WECT are quite close to those of the LP-based algorithms.
To observe the cost-effective performance of the HLP 2 , we compare for each group of instances in Table 11 the

percentages that the average costs of LP′′
2 and LP′′′

2 are larger than that of LP′
2. From this table, we can see that the gap

between the average cost of LP′′
2 and that of LP′

2 is actually very small. For most cases, it is less than 1.0%; and the
largest one is 1.3%. Therefore, the performance of LP′′

2 is actually very close to that of LP′
2. However, from Tables 6

to 10, the average running time of LP′
2 is much more than that of LP′′

2 (for some cases, it is more than 10 times). In
addition, in the experiments, we noticed that the memory requirement of LP′

2 is twice that of LP′′
2. Thus, in practice, if

the use of HLP 2 is considered, it is recommended to choose
 = √
2 in order to strike a balance between performance

and the use of computational resources.
Summarizing the empirical analysis, among the individual algorithms, we recommend the use of either WECT or

HLP 2 with
 = √
2. It should be noted that, even though HLP 1 performs better than HLP 2 with
 = √

2, and it does not
take too much memory space, it runs very slowly. This is the main reason why we do not recommend the use of HLP 1

in practice. In an environment which requires a solution to be generated quickly with limited memory spaces, WECT
is the most preferable. It is simple to implement, requires a small amount of memory, runs fast, and produces good
results. However, since the five greedy heuristics run fast and are easy to implement, it always gains to run all of them

968 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

Table 11
The percentage that the average costs of LP2

2 and LP3
2 are larger than that of LP1

2

n m G1 G2 G3 G4 G5

LP′′
2 LP′′′

2 LP′′
2 LP′′′

2 LP′′
2 LP′′′

2 LP′′
2 LP′′′

2 LP′′
2 LP′′′

2

20 2 0.30 2.62 0.37 2.57 0.35 2.24 0.29 1.75 0.28 1.69
5 −0.15 0.27 0.26 1.24 0.24 1.13 0.24 1.37 0.25 1.44

10 0.07 0.09 0.12 1.33 0.17 1.17 0.18 1.65 0.19 1.62
20 0.00 0.05 0.08 0.88 0.09 0.95 0.20 0.91 0.25 1.07

50 2 0.96 1.96 0.74 2.58 0.67 2.87 0.65 3.03 0.65 3.24
5 0.31 2.92 0.50 2.63 0.45 3.00 0.49 2.95 0.49 2.92

10 0.29 1.14 0.69 2.14 0.65 2.17 0.60 2.66 0.62 2.66
20 −0.12 0.51 0.60 1.72 0.54 2.43 0.57 2.55 0.58 2.55

100 2 1.04 4.81 1.11 3.99 1.06 4.00 1.03 4.19 1.05 4.37
5 0.92 4.49 0.99 3.62 0.97 3.80 0.97 3.78 0.98 3.96

10 0.68 3.11 1.25 2.76 1.09 3.27 0.97 3.36 0.93 3.37
20 0.19 0.95 0.78 2.64 0.78 3.22 0.71 3.17 0.71 3.11

200 2 1.14 3.85 1.04 3.74 1.01 3.77 0.98 4.02 1.02 4.24
5 1.11 4.69 1.30 3.92 1.19 3.91 1.14 3.95 1.17 4.01

10 1.00 3.99 1.16 3.25 1.07 3.33 1.00 3.60 1.01 3.59
20 0.48 2.68 1.00 2.95 0.92 3.06 0.91 3.36 0.96 3.41

on an problem instance and take the best solution. This could be seen from the tables shown previously. To ensure this,
we also compare in Table 12 the percentage that the costs of WECT with that of H6. The table shows that, the solutions
produced by H6 are better than those of WECT for some problem instances, especially for those instances of group G1
and those of m = 2.

6. Concluding remarks

In this paper, we have focused on several approximation algorithms for the customer order scheduling problem
with the minimization of the total weighted completion time as objective. We focused on the design of approximation
algorithms for this problem. The procedures include several priority rules as well as two LP-based algorithms. Although
priority rules are easy to implement, our analysis showed that the performance guarantees vary according to the
distribution properties of the processing times. By contrast, various linear programming relaxations uniformly provide
tight lower bounds for approximation algorithms. However, different relaxations may result in approximation algorithm
with very different performance guarantees. Fortunately, both LP-based algorithms we presented in this paper have a
fixed ratio performance guarantee.

The experimental results revealed that HLP 1 , which has the best known worst-case performance bound, does not
perform better than HLP 2 with
 = 21/4. This finding might imply that HLP 2 with
 = 21/4 has a performance bound
tighter than 2. However, we could not show this in this paper.

Both the problems PDm‖∑wjCj and PDm|rj |∑wjCj are strongly NP-hard. It is not known if there exists any
polynomial time approximation scheme (PTAS) for these problems. Afrati et al. [1] have presented a PTAS for the
problem 1|rj |∑wjCj . It would be interesting to examine if their results shed any light on solving our problems. On
the other hand, it would also be challenging to prove that the problems are APX-hard if such PTAS does not exist unless
P = NP.

As extension of this work, it would be interesting to have further dedicated study on the problem with the presence of
release dates, that is, PDm|rj |∑wjCj . For example, it would be worth to extend the five greedy heuristics to solve the
problem, and to have an experimental analysis of these heuristics together with the LP-based algorithm HLP 1 , which
we analyzed its performance bound but did not have experimental analysis. It would also be interesting to investigate if
the online (3 + �)-approximation algorithm for 1|rj |∑wjCj due to Hall et al. [9] can be extended to solve the online
version of our problem.

J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970 969

Table 12
The percentage that the costs of WECT are larger than the best costs among all five greedy heuristics

n 20 50 100 200

m 2 5 10 20 2 5 10 20 2 5 10 20 2 5 10 20

G1 1 0 0.94 8.17 8.32 0.14 1.8 2.61 7.18 0 0.41 6.61 8.16 0 1.58 8.72 10.6
2 0.04 4.44 8.58 4.01 0 6.19 4.79 8.75 0 1.2 2.86 5.87 0 2.16 5.45 10.8
3 0 2.18 4.66 5.79 0.75 1.4 3.78 11.2 0 1.06 5.8 14.3 0 3.82 5.6 9.44
4 0 3.78 4.2 5.04 0 0 2.71 17.3 0 2.57 7.02 12.5 0 1.75 5.93 9.65
5 0 0 6.7 4.71 0 0 6.4 11.6 0 3.7 4.78 7.7 0 1.14 4.73 10.6
6 0 4.69 8.94 0 0 1.96 2.03 8.01 0 2.63 2.62 11.1 0.76 2.03 5.33 6.32

G2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0.61 0 0 0 0.17 0 0 0
9 0.4 0 0 0 0.69 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0
12 0 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0 0

G3 13 0.84 0 0.25 0 1.54 0 0.67 0 0.27 0 0 0 0.22 0 0 0
14 0 6.62 2.62 0 0 0 0 0 0 0 0 0 0.31 0 0 0
15 3.49 0 0.43 0 1.2 0 0 0 0 0 0 0 0.63 0 0 0
16 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0
17 0 2.1 0 7.96 0 2.57 0 0 2.78 0 0 0 0.8 0.26 0 0
18 0 0 0 0 0 0 0 0 2.02 0 0 0 0 0 0 0

G4 19 7.36 1.55 5.22 0 0.18 0 0 0 0.21 0 0 0 0 0 0 0
20 1.31 0 0 5.88 0.73 0 4.27 0 0 0 0 0 1.45 0 0 0
21 1.9 0 0 0 0 0 0 0 1.7 0 0 0 0 0 0 0
22 1.78 0.73 0.86 0 0 0 0 0.01 0.32 0 0 0 2.95 0 0 0
23 3.18 0 0 0 0.07 0 0 0 0 0 0 0 0 0.05 0 0
24 8.86 2.85 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0

G5 25 4.13 3.69 0 0.45 0 0 0 0 1.52 0 0 0 0 0 0 0
26 0 0 0 0 2.13 0 0 0 0 0 0 0 0 0 0 0
27 0.15 0 0 0 1.15 0 0 0 0 0.39 0 0 0 0 0 0
28 0 0 3.15 1.31 0 0 0 0 0.88 0 0 0 0 0 0 0
29 2.21 0.4 0 0 0 0 0 0 0 0 0 0 2.89 0 0 0
30 0.67 0 0 0 1.39 0.46 0 0 0 0 0 0 0 0 0 0

There is another interesting issue that comes up when orders have different release dates. In this paper we allowed
unforced idleness, i.e., the decision-maker is allowed to keep a machine idle in anticipation of an order with a high weight
coming in, even though another (old) order may be waiting for its products. Clearly, this is a reasonable assumption in
certain real world applications of our model, e.g., the equipment maintenance and repair application. However, in this
paper, we assumed that a facility is not allowed to preproduce for an order that has not come in yet. In the manufacturing
world, if it is known what the total quantity of product requested is (in current as well as in future orders), then the
machines may be kept running producing all the different product types for orders that have not come in yet (i.e.,
unforced idleness is not allowed). In this case, when an order is released at a certain time, there may already be a
sufficient number of the various different product types available that can be assigned to the new order, allowing for an
immediate shipment. This way, the lead times of the orders may be reduced considerably. For the LP-based algorithm
using completion time formulation, it is easy to modify the formulation in such a way that it meets this requirement.
For example, we only need to change constraints (32) as follows:

Cj � max{rj , pij }, i = 1, . . . , m, j = 1, . . . , n.

We keep the other constraints unchanged. Step 2 of this algorithm has to be changed slightly, so that it is not re-
quired to insert idle time. Simple analysis shows that, under the new assumption, HLP 1 becomes a 2-approximation

970 J.Y.-T. Leung et al. / Discrete Applied Mathematics 155 (2007) 945–970

algorithm for PDm|rj |∑wjCj . However, for the LP-based algorithm using time-interval formulation, it turns out that
it is not so easy to incorporate the new assumption into either the LP formulation or the algorithm.

We believe that these types of assumptions are interesting for manufacturing and other settings. It would be of interest
to consider such assumptions in future research.

Acknowledgments

The authors gratefully acknowledge the support by the National Science Foundation through grants DMI-0300156
and DMI-0245603. They also thank the anonymous referees for their comments which are valuable to improve the
paper.

References

[1] F.Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein, M. Sviridenko,Approximation
schemes for minimizing average weighted completion time with release dates, The Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS’99), 1999, pp. 32–43.

[2] R.H. Ahmadi, U. Bagchi, Scheduling of Multi-job Customer Orders in Multi-machine Environments, ORSA/TIMS, Philadelphia, 1990.
[3] R.H. Ahmadi, U. Bagchi, Coordinated scheduling of customer orders, Working paper, John E. Anderson Graduate School of Management,

University of California, Los Angeles, 1993.
[4] R.H. Ahmadi, U. Bagchi, T. Roemer, Coordinated scheduling of customer orders for quick response, Naval Res. Logist. 52 (2005) 493–512.
[5] C. Chekuri, S. Khanna, Approximation algorithms for minimizing average weighted completion time, in: J.Y.-T. Leung (Ed.), Handbook of

Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton, FL, USA, 2004.
[6] Z.-L. Chen, N.G. Hall, Supply chain scheduling: assembly systems, Working Paper, Department of Systems Engineering, University of

Pennsylvania, 2001.
[8] M. Grötschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1993.
[9] L.A. Hall, A.S. Schulz, D.B. Shmoys, J. Wein, Scheduling to minimize average completion time: off-line and on-line approximation algorithms,

Math. Oper. Res. 22 (1997) 513–544.
[10] J.Y.-T. Leung, H. Li, M.L. Pinedo, Order scheduling in an environment with dedicated resources in parallel, J. Sched. 8 (2005) 355–386.
[11] J.Y.-T. Leung, H. Li, M.L. Pinedo, Scheduling multiple product types with due date related objectives, Eur. J. Oper. Res. 168 (2006) 370–389.
[12] J.Y.-T. Leung, H. Li, M.L. Pinedo, S. Sriskandarajah, Open shops with jobs overlap—revisited, Eur. J. Oper. Res. 163 (2005) 569–571.
[13] A. Makhorin, GNU linear programming kit: reference manual (version 4.8), 2005.
[14] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, second ed., Prentice-Hall, Upper Saddle River, NJ, 2002.
[15] M. Queranne, Structure of a simple scheduling polyhedron, Math. Program. 58 (1993) 263–285.
[16] T.A. Roemer, A note on the complexity of the concurrent open shop problem, J. Sched. 9 (2006) 389–396.
[17] W.E. Smith, Various optimizers for single stage production, Naval Res. Logist. Quart. 3 (1956) 59–66.
[18] C.S. Sung, S.H. Yoon, Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines, Internat. J.

Production Econ. 54 (1998) 247–255.
[19] E. Wagneur, C. Sriskandarajah, Open shops with jobs overlap, Eur. J. Oper. Res. 71 (1993) 366–378.
[20] G. Wang, T.C.E. Cheng, Customer order scheduling to minimize total weighted completion time, Proceedings of the First Multidisciplinary

Conference on Scheduling Theory and Applications, 2003, pp. 409–416.

	Scheduling orders for multiple product types to minimize total weighted completion time
	Introduction
	Priority rules for =PDm"026B30D wjCj
	Analysis of priority rules when processing times are restricted
	Additional constraint set i=2pt=1mpij/m62626262deltaj
	Additional constraint set max154545454i54545454m{ pij} 54545454a=2ptmin154545454i54545454m{ pij}

	LP-based approximation algorithms
	Approximation algorithm based on completion times
	Approximation algorithm based on time intervals

	Empirical analysis of the algorithms
	Generation of problem instances
	Experimental results and analysis

	Concluding remarks
	Acknowledgments
	References

