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Abstract

Dual-head placement machines are important in the assembly of circuit cards because they offer the capability to place large
components accurately. This paper presents a novel column-generation approach for optimizing the placement operations of a
dual-head placement machine with the ultimate goal of improving the efficiency of assembly operations. Research objectives are a
model that reflects relevant, practical considerations; a solution method that can solve instances within reasonable run times; and
tests to establish computational benchmarks. Test results demonstrate the efficacy of our optimization approach on problems of
realistic size and scope.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Dual head placement machines; Surface mount technology; Column generation; Pick and place; Electronics assembly; Branch and
bound; PCB assembly; Production planning; Throughput rate optimization; Constrained shortest path problem

1. Introduction

The dual-head (also called dual-gantry) placement machine (DHPM) plays an important role in circuit card (CC)
assembly because it offers the capability of placing large and/or odd-shaped components (e.g., ball grid arrays,
quad flat packs, column grid arrays, and flip-chips) with a high degree of accuracy. Most industrial assembly lines
incorporate one or two DHPMs and several turret-type placement machines (TTPMs), which place small components
(e.g., resistors and capacitors) very rapidly. Their importance is highlighted by the number of companies that market
them, including Universal, Samsung, and Yamaha. The trend is for new CC designs to incorporate more components
with finer leads and smaller pitches, so the need for the accuracy offered by DHPMs will increase in the future.
The DHPM comprises a number of inter-related mechanisms and operates according to an intricate logic that creates
challenges for process planners.
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Fig. 1. Top-down view of a DHPM.

The purpose of this paper is to address this challenge by presenting a novel approach for optimizing the placement
operations of a DHPM. The ultimate goal of this research is to provide a means of balancing workloads assigned to
heads on DHPMs to promote efficiency by maximizing the throughput rate a line can achieve in assembling a given
type of CC (e.g., [34]). With that goal in mind, we adopt the novel decomposition of process planning initiated by
Wilhelm, Arambula, and Choudhry [38], yielding a series of four problems:

(P1) Assign component types (CTs) to heads and to feeder slots associated with each head (a CT is a set of physically
identical components as the next subsection describes in detail).

(P2) Prescribe CT picking combinations (CTPCs) to minimize picking time.
(P3) Prescribe specific components placed on each placing step to minimize placement time.
(P4) Prescribe the sequence of picking, placing, and nozzle-change steps to balance workloads.

The DHPM presents challenges to modeling philosophy and to available modeling constructs. A primary question
is, how can operations be abstracted to model them in sufficient detail to provide meaningful results? Based on the
experience that has been reported in studies of other placement machines, a unified model that addresses all issues
would not be solvable. Thus, decomposition is necessary. In fact, because operations are so extensively inter-related,
it appears that this particular decomposition uniquely leads to meaningful problems that can be solved, as our research
shows, in reasonable times to prescribe process plans. This paper presents a method to solve (P3) that can be used
either alone to optimize placement operations or to complement algorithms that solve (P1), (P2), and (P4) to balance
workloads. Placement time can be expected to dominate the times involved in picking and changing nozzles, so (P3)
plays a very important role in balancing workloads.

Research objectives are (1) a model that reflects relevant, practical considerations; (2) a solution approach that can
solve instances effectively; and (3) tests to establish computational benchmarks for the approach. No prior research has
proposed an approach to prescribe placement decisions for the DHPM. Objective (2) highlights the need to prescribe
a solution within a run time that will encourage process planners to implement the approach. Tests are needed to
evaluate the robustness of the approach relative to different inputs, which might be prescribed by the solutions to (P1)
and (P2).

This introduction comprises three subsections that describe DHPM placement operations, review relevant literature,
and overview the paper, respectively.

1.1. DHPM placement operations

Fig. 1 depicts a DHPM [25] in a top-down view that shows a CC, heads, spindles, nozzles, feeder racks, cameras,
and nozzle change racks and pads. Each head contains four spindles arranged on its centerline with adjacent spindles
40 mm apart. Each spindle uses a nozzle to grasp a component. Each head picks from a rack containing slots where
feeders can be located. On a picking step the head moves to pick (up to 4) prescribed components from feeder
slots, then moves to the camera and displays each component by positioning and holding it while the camera checks
alignment. Subsequently, the placing step involves the head moving from the camera to the CC and placing the
components one at a time. The CC is held in a fixed position while the heads move to populate it. Upon completing
the placing step, the head moves to the nozzle storage rack to change and/or swap nozzles, if necessary, and then
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positions along the feeder rack to begin the next picking step. A round comprises picking, placing and nozzle-changing
steps. This section describes some of the practical considerations that a model must address to prescribe placement
operations.

Each CT comprises a set of components that are identical physically. Components of one CT are staged in a feeder
that can accommodate its width. Each feeder is installed in one or more feeder slot(s) (depending upon its width) in a
rack served by one of the heads. A camera occupies slots at the center of the feeder rack, essentially dividing it into
two racks: the left-side rack r = 1 and the right-side rack r = 2.

The components that comprise a CT are physically identical, but individual components differ in their (x, y)

locations on the CC. To place a component, the head must position the spindle, holding it at the correct (x, y) location.
The placement operation itself requires the head to lower a spindle (along the z axis), apply a force that is necessary
to place the particular CT, release the vacuum that holds the component, and raise the spindle. The placing step ends
when components picked on the associated picking step have been placed; the head then positions to begin the next
picking step, changing and/or swapping nozzles if necessary.

The head moves along the beam (in the x direction) and the beam moves along its guide rails (in the y direction).
The beam can move much faster than the head, so different kinematics parameters (e.g., acceleration, velocity, and
deceleration) govern their movements. Kinematics parameters are independent of the components the head is grasping
and of components placed previously. The head and beam move simultaneously in the x and y directions and the
centerline of the head (on which spindles are mounted) remains parallel to the x axis at all times.

1.2. Literature review

Process planning for CC assembly has been the focus of a number of prior studies; McGinnis, Ammons, Carlyle,
Cranmer, Depuy, Ellis, Tovey, and Xu [33] and Nof et al. [34] provide overviews. Most studies focus on TTPMs
(e.g.,[40]), single-arm robotic systems (e.g., [34]), and other systems unrelated to the DHPM (e.g., [35,30]). Only a
few studies have investigated machines related to the DHPM and none has addressed the DHPM that we study in this
paper.

Process planning typically involves prescribing five inter-related decisions [14,16]: (D1) partition CCs into families
requiring similar CTs and prescribe a sequence for assembling CCs within each, (D2) assign each CT to a placement
machine, (D3) assign each CT to a feeder slot(s) on the assigned machine, (D4) sequence component placement, and
(D5) prescribe a retrieval plan for CTs assigned to more than one feeder. Production control deals with (D1); (D5) is
required only if a CT is assigned to several feeders. We assume that an oracle prescribes decisions (D2), (D3), and
(D5); we focus on (D4) as it relates to the DHPM. These decisions have been studied individually and in combination,
for example, Ahmadi and Kouvelis [4]; Grotzinger [26] and Ahmadi, Ahmadi, Matsuo, and Tirupati [1]; and Ahmadi,
Grotzinger, and Johnson [3] studied (D2), (D3), and (D5), respectively. Our approach uniquely identifies the set of
decisions that are required to prescribe the placement operations of a DHPM.

Ahmadi, Grotzinger and Johnson [2] studied the DYNAPERT MPS500 placement machine, which has two heads
mounted on a single arm. Heads are able to operate independently of each other and the CC is mounted on an xy
table that moves to position the card for each placement. Chan and Mercer [12] addressed another type of dual-head
machine that automatically loads each component into a head and employs an xy table to position the board for
placement.

Crama, Kolen, Oerlemans and Spieksma [17] devised a hierarchical set of heuristics to prescribe decisions
(D1)–(D4) for a related type of machine that has a single head with three spindles (in the terminology of this paper),
each of which uses a nozzle to grasp components. Spindles always pick and place in the same sequence, 1–2–3. The
worktable holds the card in fixed position and provides a feeder on each of its sides. More recently, Altinkemer, Kazaz,
Köksalan and Moskowitz [6] studied a Quad 4000 series placement machine with a rotary head mounted on an arm
(see also [31]). The head picks a certain number of components from the feeder rack, then the arm moves, positioning
the head to place components. Several new papers (e.g., [36,11,28]) proposed heuristics for a placement machine that
has a single head with multiple spindles (according to our terminology).

Most approaches decompose process planning into a set of related problems and use a heuristic to solve each.
Grotzinger [26] emphasized this, noting that the “growing consensus in the literature with respect to this hierarchical
decomposition approach and the sub-problems to be addressed by it . . . ”. For example, Crama, Flippo, van de Klundert
and Spieksma [15] devised a polynomial time approach for the component retrieval problem (D5). We follow the lead
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of prior research in decomposing process-planning decisions but propose a unique set of four related problems for the
DHPM: (P1), (P2), (P3), and (P4). Conforming to this philosophy, this paper focuses on (P3) placement operations.

We note that such a hierarchical decomposition has been used in other contexts as well. For example, in the flexible
manufacturing setting, the inter-related problems of assigning tools to a capacitated magazine and sequencing jobs
have been solved sequentially (e.g., [7]); small instances can also be solved by a unified model (e.g., [32]).

In the paper most related to this one, Wilhelm et al. [38] recently proposed an approach to optimize picking
operations on a DHPM. Their analysis identified five types of picks that spindles can make: gang pick, no-move pick,
multiple pick, eclectic pick, and no pick. On each picking step, the four spindles pick using some combination of the
five types of picks to form a component type picking combination (CTPC). The importance of a CTPC to placing is
that components picked on a picking step must be placed on the subsequent placing step (see (A2)). The five types of
picks are relevant to placing in that (i) a no pick means that a spindle does not pick a component; (ii) a gang pick may
pick 2, 3, or 4 components simultaneously; and (iii) other picks result in components being picked at different times.
If 1, 2, or 3 spindles no pick, they cannot place on the subsequent placing step. If components are picked at the same
time, the DHPM controller requires them to be placed according to the spindle closest to the camera in the associated
CTPC. Finally, if components are picked at different times, the DHPM controller requires that they be placed in the
same order in which they are picked.

Wilhelm et al. [38] devised a column-generation approach [37] to optimize (P2). It uses a general integer set-
covering master problem along with sub-problems that are specially-constructed, resource-constrained shortest path
problems. These sub-problems generate columns, each of which defines a CTPC p, by prescribing the set of CTs it
picks, C p; the number of components of CT c it picks, ecp ∈ {0, 1, 2, 3, 4}; the order in which spindle s ∈ {1, 2, 3, 4}

picks, osp ∈ {0, 1, 2, 3, 4}; the CT spindle s picks, c̄sp ∈ C p; and the time for the head to pick components and display
each to the camera, Θ̂p. Their master problem minimizes total picking time,

∑
p∈P Θ̂px∗

p, by prescribing an optimal
set of CTPCs, P∗, and the number of times each must be used to pick all components, x∗

p. The solution prescribed by
their model (i.e., x∗

p, C p, ecp, osp, and c̄sp for p ∈ P∗) can be used as the input to the model we present in this paper;
alternatively, these inputs can be provided by some other suitable source.

To demonstrate the relationship between (P2) and (P3), suppose (P2) involves four CTs, each comprising 10
components, and that the solution to that problem prescribes a single CTPC, |P∗

| = 1, that gang picks all four
CTs simultaneously on each of x∗

1 = 10 picks. The (P3) problem must now prescribe which of the individual
components (from each CT) to place on each of 10 placing steps. Individual components can be placed in a total
of 104 combinations, so (P3) is not a trivial problem. More complex cases are, of course, even more challenging.

Another related paper by Choudhry, Wilhelm, Vasudeva, Gott, and Khotekar [13] presents a heuristic to solve (P1),
an optimizing method to solve (P4), and reports computational experience, which shows that the algorithm proposed
by Wilhelm et al. [38] for (P2); the approach presented in this paper for (P3); and the method they describe for (P1) and
(P4) do, in fact, balance workloads quite well, achieving the ultimate objective of promoting efficiency by balancing
workloads to maximize the throughput rate a line can achieve in assembling a given type of CC. This approach
solves (P1) with a heuristic because it can do no better — the impact that the assignment of CTs to feeder slots has
on workload balance cannot be determined until (P2), (P3), and (P4) have all been solved. While sub-optimal, this
approach optimizes (P2), (P3), and (P4) in turn, each given the solution(s) to earlier problem(s), in a sense prescribing
the best possible solution for each problem.

1.3. Paper overview

This paper comprises four sections. Section 2 formulates our model and Section 3 describes our column-
generation solution approach. Section 4 reports computational experience and Section 5 summarizes conclusions
and recommendations for future research.

2. Model formulation

This section formulates our model, which reflects the practical considerations described in Section 1. Each placing
step deals with the CTs associated with one CTPC, which can be prescribed by (P2). A CTPC specifies the nozzle type
fitted to each spindle, the CT each spindle picks, and the order in which spindles pick. Placing-step time is determined
as the sum of times for the head to move from the camera to the CC and place components sequentially, each at its
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specific (x, y) location. The objective of (P3) is to minimize the total time to place all components by prescribing a
set of specific components to be placed on each placing step (for which the CTs are defined by the associated CTPC).
This objective is important because placing operations account for a substantial portion of the workload assigned to a
head and thus constitute a challenging aspect of balancing workloads.

This section comprises three subsections. The first two provide a modeling structure by describing our assumptions
and relating operating rules for placement. The third subsection presents the binary integer, set covering model that we
use as our master problem. We define notation as we present it and also summarize it in Table 1 for reader convenience.

2.1. Assumptions

We structure (P3) by invoking five assumptions:

(A1) An oracle solves problems (P1) and (P2) to provide inputs to problem (P3).
(A2) The DHPM controller specifies the sequence in which spindles pick and place on a round.
(A3) The DHPM controller ensures that the two heads on a DHPM will not collide.
(A4) To perform each movement, the head – and, independently, the beam – accelerates from a rest, then travels at a

constant velocity and, finally, decelerates to stop.

(A1) reflects our unique decomposition of process-planning decisions. We invoke (A2) because the DHPM machine
controller can, apparently, not be changed and because our industrial collaborators were steadfast in adhering to that
logic. Assumption (A3) recognizes the algorithms incorporated in the machine controller to assure that heads do not
collide as they move through their rounds. (A4) provides a basis that allows us to model the kinematics of DHPM
movements.

2.2. Operating rules

Wilhelm et al. [38] specified several operating rules to manage travel time along the feeder rack:

(R1) A head picks all components from its left-half rack (r = 1) then picks all components from its right-half rack
(r = 2).

(R2) Each picking step starts with the head at its feeder-rack position farthest from the camera and requires the head
to move towards the camera on successive picks.

(R3) A head does not cross any point on a feeder rack more than once on a picking step.

If a CTPC included CTs that are located in slots in both r = 1 and r = 2 racks, the head would incur the inefficiency
of traveling across the camera — a distance of 80 mm — to reach CTs in the second half rack; then, it would incur
additional inefficiency as it backtracks — an inefficient operation that would violate rule (R3) — to the camera to
view components. Rules (R2) and (R3) promote efficiency and (R1) allows decomposition so that picking (P2) and
placing (P3) operations can be analyzed in smaller, independent sub-problems, one for each hmr combination where
m ∈ M , h ∈ Hm and r ∈ Rhm in which

M is the set of machines
Hm is the set of heads on machine m
Rhm is the set of racks associated with head h on machine m.
For example, if the line incorporates two DHPMs (M = {m : m = 1, 2}), we solve a set of eight (P3) problems,

because each DHPM has two heads (Hm = {h : h = 1, 2}) and each head has two racks (Rhm = {r : r = 1, 2})

according to (R1).

2.3. The model

Our model requires inputs that may be obtained as outputs from (P2): x∗
p, C p, ecp, osp, and c̄sp for p ∈ P∗. The

output of our (P3) model prescribes the individual components i ∈ I (i.e., with coordinates (xi , yi )) placed on each
step t and the total time the step requires to move from the camera and place prescribed components, Θ̄t . To populate
the CC, (P3) must place CTPC p on each of x∗

p steps, so that it prescribes a total of
∑

p∈P∗ x∗
p steps.

We solve a (P3) model for each hmr combination. Suppressing subscripts hmr to facilitate presentation and
defining decision variable ut = 1 if placing step t is prescribed and 0 otherwise, we now present our (P3) model:
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Table 1
Notation

Indices
h Heads on a DHPM
i, j Individual components on a circuit card
m DHPMs on the assembly line
p CTPCs
r Racks associated with a head
t Placing steps

Parameters
āi t = 1 if placing step t places component i , 0 otherwise
ci CT for component i
c̄sp CT picked by spindle s in CTPC p c̄sp ∈ C p for s ∈ {1, 2, 3, 4}

ecp Number of components of CT c ∈ C p picked in CTPC p
osp Order in which spindle s picks in CTPC p osp ∈ {0, 1, 2, 3, 4} for s ∈ {1, 2, 3, 4}

x∗
p Number of times the CTPC should be used to minimize total picking time

(xi , yi ) Co-ordinates at which component i is located on the circuit card
Θ̂p Time for the head to pick all components in CTPC p and display each for camera to view
Θ̄t Time for placing step t

Sub-problem parameters
a Arc in a sub-problem network
i Component represented by the node at which arc a originates
j Component represented by the node to which arc a points
qa Reduced cost associated with arc a
s Spindle (=1, 2, 3, 4)
s`i Spindle that grasps component i
s` j Spindle that grasps component j
βa Resource required by the operation represented by arc a
γ j Dual variable associated with the j th constraint of type (2)
τ Time limit for a placing step

Time parameters
(ãx , ṽx , d̃x ) Acceleration, velocity and deceleration rate for the head to move along the x axis
(ãy , ṽy , d̃y) Acceleration, velocity and deceleration rate for the beam to move along the y axis
Dx

i j Distance the head moves along the x axis for successive placements of components i and j
=(x j − xi − 40(s` j − s`i )) if the head moves from left to right (i.e., xi < x j ), and
= −(x j − xi − 40(s` j − s`i )) if the head moves from right to left (i.e., xi > x j ).

Dy
i j Distance the head moves along the y axis for successive placements of components i and j = |yi − y j |

gx (Dx
i j ) Function that applies kinematic relationships to determine move time along the x axis

gy(Dy
i j ) Function that applies kinematic relationships to determine move time along the y axis

θ̄i j Time for the head to move from the position with spindle si centered at (xi , yi ) to the position with spindle s j centered at (x j , y j )
and place a component of CT c j .

Sets
C p CTs picked by CTPC p ∈ P∗

Hm Heads on machine m
I Components that populate the circuit card
M Machines
P∗ CTPCs prescribed by (P2)
Rhm Racks associated with head h on machine m
T Index set representing all possible combinations in which components can be placed
T ∗ Placing steps prescribed by the solution to (P3) T ∗

⊆ T
Tp Placing steps that represent all possible combinations in which components associated with CTPC p can be placed
T ∗

p Placing steps that represent the combinations in which components associated with CTPC p are prescribed by the solution to (P3)
T ∗

p ⊆ Tp
Decision variables
ut = 1 if placing step t is prescribed, 0 otherwise
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Min Z =

∑
t∈T

Θ̄t ut (1)

st.
∑
t∈T

āi t ut ≥ 1 i ∈ I (2)

∑
t∈Tp

ut = [x∗
p] p ∈ P∗ (3)

ut ∈ {0, 1} t ∈ T . (4)

The objective function (1) minimizes the total time for all placing steps. Inequalities (2) assure that each individual
component i is placed. Equalities (3) assure that (P3) employs each of the CTPCs the number of times prescribed by
input [x∗

p]. Rather than artificially constraining (P3), constraints (3) assure the necessary integration of picking and
placing operations. They guarantee that the pre-determined set of CTPCs P∗ will be used for both picking and placing,
as desired. As an example, suppose that four CTs can be gang picked and that three of them comprise 5 components;
and the fourth, 6. P∗

= {1, 2}, CTPC p = 1 gang picks the four CTs and [x∗

1 ] = 5, while CTPC p = 2 picks just one
component of type 4 and [x∗

2 ] = 1. Without (3), (P3) could use CTPC p = 2 six times and CTPC p = 1 five times,
each time placing only 3 components. Clearly, this lack of consistency between picking and placing is not feasible —
once picked, components must be placed. Finally, constraints (4) impose binary restrictions.

T is the index set of columns that represents all of the combinations in which individual components can be placed;
its cardinality is huge. Similarly, Tp comprises the large number of combinations in which CTPC p can be placed,
so that |Tp| is large (T = ∪p∈P Tp). Our model prescribes subsets T ∗

p ⊆ Tp and T ∗
⊆ T , where T ∗

= ∪p∈P∗ T ∗
p ,

|T ∗
p | = x∗

p, and |T ∗
| =

∑
p∈P∗ x∗

p. Note that Tp ∩ Tp′ = ∅ : p, p′
∈ P∗, p 6= p′.

The column of coefficients associated with decision variable ut ,
[

Θ̄t āT
t

]T , where āt is an |I |-dimensional
column vector comprising elements āi t for i ∈ I , is not known explicitly a priori; rather, it is generated by a sub-
problem as described in Section 3. The advantage of column generation is that columns can be generated as needed
instead of enumerating all of them explicitly. Because |T | is huge, enumerating columns does not offer an effective
way to solve (P3).

We solve the linear relaxation of model (1)–(4) to obtain a bound at each node in the branch-and-bound tree
over which we search for an optimal solution. A number of applications (e.g., cutting stock [23,24]) and vehicle
routing [22,18,21] have demonstrated that the set-covering model (i.e., (1), (2) and (4)) can be optimized effectively
using column generation [37]. The set-covering formulation is efficacious because it is known [18,10] to have a tight
linear relaxation (i.e., the gap between the optimal solution to the integer problem and its linear relaxation tends to 0
as |I | increases, facilitating solution). However, side constraints (3), which assure continuity with the solution to (P2),
may lead to somewhat larger gaps in certain cases.

Model (1)–(4) is novel in three ways: column generation has not been used previously to prescribe process plans,
DHPM placing operations have not been modeled previously, and specially formulated sub-problems have not been
used to generate “good” placement steps previously.

3. Solution approach

This section presents three subsections that describe our sub-problems, our sub-problem solution methods, and our
column-generation approach.

3.1. Sub-problems

Sub-problem p employs a network to model CTPC p ∈ P∗

hmr ; we solve a constrained shortest path problem
(CSPP) on that network to generate a column, which prescribes coefficients Θ̄t and āi t (for i ∈ I ). Fig. 2 depicts the
fundamental concepts on the directed, acyclic network Ghmr (N̄ , Ā) in which N̄ is the set of nodes and Ā is the set of
(directed) arcs.

N̄ includes a (dummy) start node in level ` = 0 and a (dummy) end node in level ` = L +1, where L is the number
of spindles that pick/place in CTPC p (L = 4 if the CTPC includes 0 no picks since all 4 spindles pick; L = 3 if
the CTPC includes 1 no pick since 3 spindles pick; overall, L = 4, 3, 2, 1 if the CTPC includes 0, 1, 2, 3 no picks,
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Fig. 2. An example sub-problem network.

respectively). Level ` = 1, . . . , L represents the CT that the head places `th , so that the ordering of levels corresponds
to the order in which spindles place, observing (A2). The nodes in a level represent the individual components that
constitute the associated CT. Node i in level ` = 1, . . . , L represents individual component i of CT ci ∈ C p and
must be placed at location (xi , yi ) on the CC. For example, Fig. 2 depicts a case in which L = 4. Level ` = 1
represents CT c = 1,which comprises individual components 1, . . . , 4. Similarly, level ` = 2 represents CT c = 2,
which comprises individual components 5, . . . , 8 and levels ` = 3 and ` = 4 represent CT c = 3, which comprises
individual components 9, . . . , 14. This network represents a CTPC that uses two spindles to pick CT c = 3 (see [38]
for more detail). The path from the start node to the end node represents a step that places individual components 2,
7, 13, and 11 (other arcs are not shown for clarity).

Each arc a = (i, j) ∈ Ā points from a node i in level ` = 0, . . . , L to a node j in level ` + 1. The network
incorporates three types of arcs. Each type 1 arc points from the start node in level ` = 0 to a node in level ` = 1,
each type 2 arc points from a node in level ` = 1, . . . , L − 1 to a node in level ` + 1, and each type 3 arc points from
a node in level L to the end node in level L + 1.

Each arc a of type 1 or 2 represents the time and set of resources needed to place the component, j , which is
represented by the node to which a points. Each path from the start node to the end node includes one type 1 arc. We
set the time θ̄i j associated with type 1 arc a = (i, j) to be the time required for the head to move from the camera to
position spindle s` j , which is represented by level ` = 1, at (x j , y j ) and to place component j (see Section 1). We
set the time θ̄i j associated with type 2 arc a = (i, j) to be the time required for the head to move from the position
with spindle s`i at location (xi , yi ) to the position with spindle s` j at position

(
x j , y j

)
and to place component j (see

Section 1). Because type 3 arcs are included only as logical devices to reach the end node, we set the time for each
type 3 arc to be θ̄i j = 0.

The head moves simultaneously along the x and y axes, so the time required for the head-movement portion of
duration θ̄i j may be calculated using

max{gx (Dx
i j ), gy(Dy

i j )},

in which the move distance along the y axis is Dy
i j = |yi − y j | and the move distance along the x axis, correcting for

the 40 mm spacing of adjacent spindles, is

Dx
i j = (x j − xi − 40(s` j − s`i )) if the head moves from left to right (i.e., xi < x j ), and

Dx
i j = −(x j − xi − 40(s` j − s`i )) if the head moves from right to left (i.e., xi > x j ).
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The gx (Dx
i j )(gy(Dy

i j )) function applies kinematics relationships to determine move time along the x (y) axis as
the head travels on the beam (as the beam moves). We model a movement by starting with the head (beam) at rest,
accelerating it to the constant velocity at which it travels, and decelerating it to stop. We use (ãx , ṽx , d̃x ) ((ãy, ṽy, d̃y))
to denote the kinematics parameters for head (beam) movement in the x (y) direction. The equation of motion that
gives the move time in either direction is

g(Di j ) = [2Di j + ṽ2(1/ã + 1/d̃)]/(2ṽ).

A move over a short distance (Di j ≤ D̄ = 0.5ṽ2(1/ã + 1/d̃)) does not allow the velocity to be achieved, so it
involves only acceleration and deceleration. In such a case, the move time is given by

Di j = [2Di j (1/ã + 1/d̃)]1/2.

We label arc a with the amount of resource required by the operation, βa , and the appropriate reduced cost
qa = θ̄i j − γ j , in which θ̄i j is the time duration required to reposition and place component j and γ j is the dual
variable associated with the j th constraint of type (2) in the master problem. Type 3 arcs are exceptions that are
labeled with values θ̄i j = 0, βa = 0, and qa = 0. We update reduced costs each time sub-problems are solved,
incorporating current (optimal) values of dual variables, γ j for a ∈ Ā. We define the resource requirement βa = θ̄i j
for arc a and interpret the resource constraint in the CSPP as a limit on the duration of a placing step, τ .

According to the linear programming optimality criterion [8], the solution to a sub-problem represents the non-
basic column that has the smallest reduced cost among all non-basic columns associated with the related CTPC. It
identifies an improving column that may enter the basis of the master problem if the solution value is negative. If
the optimal solution value is non-negative for all sub-problems, the current solution to master problem (1)–(4) is
optimal.

Sub-problem SP(p) may now be stated using decision variables wa = 1 if arc a is on the CSP, 0 else (for a ∈ Ā):

SP(p) : Min “Ct − Z t ” =

∑
a∈ Ā

qawa (5)

st.
∑

a∈ Ā(i. j)

wa −

∑
a∈ Ā( j,i)

wa = bi i ∈ N̄ (6)

∑
a∈ Ā

βawa ≤ τ (7)

wa ∈ {0, 1} a ∈ Ā. (8)

The objective function (5) minimizes the sum of the reduced costs qa = θ̄i j − γ j of prescribed arcs. Constraints
(6) formulate the SPP as a network flow problem in which one unit of flow originates at the start node, travels across
the shortest path in the network, and terminates at the end node. They require a flow balance at each node, so that the
flow out of node i on the set of arcs Ā(i, j) minus the flow into it on the set of arcs Ā( j,i) equals bi , where bstart = +1,
bend = −1, bi = 0 for i ∈ N̄ \ {{start} ∪ {end}}. Inequality (7) invokes the resource constraint, limiting the duration of
any placing step generated. This limitation promotes efficiency by assuring that a head will not take long to perform a
placing step, causing the second head to incur a lengthy idle time waiting to begin placing. While (5), (6) and (8) define
a shortest path problem, which has the Integrality Property [37], (5)–(8) define a constrained shortest path problem,
which does not have the Integrality Property, allowing our branch-and-price approach to provide tighter bounds that
improve the effectiveness of our solution approach. We solve model (1)–(4) for each hmr combination; each of these
“rack problems” includes a sub-problem of the form S P(p) for each CTPC p ∈ P∗

hmr .
An optimal solution to S P(p) prescribes the sequence in which components are placed; a series of arcs from the

start node to the end node: Π ∗
= {a ∈ Ā : w∗

a = 1}; parameters Θ̄t =
∑

a∈ Ā βaw∗
a =

∑
a∈Π ∗ θ̄i j ; and ā j t = 1 if

a = (i, j) ∈ Π ∗, 0 else for j ∈ I . Resource limitation (7) assures that Θ̄t ≤ τ . If “C∗
t − Z∗

t ” < 0, the sub-problem
solution defines an improving column, which may be entered into the basis of the master problem. Inequalities (2)
allow a component to be placed more than once and a CTPC that includes multiple picks or an augmented gang pick
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could lead to placing the same component i several times on one step. We do not include arc (i, i) from level ` to level
` + 1 (for ` = 2, . . . , L − 1) because it would represent placing component i twice on the same step. Component i
could, however, be prescribed twice, for example, by a path that includes nodes representing component i in levels `

and ` + 2 (for ` = 1, . . . , L − 2). Since each placement requires time, it would not be optimal to place a component
more than once so that inequalities (2) hold at equality at an optimal solution. The next section describes how we
solve each sub-problem, a CSPP, as a SPP.

3.2. Solving the CSPP as a SPP

The CSPP is NP-hard [27] but has been well researched (e.g., [22,9,18,21]) and several pseudo-polynomial-time
dynamic programming algorithms are available [19,20,29]. We base our pseudo-polynomial time algorithm on that
of Wilhelm, Damodaran and Li [39]. The algorithm uses a pseudo-polynomial time dynamic programming algorithm
to construct a directed, acyclic expanded network on which the CSPP is solved as a SPP at each iteration using a
polynomial-time algorithm [5]. The algorithm actually performs in a pseudo-polynomial time because the size of the
expanded network may grow quickly.

Each node (arc) in the sub-problem network may be associated with a number of nodes (arcs) in the expanded
network. Each node in the expanded network represents a path into the associated node in the sub-problem network
and the cumulative resource requirement on that path. To construct the expanded network, we process levels in a sub-
problem network from level ` = 0 to level ` = L +1 and nodes within each level from left to right. To extend the paths
that lead to a node in the expanded network, each arc emanating from the associated node in the sub-problem network
is augmented to reach the next level of the expanded network. We allow only augmented paths with cumulative
resource requirements that do not exceed the τ limitation. After identifying nodes in the next level of the expanded
network, we check the subset of these nodes that is associated with the same node in the sub-problem network. If
the cumulative resource requirements on the paths into two or more of nodes in a subset are identical, we merge
them into a single node. This combination manages the growth of the expanded network and leads to the pseudo-
polynomial time complexity of the expansion method. Nodes in level ` of the expanded network represent nodes in
level ` in the sub-problem network. Each node in level L of the expanded network represents a path through the
sub-problem network that specifies a placing step, including the individual components placed, placement sequence,
placement time, and the cumulative resource (time) required, which cannot exceed τ . We invoke resource constraints
by disallowing any path with cumulative resource requirements that would exceed resource limitations so that the
CSPP on the sub-problem network can be solved as a SPP from the start node to the end node in the expanded
network.

3.3. Column generation details

We optimize our model using branch and bound (B&B). At each node n in the B&B search tree, we solve the linear
relaxation of model (1)–(4), replacing (4) with

0 ≤ ut ≤ 1 t ∈ T .

To construct an initial basic feasible solution (BFS) at each B&B node, we define a set of placing steps, each
of which places one component at a Big M cost (i.e., time). The columns associated with this initial BFS, which
comprise a basis of artificial variables, represent a feasible, albeit costly, solution.

At each iteration, we optimize the master problem over columns known explicitly before updating the reduced costs
on all arcs in the expanded networks using the new qa value on each arc in an expanded network that is associated
with arc a in the sub-problem network. Our column generation strategy solves all sub-problems and enters the most
improving column.

At each B&B node, we branch on the master problem variable with the largest fractional part, say ut , conforming
to the traditional method for branching on binary variables. Branching at node n creates child nodes n1 and n2 at
which ut is fixed to 0 and 1, respectively.

At B&B child node n1, the column associated with placing step t must be removed from the basis, and the expanded
network must be modified so that step t cannot be obtained again as a solution. We adopt the “Bypass Algorithm”
proposed by Wilhelm et al. [38] to prevent our algorithm from generating the column associated with ut again. The
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goal is to disallow the set of all arcs on the path, Π ∗
t , that defines the column associated with ut but to allow any

subset to be used to define another column. Starting at the dummy node in level ` = 0, we traverse the arcs on path
Π ∗

t to identify the first node, v`∗ , that has more than one predecessor in the expanded network. If each node on path
Π ∗

t has a single predecessor, we traverse the arcs on path Π ∗
t to identify the first node, v`∗ , that has more than one

successor in the expanded network. In the special case in which each node on path Π ∗
t has a single predecessor and

a single successor, the reduced cost of any arc a ∈ Π ∗
t can be set to Big M to exclude the path. The arc a ∈ Π ∗

t
that points to node v`∗ , (v`∗−1, v`∗), is on path Π ∗

t but no other path from the start node to the end node, so that
setting q(v`∗−1,v`∗ ) = Big M prevents step t from being prescribed again as optimal. The algorithm then bypasses arc
(v`∗−1, v`∗), augmenting arcs (v`∗−1, v) from node v`∗−1 to each node v in levels ` = `∗

+ 1, . . . , L that could be
reached on any path (v`∗−1, v`∗ , . . . , v) that starts with arc (v`∗−1, v`∗). These arcs bypass node v`∗ , which is on path
(v`∗−1, v`∗ , . . . , v). The bypassing arc is assigned a reduced cost equal to the sum of the reduced costs that would
otherwise be assigned to the arcs on path (v`∗−1, v`∗ , . . . , v). The resulting, augmented network must be used at child
node n1 in the B&B tree to prescribe the path with the minimum reduced cost that excludes path Π ∗

t . Each node that
descends from node n1 must include this bypass and may include additional bypasses as well, corresponding to other
binary variables that are fixed to 0 (i.e., “Ct − Z t ” = 0). At each subsequent iteration of the master problem, we update
the reduced cost on each arc, except, of course, the Big M cost must be retained on each arc designated by Algorithm
Bypass. Wilhelm et al. [38] provide a detailed justification of the Bypass Algorithm, showing that it excludes only
path Π ∗

t . Algorithm Bypass allows each sub-problem to be solved as a SPP, no matter how many binary variables are
fixed to 0.

At B&B child node n2, the column associated with placing step t must be retained in the solution to the master
problem. While it is in the basis of the master problem, the sub-problem will not identify it again as improving because
it will price out at 0. The associated variable must be retained in the master problem but it may become non-basic at
its upper bound.

4. Computational evaluation

This section describes the experiments we use to evaluate the efficacy of our column generation approach. The
purposes of our tests are to investigate the effects that CTPCs and fundamental parameters (i.e., factors) have on run
time, to evaluate the robustness of our approach in the face of different CT assignments to feeder slots, to explore the
relationship of run time to the tightness of our model, and to record benchmarks for use in future research.

We coded our program in C in the Watcom-C editor and performed all tests interfacing with MINTO 3.0 and
CPLEX 4.0 on a Pentium III PC (667 MHz with 128 MB RAM). We note that our industrial collaborator enabled this
study but required a nondisclosure agreement that does not allow us to relate certain details in this paper. This section
describes the factors we used to evaluate our approach, the way we generated test instances, and computational results.

4.1. Experimental design

Our experiment addresses six factors, which represent different machine configurations, operating restrictions, and
operating procedures. The experimental design assigns two levels to each of five factors to evaluate its effect over a
range of possibilities.

Factor 1 addresses the logic by which CTs are assigned to DHPMs and to the feeder slots on each machine. We
use three different heuristics, (level 1) H1, (level 2) H2, and (level 3) H3 as the levels of this factor to evaluate the
robustness of our column generation procedure relative to different assignments of CTs to slots. The actual logic
incorporated in these heuristics is not within the scope of this paper.

Factor 2 specifies the number of DHPMs: (level 1) 1 and (level 2) 2. Factor 3 defines the number of CTs and width
of each. We select two levels to fill all slots on a single DHPM: (level 1) 32 CTs, each requiring 2 slots and (level 2) 64
CTs, each requiring 1 slot. When two DHPMs are used (level 2 of Factor 2) each of these sets of CTs fills only half of
the available slots. Factor 4 designates the number of components of each CT: (level 1) 10 components and (level 2)
a number generated from a discrete uniform distribution on [5, 15] (i.e., DU [5, 15]). Level 2 has an expected number
of components equal to that specified by level 1 but introduces variability to test the ability of our column-generation
approach to prescribe appropriate placing steps under different conditions. Factor 5 provides either (level 1) 2 or (level
2) 4 types of nozzles to each head, with 4 copies of each. In practice, each nozzle type can only pick CTs of specified
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width and may affect how frequently efficient gang picks can be used. Level 1 assigns a nozzle type to each CT using
DU [1, 2]; and level 2, DU [1, 4], to provide a wider variety of nozzle types. Factor 6 assigns an orientation – denoted
θ – to each CT. Each of the levels of this factor is an empirical distribution that we select to study requirements of
different types. Level 2 generates more highly variable orientations and may limit the use of efficient gang picks,
which require all CTs to have the same orientation.

Factor Levels

1 Assignment of CTs to DHPMs and to slots on each machine H1
H2
H3

2 Number of DHPMs 1
2

3 Number of CTs 32 CTs, each 2 slots wide
64 CTs, each 1 slot wide

4 Number of components of each CT 10
DU[5, 15]

5 Nozzle type assigned to each CT DU [1, 2]
DU [1, 4]

degrees empirical probability distribution
6 Orientation assigned to each CT, θ : 0, 90, 270 or 180 0.4, 0.3, 0.2, 0.1

0, 90, 270 or 180 0.25, 0.25, 0.25, 0.25

We select these six factors because they have significant influence over problems (P1)–(P4) and, hence, the
workload balance that can be achieved and the run time required to do so. Some factors have an effect on several
of these problems; others affect only one of them. Factor 1, the heuristic used to solve (P1), assigns CTs to feeder
slots and affects the sizes of problems (P2)–(P4). Different logics used to solve (P1) assign CTs differently to feeder
racks and may result in (P2)–(P4) instances that differ widely in terms of size and solvability. Factor 2, the number
of DHPMs, influences the size of all problems and makes workload balancing more difficult as the number of heads
increases. Fortunately, our approach decomposes (P3) into individual hmr rack problems so that several smaller
problems can be solved instead of one large one. Factor 3, the number of CTs, affects the number of decisions that
must be made to resolve (P1), the sizes of (P2) and (P3), and the difficulty involved in balancing workloads. Factor
4, the number of components of each CT, affects the total time required to pick and place. In particular, placing times
can be expected to dominate picking times and nozzle changing times. Factor 5, the nozzle type assigned to each
CT, affects the number of times the head must undertake the inefficient operation of changing nozzles and affects the
workload balance that (P4) can achieve. Finally, Factor 6, CT orientation, affects the number of efficient gang picks
that can be made in the solution to (P2).

4.2. Test instances

We generate each test instance by specifying the number of CTs (Factor 3) and, for each CT, the number of
constituent components (Factor 4), the nozzle type required (Factor 5) and the orientation required (Factor 6). Each
of the 25

= 32 unique selections of Factors 2–6 characterizes a test instance, which we solve using each of the three
heuristics to solve (P1), assigning CTs to DHPMs (Factor 2) and to feeder slots on each machine. We use the (P1)
solution as an input to (P2) and the (P2) solution — x∗

p, C p, ecp, osp, and c̄sp for p ∈ P∗ — as an input to (P3). Each
test instance that involved 1 (2) DHPM(s) required solution of 4 (8) rack problems (1)–(4), resulting in a total of 384
rack problems.

4.3. Test results

Tables 2–4 record overall measures of performance associated with H1, H2, and H3, respectively. Columns 1–7
describe the instance and columns 8–13 summarize test results. We solve a (P3) problem for each hmr combination
separately, but, to conserve space, we report composite results for all rack problems associated with an instance. The
acronyms that head the columns of Tables 2–4 are defined below:
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Table 2
Summary of results for (P3) using Heuristic H1

# F1 F2 F3 F4 F5 F6 #SP #Impr #Entrd #B&B Total Max
H# #M #CT #C/CT #NT θ Solved Cols Cols Nodes RT (s) RT (s)

1 1 1 32 10 1 1 671 519 309 96 38.98 25.48
2 1 1 32 10 1 2 198 186 95 4 11.11 3.34
3 1 1 32 10 2 1 225 212 99 4 10.57 3.34
4 1 1 32 10 2 2 186 169 89 4 10.11 2.8
5 1 1 32 [5, 15] 1 1 3039 2996 514 528 115.68 78
6 1 1 32 [5, 15] 1 2 244 243 30 4 10.79 3.19
7 1 1 32 [5, 15] 2 1 1312 1305 211 236 56.76 47.93
8 1 1 32 [5, 15] 2 2 240 240 34 4 11.19 3.19
9 1 1 64 10 1 1 224 224 46 4 11.95 3.19

10 1 1 64 10 1 2 224 224 52 4 11.66 2.93
11 1 1 64 10 2 1 223 220 49 4 11.39 2.96
12 1 1 64 10 2 2 224 220 52 4 11.22 2.93
13 1 1 64 [5, 15] 1 1 262 262 29 4 3.91 3.18
14 1 1 64 [5, 15] 1 2 262 262 28 4 3.91 3.18
15 1 1 64 [5, 15] 2 1 209 209 30 3 5.18 3.21
16 1 1 64 [5, 15] 2 2 284 284 30 4 6.57 3.35
17 1 2 32 10 1 1 280 271 159 73 13.48 3.51
18 1 2 32 10 1 2 416 351 220 64 10.67 2.85
19 1 2 32 10 2 1 393 350 191 121 6.4 2.33
20 1 2 32 10 2 2 1237 1089 543 199 18.76 10.54
21 1 2 32 [5, 15] 1 1 492 460 157 162 11.37 4.28
22 1 2 32 [5, 15] 1 2 698 662 149 195 24.16 13.33
23 1 2 32 [5, 15] 2 1 600 591 862 100 14.67 13.33
24 1 2 32 [5, 15] 2 2 1847 1809 198 532 45.57 42.16
25 1 2 64 10 1 1 594 579 191 40 3.77 1.53
26 1 2 64 10 1 2 1895 1820 396 380 40.37 33.13
27 1 2 64 10 2 1 688 662 200 96 13.37 6.09
28 1 2 64 10 2 2 1269 1233 290 208 30.27 22.19
29 1 2 64 [5, 15] 1 1 830 793 245 151 11.09 2.2
30 1 2 64 [5, 15] 1 2 1927 1898 408 343 35.71 31.33
31 1 2 64 [5, 15] 2 1 757 745 155 88 4.59 2.94
32 1 2 64 [5, 15] 2 2 726 685 134 128 7.96 2.14

Column Acronym Description

1 # Instance number
2 F1 H# Factor 1: heuristic number (i.e., H1, H2, or H3)
3 F2 #M Factor 2: number of DHPMs
4 F3 #CT Factor 3: number of CTs (i.e., 32 or 64)
5 F4 #C/CT Factor 4: number of components per CT
6 F5: #NT Factor 5: nozzle type assignment
7 F6: θ Factor 6: CT orientation
8 #SP Solved Number of sub-problems solved
9 #Impr Cols Number of improving columns generated

10 #Entrd Cols Number of improving columns entered into the master problem
11 #B&B Nodes Number of B&B nodes required to optimize all rack problems
12 Total RT Total run time (secs.) to prescribe optimal solutions to all rack problems
13 Max RT Maximum run time (secs.) to solve any rack problem

The run times reported in columns 12 and 13 do not include the (negligible) time required to expand the sub-
problem networks, a one-time process.

4.3.1. Factor effects on run time
First, we note that, although it is not a factor, the number of CTPCs prescribed by (P2) has a significant effect on

run time. One sub-problem in the (P3) formulation represents each CTPC; a larger number of CTPCs thus results in
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Table 3
Summary of results for (P3) using Heuristic H2

# F1 F2 F3 F4 F5 F6 #SP #Impr #Entrd #B&B Total RT
H# #M #CT #C/CT #NT θ Solved Cols Cols Nodes RT (s) Max (s)

1 2 1 32 10 1 1 168 162 80 4 4.76 1.53
2 2 1 32 10 1 2 168 162 97 4 4.76 1.74
3 2 1 32 10 2 1 206 195 99 4 5.75 1.47
4 2 1 32 10 2 2 378 335 150 74 11.2 5.83
5 2 1 32 [5, 15] 1 1 389 346 133 74 11.6 5.83
6 2 1 32 [5, 15] 1 2 271 253 80 32 9.22 3.8
7 2 1 32 [5, 15] 2 1 284 277 74 24 8.42 2.96
8 2 1 32 [5, 15] 2 2 763 755 149 116 26.82 14.72
9 2 1 64 10 1 1 389 359 65 74 10.25 5.83

10 2 1 64 10 1 2 387 355 69 74 10.53 5.83
11 2 1 64 10 2 1 234 234 36 4 6.34 1.64
12 2 1 64 10 2 2 234 234 36 4 5.97 1.57
13 2 1 64 [5, 15] 1 1 429 414 71 56 16.47 9.59
14 2 1 64 [5, 15] 1 2 760 733 112 100 25.9 12.6
15 2 1 64 [5, 15] 2 1 261 261 30 4 7.47 2.71
16 2 1 64 [5, 15] 2 2 269 268 38 4 7.27 2.71
17 2 2 32 10 1 1 530 657 150 125 11 3.51
18 2 2 32 10 1 2 1750 1397 824 165 10.85 3.38
19 2 2 32 10 2 1 2794 2021 975 196 38.00 15.61
20 2 2 32 10 2 2 2788 2021 133 196 38.00 15.55
21 2 2 32 [5, 15] 1 1 676 644 238 233 14.4 7.58
22 2 2 32 [5, 15] 1 2 645 569 235 84 18.25 7.1
23 2 2 32 [5, 15] 2 1 3333 2537 1127 1599 47.3 16.1
24 2 2 32 [5, 15] 2 2 945 933 297 211 22.95 9.6
25 2 2 64 10 1 1 940 920 274 195 23.43 9.6
26 2 2 64 10 1 2 1474 1430 309 171 36.82 25.28
27 2 2 64 10 2 1 524 517 120 24 14.53 3.44
28 2 2 64 10 2 2 470 436 161 8 12.63 2.5
29 2 2 64 [5, 15] 1 1 510 489 109 16 13.91 2.26
30 2 2 64 [5, 15] 1 2 569 561 137 46 15.98 3.72
31 2 2 64 [5, 15] 2 1 1639 1612 476 670 42.41 23.86
32 2 2 64 [5, 15] 2 2 890 885 193 128 7.96 2.14

more sub-problems that must be solved, increasing run time. For example, instances 17–24 each involve several rack
problems for which (P2) prescribes only 1 CTPC. For these instances, (P3) uses a gang pick of four components on
each of 10 placing steps. Instances 8–16 each entail more CTPCs but require low run times; H1 and H3 assign CTs so
that each of these rack problems is solved at the root node and H2 allows half of them to be solved at their root nodes
(column 11 records that 4 B&B nodes were used, one for each rack problem).

The summary measures in Tables 2–4 highlight the effect of each factor on run time. We compare the two levels of
each factor by adding the run times for instances that involve each level. By comparing the two sums for each factor,
we gain the following insights.

Factor 1 (heuristic H1, H2, or H3) has a significant effect on run time: average run time per (P3) instance resulting
from H1, H2, and H3 is 19.5, 16.9, and 39.3 s, respectively. Thus, H2 leads to (P3) instances that can be solved in less
run time, but that is not to say that H2 is preferred because the heuristics must also be judged relative to their effects
on workload balancing and that issue is beyond the scope of this paper. In assigning CTs to feeder slots, H1–H3 place
different emphasis on such attributes as nozzle-type requirement, orientation, and CT width. H2 apparently yields less
challenging (P3) instances. We conclude that our approach for solving (P3) is robust in that it is easily able to solve
instances that result from quite different logics used to assign CTs to feeder slots.

Level 2 of Factor 2, number of DHPMs, requires longer run time than level 1 for all three heuristics. The reason
is that 2 DHPMs typically involve more CTPCs and, therefore, we solve more sub-problems at each master-problem
iteration.
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Table 4
Summary of results for (P3) using Heuristic H3

# F1 F2 F3 F4 F5 F6 #SP #Impr #Entrd #B&B Total Max
H# #M #CT #C/CT #NT θ Solved Cols Cols Nodes RT (s) RT (s)

1 1 1 32 10 1 1 168 162 84 4 4.76 1.53
2 1 1 32 10 1 2 174 154 87 4 10.54 4.03
3 1 1 32 10 2 1 176 300 88 68 16.21 8.69
4 1 1 32 10 2 2 224 207 112 4 10.32 2.91
5 1 1 32 [5, 15] 1 1 219 219 73 4 9.97 2.81
6 1 1 32 [5, 15] 1 2 230 230 56 4 9.36 2.77
7 1 1 32 [5, 15] 2 1 200 376 80 44 18.61 10.88
8 1 1 32 [5, 15] 2 2 196 372 154 44 18.83 10.88
9 1 1 64 10 1 1 232 230 50 4 10.18 2.6

10 1 1 64 10 1 2 224 221 56 4 10.17 2.56
11 1 1 64 10 2 1 224 218 56 4 10.1 2.53
12 1 1 64 10 2 2 224 224 56 4 10.17 2.55
13 1 1 64 [5, 15] 1 1 240 240 56 4 10.74 3.12
14 1 1 64 [5, 15] 1 2 275 275 23 4 11.91 3.16
15 1 1 64 [5, 15] 2 1 263 263 30 4 11.67 3.74
16 1 1 64 [5, 15] 2 2 251 251 23 4 10.21 3.06
17 1 2 32 10 1 1 121 113 113 8 6.23 1.09
18 1 2 32 10 1 2 107 99 99 8 5.68 0.76
19 1 2 32 10 2 1 130 122 122 8 6.46 1.2
20 1 2 32 10 2 2 124 116 116 8 6.28 1.17
21 1 2 32 [5, 15] 1 1 194 176 176 43 9.4 2.06
22 1 2 32 [5, 15] 1 2 253 224 224 49 10.82 3.32
23 1 2 32 [5, 15] 2 1 173 157 157 20 8.29 2
24 1 2 32 [5, 15] 2 2 131 123 123 10 7.22 1.18
25 1 2 64 10 1 1 3155 2755 1763 803 159.89 89.8
26 1 2 64 10 1 2 1535 1242 768 78 54.99 18.49
27 1 2 64 10 2 1 4274 3640 2007 1736 359.00 39.93
28 1 2 64 10 2 2 2748 2304 1224 820 140.49 48.74
29 1 2 64 [5, 15] 1 1 4651 3899 1395 145 107.92 35.75
30 1 2 64 [5, 15] 1 2 720 621 347 37 25.24 4.66
31 1 2 64 [5, 15] 2 1 3208 2949 1158 598 82.84 30.24
32 1 2 64 [5, 15] 2 2 2215 1654 900 128 82.72 25.36

Levels 1 and 2 of Factor 3, number of CTs, have little effect on run time relative to H1 and H2. This is somewhat
counterintuitive because one would expect a larger number of CTs to require more CTPCs. We note that this result
may be affected by the fact that many instances involving 1 DHPM (e.g., 2, 4, 8–16, 33–35, 43–44, 47, and 48) run
quickly because each of the rack problems solve at the root node. However, relative to H3, the number of CTs has a
significant effect on run time, especially in the case of 2 DHPMs. Instances 89–96 have exceptionally high run times
because they involve assigning 64 CTs to 2 DHPMs and there are more CTPCs per rack, leading to more sub-problems
and, thus, longer run times.

Table 3 shows that the two levels of Factors 4–6 have the same effect on run time when H2 is used. However, the
two levels have significantly different effects when H1 is used. Level 2 of Factor 4, number of components per CT, has
a much more pronounced effect on run time than level 1 does (when H1 is used). The reason for this is that, for level
2, (P2) may prescribe more CTPCs, increasing the number of sub-problems and, thus, run time. A larger number of
components has both positive and negative influences. On the negative side, more components require more decisions,
increasing run time. On the positive side, more components provide more opportunities to select good combinations
for each placing step. Doubtlessly, these two influences underlie results but it is difficult to distinguish (a priori) when
one will dominate the other. Level 1 of Factor 5, nozzle type assigned to each CT, has a somewhat stronger influence
on run time than level 2 does (when H1 is used). Problem (P3), by itself, appears to provide no obvious reason for
this difference, which we conclude follows from the logic that H1 and H2 use to assign CTs to feeder slots and the
resulting differences in the nature of (P3) instances. We do expect, however, that Factor 5 would have a significant
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Fig. 3. Run time vs instance number and number of CTs for H1, H2, and H3.

effect on problem (P4) but that is beyond the scope of this paper. Factor 6, orientation requirement, does not have a
significant influence on run time (for H1 and H2), although H1 takes somewhat longer to solve level 1 instances. In
contrast, H3 poses (P3) problems that are highly sensitive to Factors 4, 5, and 6: level 1 of Factor 4, level 2 of Factor
5, and level 1 of Factor 6 each required significantly more run time than its respective complementary level. The logic
used to assign CTs to feeder slots clearly has a significant effect on the structure of the (P3) problems that result.

Fig. 3 compares the run times that result from H1–H3 relative to the instance number and the number of CTs. H1
requires a longer-than-average run time to solve instance 5 because it requires a large number of sub-problems to be
solved (3039) and a large number of B&B nodes (528). Similarly, H3 requires lengthy times to solve instances 25,
27, 28, and 29, increasing its average run time per instance. Overall, run times required to optimize (P3) instances are
rather small. This suggests that it is relatively easy to identify a good combination of components for each placing
step.

4.3.2. Overall performance measures
Columns 8–10 in Tables 2–4 demonstrate the performance of the column generation process. The most striking

result is that the number of improving columns is almost as large as the number of sub-problems solved. This results
because it is nearly always possible to select a set of individual components that form an improving column (i.e., a
placing step). Even though a column in the current basis involves the placement of an individual component, no
constraint prevents that component from being placed again (however, dual variable values would discourage this
because it would not be optimal to place a component more than once). The number of columns entered, however, is
much smaller because only one column is entered on each iteration. On the last iteration, which detects an optimal
solution, all sub-problems are solved but no improving column is identified. Column 8 does not count this last round
in reporting the number of sub-problems solved. As a result, columns 8 and 9 report the same number for several
instances (e.g., 9, 10, 13–15).

Run time and the number of B&B nodes increase with the number of sub-problems and as one might expect.
Finally, we note that the maximum run time associated with an instance typically dominates the run time for the set
of associated rack problems.

4.3.3. Rack problems
Tables 5–7 provide detailed measures associated with individual rack problems and are headed by the following

acronyms:
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Table 5
Results for individual rack problems using heuristic H1

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
1 0 11.0 84 620 645 4314 2 2 0.2 84 620 629 4284 2

1 0.0 84 620 626 4194 2 3 5.6 344 1970 1990 1260 7
2 0 0.0 104 620 623 4154 2 2 0.0 104 620 636 4254 2

1 0.0 104 620 631 4155 2 3 0.0 104 620 629 4224 2
3 0 0.0 136 730 739 4226 3 2 0.0 104 620 636 4254 2

1 0.0 104 620 631 4155 2 3 0.0 104 620 638 4214 2
4 0 0.0 104 620 636 4224 2 2 0.0 104 620 627 4185 2

1 0.0 104 620 617 4094 2 3 0.0 104 620 615 3994 2
5 0 10.9 172 1112 1127 8185 4 2 0.0 428 3165 3149 2539 7

1 5.4 254 1407 1434 7998 6 3 0.0 322 1924 1900 1307 6
6 0 0.0 431 2978 2964 2239 8 2 0.0 428 3165 3149 2539 7

1 0.0 458 2938 2936 2123 8 3 0.0 273 1778 1802 1146 6
7 0 0.0 331 2281 2239 1739 6 2 0.0 428 3165 3149 2539 7

1 0.0 458 2938 2936 2123 8 3 1.0 305 1705 1697 1100 6
8 0 0.0 454 2982 2970 2101 8 2 0.0 428 3165 3149 2539 7

1 0.0 458 2938 2936 2123 8 3 0.0 195 1381 1377 9925 4
9 0 0.0 208 1240 1269 8408 4 2 0.0 428 3165 3149 2539 7

1 0.0 208 1240 1261 8368 4 3 0.0 208 1240 1270 8408 4
10 0 0.0 208 1240 1260 8369 4 2 0.0 208 1240 1263 8379 4

1 0.0 208 1240 1278 8518 4 3 0.0 208 1240 1268 8448 4
11 0 0.0 208 1240 1255 8370 4 2 0.0 208 1240 1260 8408 4

1 0.0 208 1240 1266 8418 4 3 0.0 250 1450 1469 9500 5
12 0 0.0 208 1240 1268 8458 4 2 0.0 208 1240 1242 8250 4

1 0.0 208 1240 1266 8418 4 3 0.0 208 1240 1253 8359 4
13 0 0.0 208 1240 1268 8458 4 2 0.0 829 6349 6379 5314 13

1 0.0 642 3679 3727 2292 13 3 0.0 592 3278 3295 2003 13
14 0 0.0 208 1240 1268 8458 4 2 0.0 829 6349 6379 5314 13

1 0.0 797 5629 5672 4181 14 3 0.0 592 3278 3295 2003 13
15 0 0.0 208 1240 1268 8458 4 2 0.0 797 5315 5307 4076 13

1 0.0 506 2668 2700 1466 12 3 0.0 790 5380 5376 3993 14
16 0 0.0 208 1240 1268 8458 4 2 0.0 675 4576 4621 3425 12

1 0.0 506 2668 2700 1466 12 3 0.0 958 5719 5748 4158 17

17 0 11.0 104 620 643 4294 2 4 0.1 42 310 306 2032 1
1 11.0 104 620 643 4294 2 5 0.0 84 620 646 4324 2
2 0.0 42 310 320 2132 1 6 0.0 42 310 306 2052 1
3 0.0 42 310 320 2142 1 7 0.0 84 620 636 4244 2

18 0 0.0 42 310 320 2132 1 4 0.0 94 520 522 3065 2
1 0.0 104 620 643 4294 2 5 0.1 42 310 306 2032 1
2 0.0 74 520 540 3264 2 6 0.0 94 520 529 3175 2
3 27.4 42 310 320 2142 1 7 0.0 94 520 521 3164 2

19 0 15.7 66 330 337 1236 3 4 0.0 94 520 517 3184 2
1 15.7 119 18 14 3000 3 5 0.0 42 310 306 2032 1
2 0.0 74 520 540 3264 2 6 15.7 94 520 529 3175 2
3 0.0 94 520 534 3234 2 7 0.0 94 520 522 3175 2

20 0 0.0 66 330 337 1236 3 4 0.0 94 520 534 3234 2
1 25.5 156 910 940 6108 3 5 0.0 84 620 624 4104 2
2 0.0 74 520 540 3264 2 6 0.0 94 520 529 3175 2
3 0.0 94 520 534 3234 2 7 0.0 94 520 522 3175 2

21 0 12.2 172 1112 1127 8185 4 4 20.3 62 690 693 6947 1
1 9.2 113 868 884 5884 3 5 0.0 212 1464 1467 1119 4
2 21.4 54 520 534 4630 1 6 11.8 54 520 534 4630 1
3 19.1 58 602 604 5630 1 7 0.0 309 2130 2126 1476 6

22 0 1.9 182 1267 1251 8841 4 4 0.0 62 690 693 6947 1
1 0.0 113 868 884 5884 3 5 8.6 212 1576 1552 1224 4
2 0.0 54 520 534 4630 1 6 0.0 54 520 534 4630 1



W.E. Wilhelm et al. / Discrete Optimization 4 (2007) 232–256 249

Table 5 (continued)

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
3 9.2 113 868 884 5884 3 7 2.9 280 2045 2042 1675 5

23 0 0.0 26 121 122 4780 1 4 6.7 222 1559 1548 1139 4
1 0.0 113 868 884 5884 3 5 0.0 45 293 291 1763 1
2 0.0 373 2704 2714 2176 6 6 0.0 34 253 250 1263 1
3 0.0 113 868 884 5884 3 7 0.0 280 2045 2042 1675 5

24 0 2.2 26 121 122 4780 1 4 0.0 222 1559 1548 1139 4
1 4.2 113 868 884 5884 3 5 3.2 45 293 291 1763 1
2 0.0 373 2704 2714 2176 6 6 0.0 34 253 250 1263 1
3 0.0 113 868 884 5884 3 7 2.4 280 2045 2042 1675 5

25 0 6.4 26 121 122 4780 1 4 0.0 198 1140 1164 7438 4
1 0.0 113 868 884 5884 3 5 0.0 198 1140 1164 7438 4
2 0.0 198 1140 1164 7438 4 6 0.0 198 1140 1160 7408 4
3 0.0 198 1140 1164 7438 4 7 0.0 198 1140 1167 7469 4

26 0 2.3 250 1450 1472 9461 5 4 4.8 198 1140 1164 7438 4
1 0.0 136 730 741 4267 3 5 6.2 198 1140 1164 7438 4
2 0.0 250 1450 1448 9212 5 6 0.0 354 2070 2139 1382 7
3 0.0 146 830 840 5306 3 7 0.0 250 1450 1484 9560 5

27 0 5.3 188 1040 1053 6329 4 4 0.0 146 830 822 5276 3
1 0.0 136 730 741 4267 3 5 0.0 198 1140 1164 7438 4
2 3.7 146 830 845 5267 3 6 0.0 136 730 734 4249 3
3 0.0 354 2070 2101 1368 7 7 0.0 146 830 845 5326 3

28 0 0.0 146 830 855 5376 3 4 0.0 146 830 831 5148 3
1 0.0 198 1140 1144 7258 4 5 5.5 250 1450 1459 9312 5
2 0.0 146 830 847 5316 3 6 0.0 136 730 734 4249 3
3 0.0 188 1040 1055 6348 4 7 0.0 146 830 845 5326 3

29 0 1.4 146 830 855 5376 3 4 1.2 192 1555 1540 1352 3
1 2.3 198 1140 1144 7258 4 5 2.1 250 1450 1459 9312 5
2 0.0 146 830 847 5316 3 6 0.0 136 730 734 4249 3
3 0.0 188 1040 1055 6348 4 7 0.0 146 830 845 5326 3

30 0 2.2 278 1974 1989 1361 6 4 6.6 192 1555 1540 1352 3
1 0.0 198 1140 1144 7258 4 5 3.4 250 1450 1459 9312 5
2 0.0 359 2458 2475 1814 7 6 0.0 136 730 734 4249 3
3 7.2 188 1040 1055 6348 4 7 2.4 146 830 845 5326 3

31 0 0.0 278 1974 1989 1361 6 4 4.1 238 1499 1504 1109 4
1 0.0 331 2253 2258 1707 6 5 0.0 222 1772 1744 1334 4
2 0.0 433 2359 2402 1615 8 6 0.0 254 1793 1820 1263 5
3 0.0 314 2089 2088 1504 6 7 6.5 201 1261 1244 9176 4

32 0 0.0 278 1974 1989 1361 6 4 0.0 238 1499 1504 1109 4
1 2.4 331 2253 2258 1707 6 5 4.2 222 1772 1744 1334 4
2 0.0 307 2028 2025 1405 6 6 0.0 254 1793 1820 1263 5
3 2.2 314 2089 2088 1504 6 7 0.0 348 2587 2556 1866 7

Columns Acronym Description

1 # Instance number
2 9 R Rack number
3 10 ∆ %GAP = 100(Z I P − ZL P )/ZL P
4 11 #NS Number of nodes in all sub-problems networks
5 12 #AS Number of arcs in all sub-problem networks
6 13 #NE Number of nodes in all expanded networks
7 14 #AE Number of arcs in all expanded networks
8 15 #S Number of sub-problems (and CTPCs)

To conserve space, we record results for half of the rack problems for each instance in columns 2–8 and the other
half in columns 9–15. For the 1 DHPM case, columns 2–8 (9–15) give results for the two racks associated with head
1 (2). For the 2 DHPM case, columns 2–8 (9–15) give results for the four racks associated with DHPM 1 (2). We
provide a blank row just before instance 17 to separate the 1 and 2 DHPM cases. Columns 3 and 10 give ∆ = %G AP
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Table 6
Results for individual rack problems using heuristic H2

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
1 0 0.0 104 620 625 4144 2 2 0.0 104 620 628 4125 2

1 0.0 104 620 628 4204 2 3 0.0 104 620 635 4204 2
2 0 0.0 104 620 636 4314 2 2 0.0 104 620 628 4125 2

1 0.0 104 620 628 4204 2 3 0.0 104 620 627 4214 2
3 0 0.0 104 620 624 4115 2 2 0.0 104 620 632 4173 2

1 0.0 104 620 629 4106 2 3 0.0 104 620 637 4235 2
4 0 0.0 104 620 625 4175 2 2 0.0 104 620 631 4185 2

1 0.0 104 620 642 4234 2 3 1.2 156 930 922 6128 3
5 0 0.0 373 2246 2263 1575 7 2 0.0 104 620 631 4185 2

1 0.0 104 620 642 4234 2 3 1.2 156 930 922 6128 3
6 0 0.0 373 2246 2263 1575 7 2 0.0 282 1877 1865 1404 5

1 1.2 106 717 719 5275 2 3 0.0 204 1242 1252 8438 4
7 0 0.0 373 2246 2263 1575 7 2 0.0 94 455 470 2520 2

1 0.0 474 3286 3360 2610 8 3 0.0 147 891 903 6035 3
8 0 0.0 142 803 813 4580 3 2 2.4 314 2151 2196 1746 5

1 0.0 392 2401 2405 1586 8 3 3.0 283 1746 1786 1255 5
9 0 0.0 208 1240 1264 8369 4 2 0.0 438 2490 2512 1581 9

1 0.0 490 2800 2851 1789 10 3 3.0 283 1746 1786 1255 5
10 0 0.0 208 1240 1264 8369 4 2 0.0 552 3210 3280 2116 11

1 0.0 260 1550 1578 1039 5 3 3.0 283 1746 1786 1255 5
11 0 0.0 208 1240 1262 8467 4 2 0.0 552 3210 3280 2116 11

1 0.0 208 1240 1260 8410 4 3 0.0 510 3000 3063 2003 10
12 0 0.0 260 1550 1577 1053 5 2 0.0 490 2800 2820 1770 10

1 0.0 208 1240 1260 8410 4 3 0.0 344 1970 1983 1261 7
13 0 0.0 260 1550 1577 1053 5 2 0.0 490 2800 2820 1770 10

1 0.0 414 2621 2655 1971 7 3 3.0 171 1045 1058 7661 3
14 0 0.0 260 1550 1577 1053 5 2 2.4 490 2800 2820 1770 10

1 0.0 315 2196 2168 1831 5 3 0.0 331 2025 2047 1380 6
15 0 0.0 856 5925 5881 4389 15 2 0.0 490 2800 2820 1770 10

1 0.0 315 2196 2168 1831 5 3 0.0 331 2025 2047 1380 6
16 0 0.0 856 5925 5881 4389 15 2 0.0 490 2800 2820 1770 10

1 0.0 315 2196 2168 1831 5 3 0.0 331 2025 2047 1380 6

17 0 0.0 856 5925 5881 4389 15 4 3.7 42 310 321 2152 1
1 0.0 315 2196 2168 1831 5 5 0.0 42 310 322 2142 1
2 0.0 490 2800 2820 1770 10 6 0.0 84 620 624 4084 2
3 3.7 42 310 321 2152 1 7 0.0 42 310 320 2152 1

18 0 2.4 104 620 638 4274 2 4 0.0 42 310 321 2152 1
1 0.0 156 930 946 6278 3 5 10.2 42 310 322 2142 1
2 1.6 42 310 326 2172 1 6 2.4 42 310 321 2142 1
3 7.8 84 620 636 4264 2 7 1.2 96 630 635 3326 3

19 0 20.1 126 930 961 6386 3 4 12.1 126 930 948 6356 3
1 0.0 126 630 640 3286 3 5 0.0 44 220 212 224 2
2 0.0 42 310 326 2172 1 6 0.1 42 310 321 2142 1
3 0.0 126 930 941 6226 3 7 0.0 96 630 635 3326 3

20 0 13.1 126 930 966 6456 3 4 0.0 126 930 948 6356 3
1 4.0 96 630 627 3226 3 5 0.0 44 220 212 2240 2
2 32.6 126 930 946 6336 3 6 0.0 42 310 321 2142 1
3 0.0 84 620 641 4254 2 7 0.0 96 630 639 3266 3

21 0 2.6 126 930 966 6456 3 4 2.4 30 154 154 737 1
1 4.2 50 444 456 3662 1 5 1.8 169 1079 1058 7634 3
2 0.0 211 1118 1140 7352 4 6 8.6 177 981 977 6781 3
3 1.3 50 444 448 3590 1 7 9.4 50 444 428 3434 1

22 0 0.0 305 1793 1785 1306 5 4 0.0 97 499 504 2779 2
1 0.0 221 1508 1512 1126 4 5 5.8 169 1079 1058 7634 3
2 1.2 214 1345 1352 8926 4 6 0.0 245 1670 1663 1270 4
3 2.6 34 200 207 1106 1 7 8.6 30 154 154 737 1
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Table 6 (continued)

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
23 0 0.0 91 497 502 3092 2 4 0.0 97 499 504 2779 2

1 3.2 82 503 514 2495 3 5 13.2 103 704 710 4195 3
2 6.9 153 981 993 7316 3 6 4.5 32 26 32 32 3
3 4.1 190 1485 1491 1252 3 7 2.1 30 154 154 7370 1

24 0 1.6 150 726 736 4504 3 4 0.0 97 499 504 2779 2
1 2.9 82 442 449 2032 3 5 0.0 468 2790 2834 1881 9
2 3.2 153 981 993 7316 3 6 0.0 245 1670 1663 1270 4
3 7.8 190 1485 1491 1252 3 7 0.0 206 1537 1535 1339 3

25 0 0.0 208 1240 1270 8469 4 4 0.0 364 2170 2222 1470 7
1 14.4 82 442 449 2032 3 5 0.0 468 2790 2834 1881 9
2 1.2 153 981 993 7316 3 6 0.0 156 930 963 6396 3
3 2.6 156 930 947 6386 3 7 12.2 156 930 945 6306 3

26 0 0.0 104 620 629 4144 2 4 0.0 364 2170 2222 1470 7
1 2.5 82 442 449 2032 3 5 0.0 104 620 634 4205 2
2 11.6 153 981 993 7316 3 6 3.6 364 2170 2218 1472 7
3 0.0 364 2170 2195 1467 7 7 0.0 104 620 634 4254 2

27 0 0.0 208 1240 1261 8379 4 4 0.0 312 1860 1905 1272 6
1 0.0 208 1240 1259 8409 4 5 0.0 208 1240 1270 8438 4
2 0.0 104 620 629 4164 2 6 0.0 260 1550 1547 1032 5
3 0.0 416 2480 2524 1685 8 7 4.8 208 1240 1279 8478 4

28 0 0.0 146 830 836 5236 3 4 0.0 104 620 636 4234 2
1 0.0 208 1240 1268 8498 4 5 0.0 104 620 638 4275 2
2 0.0 312 1860 1908 1268 6 6 0.0 104 620 623 4164 2
3 0.0 146 830 842 5267 3 7 0.0 208 1240 1275 8428 4

29 0 0.0 465 2880 2868 1988 9 4 0.0 104 620 636 4234 2
1 0.0 550 3853 3887 3063 9 5 0.0 414 2621 2658 1971 7
2 0.0 312 1860 1908 1268 6 6 0.0 423 2414 2419 1550 9
3 0.0 146 830 842 5267 3 7 4.8 172 1130 1130 8648 3

30 0 0.0 216 1170 1147 7574 4 4 0.0 98 512 530 3232 2
1 0.0 550 3853 3887 3063 9 5 0.0 226 1448 1418 1061 4
2 0.0 401 2603 2600 1780 8 6 0.0 317 2561 2552 1982 6
3 0.0 146 830 842 5267 3 7 5.2 172 1130 1130 8648 3

31 0 0.0 320 1933 1897 1305 6 4 0.0 298 1854 1873 1333 5
1 0.0 317 2590 2567 2220 5 5 0.0 569 3629 3666 2604 10
2 0.0 401 2603 2600 1780 8 6 6.7 161 927 930 6080 3
3 2.8 133 641 645 3647 3 7 0.0 367 2877 2858 2379 6

32 0 0.0 148 736 751 4460 3 4 0.0 230 1495 1473 1072 4
1 7.8 317 2590 2567 2220 5 5 3.2 569 3629 3666 2604 10
2 0.0 401 2603 2600 1780 8 6 0.0 161 927 930 6080 3
3 8.4 169 1277 1275 9944 3 7 0.0 270 1540 1540 1038 5

for the rack problem, where ZL P is the value of the optimal solution to the linear relaxation and Z I P is the value of
the optimal integer solution.

∆ is quite small for most rack problems, indicating that our model is tight. Approximately 71% of the rack problems
have ∆ = 0.0 for H1–H3. On average (over the 192 rack problems), ∆ is 1.9%, 1.65%, and 1.58% for H1, H2, and H3,
respectively, so that H3 poses somewhat tighter rack problems than H2, and, in turn, H2 poses tighter rack problems
than H1. For example, instances 13–16 each involve a large number of CTPCs (sub-problems) but have low run times
because the ∆ is small (see Tables 5–7) for instances with 1 DHPM (i.e., level 1). However, a few rack problems
involve substantial gaps. Instances 24, 26, 28, and 30 each involve fewer CTPCs but have longer run times because
∆ is typically large for at least one rack problem associated with each instance that involves 2 DHPMs (i.e., level 2),
reflecting the fact that (P1) assigned more CTs to that rack. We conclude that the larger ∆ values result from adding
equalities (4) to the binary set-covering model (1), (2) and (4).

Instances 13–16 have appreciably more sub-problems with larger sub-problem networks because they represent
cases in which (P2) prescribes a large number of CTPCs. On the other hand, (P2) prescribes only one CTPC for a
number of rack problems that involve 2 DHPMs on which CTPCs can be dispersed so that each rack contains just a
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Table 7
Results for individual rack problems using heuristic H3

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
1 0 0.0 104 620 626 4194 2 2 0.0 104 620 629 4115 2

1 0.0 104 620 610 4115 2 3 0.0 104 620 634 4225 2
2 0 0.0 104 620 646 4284 2 2 0.0 104 620 625 4085 2

1 0.0 104 620 636 4214 2 3 0.0 104 620 632 4246 2
3 0 0.0 104 620 627 4185 2 2 0.0 104 620 615 4094 2

1 0.0 104 620 637 4215 2 3 0.0 104 620 635 4194 2
4 0 0.0 104 620 631 4224 2 2 0.0 104 620 627 4234 2

1 0.0 104 620 636 4195 2 3 0.0 104 620 623 4064 2
5 0 0.0 104 620 631 4224 2 2 0.0 288 2118 2106 1661 5

1 0.0 104 620 636 4195 2 3 0.0 309 2130 2126 1476 6
6 0 0.0 549 3585 3593 2606 10 2 0.0 394 2723 2704 2024 7

1 0.0 104 620 636 4195 2 3 0.0 299 2025 2020 1613 5
7 0 0.0 549 3585 3593 2606 10 2 2.3 237 1502 1509 1180 4

1 0.0 425 2858 2849 1992 8 3 0.0 237 1622 1614 1227 4
8 0 0.0 549 3585 3593 2606 10 2 4.3 237 1502 1509 1180 4

1 0.0 324 2322 2317 1724 6 3 0.0 237 1622 1614 1227 4
9 0 0.0 416 2480 2512 1668 8 2 0.0 208 1240 1264 8388 4

1 0.0 208 1240 1257 8379 4 3 0.0 208 1240 1265 8399 4
10 0 0.0 208 1240 1254 8260 4 2 0.0 208 1240 1253 8379 4

1 0.0 208 1240 1262 8430 4 3 0.0 208 1240 1270 8478 4
11 0 0.0 208 1240 1246 8319 4 2 0.0 208 1240 1255 8300 4

1 0.0 208 1240 1259 8329 4 3 0.0 208 1240 1257 8300 4
12 0 0.0 208 1240 1257 8312 4 2 0.0 208 1240 1269 8458 4

1 0.0 208 1240 1256 8468 4 3 0.0 208 1240 1260 8419 4
13 0 0.0 208 1240 1257 8312 4 2 0.0 701 4626 4621 3451 12

1 0.0 208 1240 1256 8468 4 3 0.0 208 1240 1260 8419 4
14 0 0.0 621 4561 4590 3315 12 2 0.0 692 4542 4588 3361 12

1 0.0 208 1240 1256 8468 4 3 0.0 832 5640 5629 4100 15
15 0 0.0 621 4561 4590 3315 12 2 0.0 338 2099 2127 1392 7

1 0.0 208 1240 1256 8468 4 3 0.0 746 5300 5342 4272 12
16 0 0.0 621 4561 4590 3315 12 2 0.0 338 2099 2127 1392 7

1 0.0 208 1240 1256 8468 4 3 0.0 538 3240 3267 2227 10

17 0 0.0 42 310 313 2072 1 4 0.0 42 310 324 2152 1
1 0.0 42 310 309 2032 1 5 0.0 42 310 308 2072 1
2 0.0 42 310 304 1992 1 6 0.0 42 310 318 2092 1
3 0.0 42 310 300 2062 1 7 0.0 42 310 313 2042 1

18 0 0.0 42 310 323 2152 1 4 0.0 42 310 303 1952 1
1 0.0 42 310 323 2132 1 5 0.0 42 310 324 2152 1
2 0.0 42 310 305 1992 1 6 0.0 42 310 315 2072 1
3 0.0 42 310 318 2142 1 7 0.0 42 310 309 2042 1

19 0 0.0 42 310 314 2082 1 4 0.0 42 310 317 2142 1
1 0.0 42 310 315 2122 1 5 0.0 42 310 299 1982 1
2 0.0 42 310 324 2172 1 6 0.0 42 310 318 2102 1
3 0.0 42 310 316 2102 1 7 0.0 42 310 314 2062 1

20 0 0.0 42 310 318 2122 1 4 0.0 42 310 320 2142 1
1 0.0 42 310 315 2122 1 5 0.0 42 310 308 2092 1
2 0.0 42 310 324 2172 1 6 0.0 42 310 311 2012 1
3 0.0 42 310 314 2052 1 7 0.0 42 310 316 2062 1

21 0 3.2 79 559 573 3937 1 4 0.0 41 294 293 1876 1
1 0.0 45 369 368 2659 1 5 0.0 54 520 517 4578 1
2 1.6 89 673 681 5054 1 6 0.0 28 137 141 6040 1
3 4.2 50 397 394 2814 1 7 0.0 46 379 378 2737 1

22 0 0.0 42 346 350 2342 1 4 0.0 50 460 463 3780 1
1 0.0 42 346 350 2342 1 5 0.0 39 256 260 1570 1
2 2.1 89 673 681 5054 1 6 11.2 86 628 626 4622 1
3 6.5 99 927 929 7426 1 7 0.0 51 481 481 3995 1
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Table 7 (continued)

# R ∆ #NS #AS #NE #AE #S R ∆ #NS #AS #NE #AE #S
23 0 0.0 39 186 187 8680 1 4 3.1 84 608 612 4382 1

1 0.0 37 252 258 1503 1 5 0.0 47 351 359 2543 1
2 4.3 38 260 262 1572 1 6 0.0 47 402 406 3007 1
3 0.0 48 357 353 2380 1 7 0.0 44 285 287 1701 1

24 0 0.0 39 214 216 1329 1 4 0.0 33 198 204 8720 1
1 0.0 37 252 258 1503 1 5 0.0 50 425 430 3412 1
2 2.2 38 260 262 1572 1 6 0.0 45 354 355 2345 1
3 0.0 48 357 353 2380 1 7 0.0 44 285 287 1701 1

25 0 0.0 84 620 632 4254 2 4 0.0 364 2170 2222 1470 7
1 1.2 84 620 634 4144 1 5 5.2 84 620 630 4164 1
2 6.5 84 620 628 4214 1 6 3.1 84 620 640 4254 1
3 5.6 84 620 632 4234 1 7 6.7 84 620 636 4274 1

26 0 0.0 84 620 618 4054 1 4 1.1 364 2170 2222 1470 7
1 0.0 84 620 630 4214 1 5 12.2 84 620 626 4204 1
2 0.0 84 620 636 4254 1 6 16.7 84 620 640 4284 1
3 11.3 84 620 636 4264 1 7 0.0 104 620 634 4254 2

27 0 0.0 84 620 629 4184 1 4 3.2 84 620 625 4164 1
1 2.3 84 620 620 4154 1 5 3.1 84 620 635 4194 1
2 2.1 126 930 948 6246 1 6 2.1 84 620 629 4124 1
3 0.0 84 620 635 4264 1 7 17.2 126 930 953 6346 1

28 0 3.3 84 620 639 4234 1 4 3.1 84 620 632 4214 1
1 0.0 84 620 628 4194 1 5 6.5 126 930 953 6396 1
2 2.5 84 620 621 4214 1 6 2.4 126 930 944 6276 1
3 0.0 126 930 953 6356 1 7 4.3 84 620 636 4244 1

29 0 0.0 465 2880 2868 1988 9 4 8.2 176 1382 1389 9404 1
1 13.2 100 934 924 7376 1 5 3.2 85 654 648 4390 1
2 12.2 72 488 499 2876 1 6 6.3 123 882 891 5827 1
3 9.1 181 1416 1407 1058 1 7 4.1 91 764 770 5632 1

30 0 1.1 80 611 618 3929 1 4 0.0 98 512 530 3232 2
1 2.6 77 561 564 3466 1 5 0.0 79 606 607 3764 1
2 2.8 75 498 502 3028 1 6 8.1 94 835 824 6349 1
3 12.1 88 707 712 4901 1 7 5.1 78 575 592 3760 1

31 0 5.2 126 882 884 6250 1 4 0.0 77 500 504 2958 1
1 4.6 75 522 523 3145 1 5 0.0 71 489 496 2788 1
2 6.5 143 1356 1360 1063 1 6 3.1 161 927 930 6080 3
3 11.2 85 623 632 4246 1 7 2.2 94 746 758 5487 1

32 0 6.1 78 531 534 3227 1 4 0.0 76 549 553 3263 1
1 0.0 75 574 575 3318 1 5 0.0 78 492 496 3117 1
2 7.6 84 649 663 4550 1 6 2.1 161 927 930 6080 3
3 5.6 127 923 917 6425 1 4 0.0 76 549 553 3263 1

few CTs. In particular, (P1) assigns a single CT to each of a number of racks, so each such rack problem requires just
one sub-problem.

4.3.4. Statistical analysis
We use Microsoft Excel 2003 to conduct a correlation analysis relative to H1–H3 (individually) with the goal

of identifying which factors and two-way interactions of these factors are most related to response (i.e., run time).
Because our data would give only 4 replications for three-way interactions (and even fewer for more interactions),
we analyze only individual factors (F2, . . . , F5) and their two-way interactions for which our data give 16 and 8
replications, respectively. Table 8 presents correlation coefficients associated with each of these factors and two-way
interaction terms.

For H1, F3 (number of CTs) has the largest correlation (in absolute value) with run time; and the F3F4 (numbers
of CTs and components in each CT) interaction, the second largest (in absolute value). This result is consistent with
the logic of H1 and the observations we report above. Both correlation coefficients are negative, indicating that run
time decreases as the numbers of CTs and components increase. Although this may appear to counter intuition, it is
explained by the fact that the logic of H1 distributes CTs unevenly among racks for instances that involve fewer CTs,
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Table 8
Coefficients of correlation between run times and terms

Terms

F2 F3 F4 F5 F6 F2F3 F2F4 F2F5 F2F6 F3F4 F3F5 F3F6 F4F5 F4F6 F5F6

H1 r −0.06 −0.28 −0.14 0.17 −0.06 −0.17 −0.11 0.10 0.02 −0.28 −0.04 −0.17 0.09 −0.11 0.08
Rank 13 1 6 5 12 4 8 9 15 2 14 3 10 7 11

H2 r 0.52 −0.07 0.14 0.17 −0.03 0.29 0.24 0.53 0.29 0.09 −0.03 −0.07 0.20 0.08 0.06
Rank 2 12 8 7 14 4 5 1 3 9 15 11 6 10 13

H3 r 0.40 0.42 0.15 −0.17 −0.18 0.66 0.41 −0.09 0.11 0.42 −0.08 0.12 −0.14 −0.02 −0.18
Rank 5 3 9 8 6 1 4 13 12 2 14 11 10 15 7

r: correlation coefficient.

typically causing one rack problem to require a substantially longer run time that dominates the run times required by
less heavily loaded racks. On average, the total run time (i.e., for all rack problems) for such an instance exceeds the
total run time required by an instance for which CTs are distributed evenly among racks, even if the instance involves
more CTs.

For H2, the F2F5 (number of DHPMs and theta distribution) interaction term has the largest correlation with run
time; and F2 (number of DHPMs), the second largest. This result is consistent with the logic of H2, which forms super
groups based on the theta distribution. The correlation coefficients are positive, indicating that run time increases with
the number of DHPMs. One would expect this result (assuming that CTs are distributed evenly among racks) because
each additional rack requires run time.

For H3, the F2F3 (numbers of DHPMs and CTs) interaction term has the largest correlation with run time. Because
the logic of H3 distributes components evenly among all racks, it follows that the numbers of DHPMs and CTs would
be most influential in determining the run time. Factors F2 (numbers of DHPMs), F3 (number of CTs), and two-way
interactions F3F4 (number of CTs and components of each CT) and F2F4 (numbers of DHPMs and components of
each CT) have similar, relatively large coefficients of correlation. As expected, these correlation coefficients are all
positive, indicating that run time increases with each of these factors and two-way interactions.

5. Conclusions and recommendations for future research

This paper achieves its purpose, presenting a novel model for prescribing the placement operations of a DHPM. It
makes research contributions by achieving its objectives. In particular, our model is able to address the broad range of
relevant practical considerations. Objective (2) has led to an optimizing method that can solve problems of practical
size and scope in run times that will facilitate implementation by process planners to promote the efficiencies of their
assembly systems. Our computational tests fulfill their purposes by providing considerable insight into the influence
that relevant factors have on run time, the robustness of our approach when different logics are used to assign CTs to
feeder slots, the influence that the tightness of our model has on run time, and the solvability of our model. Because
no prior study has addressed the DHPM, no alternative methods exist to compare with ours. Future studies can use
our benchmark results to evaluate alternative methods vis-à-vis ours.

This paper focuses exclusively on placement operations and can be used in a standalone mode to optimize just
placement operations in applications with such a need. A fertile opportunity for future research is to integrate our
solution method with others that optimize (P1), prescribing the assignment of each CT to a DHPM, to a head on that
machine, and to a feeder slot on a rack associated with that head; as well as (P2), prescribing picking steps; and (P4)
prescribing the sequence of pick/place steps for each head, which determines the time required for nozzle changes.
This expanded capability would address the ultimate goal of this research, balancing workloads assigned to heads.

It may be interesting to eliminate (A2) to study DHPMs that are capable of picking with one spindle sequence, then
placing with a different one. We conjecture, however, that this change would not offer great potential for improving
productivity because identifying good combinations of components to place on each round is not difficult (i.e., (P3)
run times are low). We expect that the potential would increase as the number of components per CT reduces, placing a
premium on identifying the best combinations of components on each placing step. Using different sequences to pick
and place would require the DHPM controller to be redesigned. All possible placement sequences could be evaluated
by defining, in association with each CTPC, up to 4! = 24 networks as described in Section 3, one for each sequence in
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which spindles can place components. The column generation approach would then prescribe the optimal placement
sequence as well. Gang picks are special cases in that a CTPC comprising two gang picks, each of 2 components,
would require 4 networks to represent all possible spindle-placement sequences and an augmented gang pick of 3 (2)
components would require 3! = 6 (2! = 2) networks to prescribe placement sequence. These additional networks
would add to the solution time required by each iteration, but each associated sub-problem can be solved quickly
so that this approach appears to be practical. In fact, Wilhelm et al. [38] utilize 4! networks to represent all of the
sequences in which spindles can pick. Our successful results recommend that column generation be investigated to
prescribe process plans for other types of placement machines as well. Our research continues along these lines.
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