significant improvements in glycemic control (HbA1c 0.59%) and body weight (BMI 0.52 kg/m²). The aim of this analysis was to estimate the long-term clinical and cost implications associated with therapy conversion from insulin glargine to detemir in type 2 diabetes patients in Germany. METHODS: A previously published and validated diabetes model (CORE Diabetes Model) was used to make long-term projections of clinical and cost outcomes based on patient characteristics (age 62.3 years, duration of diabetes 7 years, HbA1c 8.30%, 50.4% male) and treatment effects from the German part of PREDICTIVE. The model was used to estimate life-expectancy, quality-adjusted life expectancy and to account direct medical costs (pharmacy, patient management and complication costs). Costs were derived from published sources and expressed in 2006 Euros. Future costs and clinical benefits were discounted at 5% annually. RESULTS: Therapy conversion from insulin glargine to insulin detemir was projected to improve life expectancy by approximately 0.13 years (7.08 ± 0.13 versus 6.95 ± 0.12 years) and quality-adjusted life expectancy by 0.29 quality-adjusted life years (QALYs) (4.53 ± 0.09 versus 4.24 ± 0.08 QALYs). Direct costs associated with insulin detemir treatment were projected to be lower over patient lifetimes than with glargine (£54,807 ± 1,788 versus £55,839 ± 1,749 per patient, difference £1,032). Cost savings were driven by lower complication costs (due to HbA1c improvements) associated with insulin detemir. CONCLUSION: Modeling the long-term implications of therapy conversion from insulin glargine to detemir based on data from German patients in PREDICTIVE indicates that insulin detemir is associated with benefits in terms of life expectancy, quality-adjusted life expectancy and complication rates, as well as reducing costs from a third-party health care payer perspective in Germany.

PDB34
LONG-TERM COST-EFFECTIVENESS ANALYSIS OF A MODERN INSULIN IN PATIENTS WITH POORLY CONTROLLED TYPE 2 DIABETES IN THE GERMAN SETTING; DATA FROM THE PREDICTIVE STUDY
Palmer IL1, Goodall G1, Agren M2, Nielsen S2, Kotchie R3, Valentine WJ4
1IMS Health, Basel, Switzerland, 2Novo Nordisk A/S, Virum, Denmark, 3IMS Health, London, UK
OBJECTIVES: The aim of this analysis was to project the long-term clinical and economic outcomes associated with therapy conversion to insulin detemir from Neutral Protamine Hagedorn (NPH) insulin in patients with type 2 diabetes in the German setting. METHODS: A previously published and validated computer simulation model of diabetes was used to make long-term projections of clinical and cost outcomes based on patient characteristics and treatment effects from a sub-analysis of the PREDICTIVE study. Data from PREDICTIVE indicated that therapy conversion from NPH insulin to insulin detemir was associated with significant improvements in glycemic control (HbA1c ~0.6%) and reduced weight gain (body mass index ~0.382 kg/m²). Based on these clinical findings, the computer simulation model was used to estimate life-expectancy, quality-adjusted life expectancy and costs from a third party healthcare payer perspective. Future costs and clinical benefits were discounted at 5% per annum. RESULTS: Conversion to insulin detemir was projected to improve life expectancy by approximately 0.13 years compared to NPH (7.08 ± 0.13 versus 6.95 ± 0.12 years) and quality-adjusted life expectancy by 0.28 quality-adjusted life years (QALYs) (4.51 ± 0.09 versus 4.23 ± 0.08 QALYs). Direct medical costs over patient lifetimes were projected to be marginally lower in patients receiving insulin detemir compared to NPH (£54,575 ± 1,842 versus £54,640 ± 1,739, difference £65 per patient). Pharmacy costs were higher with insulin detemir (£14,129 versus £12,230, difference £1,899) but were more than offset by cost savings due to complications avoided (complication costs £38,246 versus £40,242, difference £1,996). CONCLUSIONS: This modeling study, based on a German sub-analysis of PREDICTIVE, suggests that therapy conversion from NPH to insulin detemir is likely to be associated with long-term clinical benefits and may well be cost saving in type 2 diabetes patients in the German setting.

PDB33
COST EFFECTIVENESS OF JANUVIA VERSUS AVANDIA AS SUPPLEMENTARY TREATMENT IN COMBINATION WITH METFORMIN FOR PATIENTS WITH TYPE 2 DIABETES
Verheggen BG1, Van der Steen A1, Heeg BMS1, Vos CB2, Van Hout BA1
1Pharmerit BV, Rotterdam, The Netherlands, 2Merck Sharp & Dohme BV, Haarlem, The Netherlands
OBJECTIVES: To assess the costs and effects of Januvia versus Avandia as supplementary treatment in combination with metformin, for patients with type 2 diabetes in whom metformin (in addition to diet and exercise) does not provide adequate glycemic control. METHODS: The Disease Elimination Life Table Analysis (DELTAs) cohort model was used to assess the costs and effects of Januvia (100 mg) in comparison to Avandia (8 mg). The model contains five sub models representing diabetes related complications. Estimates of disease progression, incidence in the sub models, disease related mortality, and all cause mortality, were derived from the UK Prospective Diabetes Study. Estimates regarding drug efficacy and adverse events were based on an 18-week head-to-head comparison of Januvia 100 mg versus Avandia 8 mg supplementary to metformin. The analysis was conducted from a societal perspective. Direct and indirect costs were included. Effects were reported as (disease-free) life years and quality-adjusted life years (QALY). To determine the robustness of the model and the impact of uncertainty, uni- and multivariate sensitivity analyses were carried out. RESULTS: Januvia is estimated to be the dominant treatment when compared to Avandia 8 mg. The univariate sensitivity analyses revealed this conclusion to be robust over a wide range of values. Results from the multivariate sensitivity analysis estimate the probability that Januvia combines additional effectiveness with cost savings at 59%, the probability that Januvia gains QALYs at additional costs at 13%. The probability that Januvia is less effective is estimated at 28% (15% with cost savings and in 13% with additional costs). CONCLUSION: Conditional on the correctness of the estimates and assumptions made, Januvia 100 mg is dominant over 8 mg Avandia. Sensitivity analyses suggest results are robust to reasonable changes in input parameters.

PDB35
ECONOMIC ANALYSIS OF THE TREATMENT WITH INSULIN GLARGINE PLUS ORAL ANTIDIABETICS (BOT) COMPARED TO TWICE DAILY PREMIXED INSULIN (CT) BASED ON THE LAPTOP TRIAL
Janka HU1, Hessel F2, Walzer S3, Mueller E4
1Zentralkrankenhaus Nordren, Bremen, Germany, 2Sanofi-Aventis, Berlin, Germany, 3Analytica International, Loerrach, Germany
OBJECTIVES: Based on the clinical results of the LAPTOP trial, a cost analysis from the perspective of the German Statutory Health Insurance (SHI) was performed. In addition a model simulation of the long term complications was conducted using
MEALTIME INSULIN ASPART REDUCES THE LONG-TERM COST OF COMPLICATIONS COMPARED TO HUMAN INSULIN AS PART OF BASAL-BOLUS THERAPY IN POLISH TYPE 2 DIABETES PATIENTS

Goodall G1, Nielsen S2, Townsend C3, Kotchie R1, Erny-Albrecht K1, Valentine WJ1

1IMS Health, Basel, Switzerland. 2Novo Nordisk A/S, Vrum, Denmark. 3IMS Health, London, UK

OBJECTIVES: Modern insulin analogues such as insulin aspart (IASp, NovoRapid) offer benefits in terms of glycemic control, improved hypoglycemic profile and faster onset of action compared to human insulin (HI). A modeling analysis was performed to estimate the long-term economic savings due to reduced complications in Polish type 2 diabetes patients switching to mealtime IAsp from HI basal-bolus therapy, based on results of the European PREDICTIVE study. **METHODS:** Treatment effects (changes in HbA1c, hypoglycemic event rate and body weight) were derived from PREDICTIVE. Baseline cohort characteristics were taken from published data representative of Polish type 2 diabetes patients and supplemented with trial data. A published and validated diabetes model was used to project long-term outcomes and account costs for patients receiving either mealtime IAsp or HI as part of a basal-bolus therapy, with or without oral antidiabetic agents. Costs were derived from published sources and accounted from a health care payer perspective in 2006 Polish Zloty (PLN). Future economic and clinical outcomes were discounted at 5% annually. **RESULTS:** Projections indicated that IAsp was associated with improvements in life expectancy of 0.03 years compared to HI (5.12 ± 0.12 versus 5.09 ± 0.12 years). Improved glycemic control with IAsp led to reduced incidence of renal complications, resulting in a mean cost saving of approximately PLN 360 per patient (PLN 2910 versus 3270). Mean cardiovascular complication costs were comparable with both treatments (PLN 5679 versus 5769 per patient) due mainly to a high baseline prevalence in the cohort. Small cost savings were observed in terms of eye, diabetic foot and other complications over patient lifetimes. **CONCLUSION:** Improvements in HbA1c and body weight associated with IAsp (compared to HI) in PREDICTIVE were projected to lead to long-term cost savings of approximately PLN 480 per patient (PLN 13,423 versus 13,903) due to complications avoided in Polish type 2 diabetes patients.