A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs

Ruying Liu, Haixing Zhao, Chengfu Ye

Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, PR China

Received 22 November 2002; received in revised form 23 June 2004; accepted 29 July 2004

Available online 11 November 2004

Abstract

Let \(P(G, \lambda) \) be the chromatic polynomial of a graph \(G \). A graph \(G \) is chromatically unique if for any graph \(H, P(H, \lambda) = P(G, \lambda) \) implies \(H \cong G \). Koh, Teo and Chia conjectured that for any integers \(n \) and \(k \) with \(n \geq k + 2 \geq 4 \), the complete tripartite graph \(K(n - k, n, n) \) is chromatically unique. Let \(K(n, m, r) - S \) denote the graph obtained by deleting all edges in \(S \) from the complete tripartite \(K(n, m, r) \). In this paper, we establish that for any positive integer \(n \geq m \geq r \geq 2 \), the chromatic equivalence class of \(K(n, m, r) \) is contained in the family \(\{ K(x, y, z) - S | 1 \leq x \leq y \leq z, m \leq z \leq n, x + y + z = n + m + r, S \subseteq E(K(x, y, z)) \textrm{ and } |S| = xy + xz + yz - nm - nr - mr \} \). By applying these results, we confirm this conjecture and show that \(K(n - k, n - 1, n) \) is chromatically unique if \(n \geq 2k \) and \(k \geq 2 \).

© 2004 Elsevier B.V. All rights reserved.

MSC: 05C15; 05C60

Keywords: Complete tripartite graph; Chromatic polynomial; Chromatic uniqueness

1. Introduction

All graphs considered here are finite and simple. For notations and terminology not explained here, we refer to [1].

For a graph \(G \), let \(V(G), E(G), p(G) \) and \(q(G) \) be the vertex-set, edge-set, the number of vertices and the number of edges of \(G \), respectively. By \(\overline{G} \) we denote the complement

E-mail address: haixingzhao@yahoo.com.cn (H. Zhao).

0012-365X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.07.014
of G. Then we let $O_n = \overline{K}_n$, where K_n denotes the complete graph with n vertices. By $K(n_1, n_2, n_3)$ we denote the complete tripartite graph with three parts of n_1, n_2 and n_3 vertices. Let S be a set of s edges of G. We denote by $G - S$ the graph obtained by deleting all edges in S from G. Let $N_3(G)$ denote the number of triangles in G.

For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. A partition $\{A_1, A_2, \ldots, A_r\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of a graph G if every A_i is a nonempty independent in G. Let $z(G, r)$ denote the number of r-independent partitions of G. Then we have $P(G, \lambda) = \sum_{r \geq 1} z(G, r)(\lambda)^r$, where $(\lambda)^r = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - r + 1)$ (see [7]).

Two graphs G and H are chromatically equivalent, simply denoted by $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. Let $[G] = \{H | H \sim G\}$. A graph G is chromatically unique (or simply χ-unique) if $[G] = \{G\}$.

Let G be a graph with p vertices. Then the polynomial $\sigma(G, x) = \sum_{r=1}^{p} z(G, r)x^r$ is called the σ-polynomial of G, see [2]. Clearly, $P(G, \lambda) = P(H, x)$ if and only if $\sigma(G, x) = \sigma(H, x)$.

For disjoint graphs G and H, $G \cup H$ denotes the disjoint union of G and H; $G + H$ denotes the graph whose vertex-set is $V(G) \cup V(H)$ and whose edge-set is $\{xy | x \in V(G) \text{ and } y \in V(H)\} \cup E(G) \cup E(H)$.

Lemma 1 (Brenti [2]). Let G and H be two disjoint graphs. Then

$$\sigma(G + H, x) = \sigma(G, x)\sigma(H, x).$$

In particular,

$$\sigma(K(n_1, n_2, n_3, \ldots, n_t), x) = \prod_{i=1}^{t} \sigma(O_{n_i}, x).$$

It has been shown [3–6] that the following complete tripartite graphs are χ-unique graphs: $K(p_1, p_2, p_3)$ for $|p_i - p_j| \leq 1$ and $p_i \geq 2$, $i = 1, 2, 3$; $K(n, n, n+k)$ for $n \geq 2$ and $0 \leq k \leq 3$; $K(n-k, n, n)$ for $n \geq k + 2$ and $0 \leq k \leq 3$; $K(n-k, n, n+k)$ for $n \geq 5$ and $0 \leq k \leq 2$. Recently, Zou et al. in [8,9] gave the following χ-unique graphs: $K(n-k, n, n)$ for $n > k + k^2/3$; $K(n, n, n+k)$ for $n > (k+k^2)/3$; $K(n-k, n, n+k)$ for $n > k^2 + 2\sqrt{3}/3k$; $K(n-4, n, n)$ for $n \geq 6$. Chia et al., and Koh and Teo in [4,5] proposed the following conjecture:

Conjecture. For any integers n and k with $n \geq k + 2 \geq 4$, $K(n-k, n, n)$ is χ-unique.

In this paper, we investigate the chromaticity of $K(r, m, n)$ for $n \geq m \geq r \geq 2$. At first we obtain that $[K(r, m, n)] \subseteq \{K(x, y, z) - S | 1 \leq x \leq y \leq z, m \leq z \leq n, x+y+z=n+m+r, S \subseteq E(K(x, y, z)) \text{ and } |S| = xy + xz + yz - nm - nr - mr \}$ for $n \geq m \geq r \geq 2$. Then we give a positive answer to the above conjecture and show that $K(n-k, n-1, n)$ is χ-unique for $n \geq 2k$ and $k \geq 2$.

For convenience, in this paper we denote simply $\sigma(G,x)$ by $\sigma(G)$ and $G \cong H$ by $G=H$.

2. Some lemmas

Lemma 2 (Zou [8]). Let $G = K(n_1, n_2, n_3)$. Then

(i) $\alpha(G, 3) = 1$ and $\alpha(G, 4) = \sum_{i=1}^{3} 2^{ni-1} - 3$.

(ii) If $H \subseteq [G]$, there is a complete tripartite graph $F = K(m_1, m_2, m_3)$ such that $H = F - S$ and

$m_1 + m_2 + m_3 = n_1 + n_2 + n_3$, where S is a set of s edges of F and $s = q(F) - q(G)$.

Lemma 3 (Zou [8]). Let $G = K(n_1, n_2, n_3)$ with $n_3 \geq n_2 \geq n_1 \geq 2$ and let $H = G - S$ for a set S of s edges of G. If $n_1 \geq s + 1$, then $s \leq \alpha(H, 4) - \alpha(G, 4) \leq 2^s - 1$.

Lemma 4 (Koh and Teo [5]). Let G and H be two graphs with $G \sim H$. Then $|V(G)| = |V(H)|, |E(G)| = |E(H)|, N_3(G) = N_3(H)$ and $\alpha(G, r) = \alpha(H, r)$ for $r = 1, 2, 3, \ldots, p(G)$.

Lemma 5 (Koh and Teo [5]). Let $n \geq m \geq 2$. Then $K(n,m)$ is χ-unique.

3. Main results

Theorem 1. For any integers $n \geq m \geq r \geq 2$, we have $[K(r,m,n)] \subseteq \{K(x, y, z) - S | 1 \leq x \leq y \leq z, m \leq z \leq n, x + y + z = n + m + r, S \subseteq E(K(x, y, z)) \text{ and } |S| = xz + yz + xz - nm - nr - mr \}$. In particular, if $z = n$, $K(r, m, n) = K(x, y, z)$.

Proof. Let $G = K(r, m, n)$ and $H \in [G]$. From Lemmas 2(ii) and 4, we know that there exists a graph $F = K(x, y, z)$ and $S \subseteq E(F)$ such that $H = F - S$ and $|S| = s$. We may assume that $1 \leq x \leq y \leq z$. Clearly, $s = q(F) - q(G) = xyz - nmr - nm - nr - mr$ and $x + y + z = n + m + r$.

By Lemma 4, $N_3(G) = N_3(H)$. Hence, we shall consider the number of triangles in G and H. Without loss of generality, let $S = \{e_1, e_2, \ldots, e_z\} \subseteq E(F)$. Denote by $N_3(e_i)$ the number of triangles containing the edge e_i in F. It is not hard to see that $N_3(e_i) \leq z$. Then

\[N_3(H) \geq N_3(F) - sz, \tag{1} \]

and the equality holds only if $N_3(e_i) = z$ for all $e_i \in S$.

Let $\beta = N_3(F) - N_3(G)$. It is obvious that $N_3(F) = xyz, N_3(G) = nmr$ and $\beta = xyz - nmr$. So, we have

\[N_3(G) = N_3(F) - \beta. \tag{2} \]

Since $N_3(G) = N_3(H)$, from (1) and (2) it follows that

\[\beta \leq sz. \tag{3} \]
Let $f(z) = \beta - sz$. Recalling that $x + y = n + m + r - z$, $\beta = xyz - nmr$ and $s = xy + xz + yz - nm - nr - mr$, we have

$$f(z) = xyz - nmr - [xy + (x + y)z - nm - nr - mr]z$$

$$= (z - n)(z - m)(z - r).$$

(4)

From the fact that $x + y + z = n + m + r$ and $x \leq y \leq z$, we have $z \geq (n + m + r)/3 \geq r$. Note that if $z = r$, then $n = m = r$. From (4), it is not hard to see that inequality (3) holds if and only if $m \leq z \leq n$. This implies $|G| \leq \{K(x, y, z) - S|1 \leq x \leq y \leq z, m \leq z \leq n, |S| = xy + xz + yz - nm - nr - mr, x + y + z = n + m + r\}.$

From now on we assume that $z = n$ and distinguish the following cases:

Case 1: $m < y \leq n$. Clearly $x + y = m + r$ and $x < r$. Hence $s = xy + xn + yn - nm - nr - mr = xy - mr$. One can show that $s < 0$ for $x < r$ and $y > m$. This contradicts $s \geq 0$.

Case 2: $y = m$. Then $x = r$ and $F = K(r, m, n)$. So $s = 0$ and $H = G$.

Case 3: $x \leq y < m$. Let X_1, X_2, X_3 be the unique 3-independent partition of $K(x, y, n)$ such that $|X_1| = x, |X_2| = y$ and $|X_3| = n$. By $f(z) = f(n) = 0$, we have that $\beta = sn$. From (1) and (2), we have $N_3(G) = N_3(H) = N_3(F) - sn$ and $N_3(e_i) = n$ for all $e_i \in S$. Thus for every edge e_i in S, an end-vertex of e_i belongs to X_1, whereas the other end-vertex belongs to X_2. Hence \tilde{H} contains K_n as its component. Set $\tilde{H} = \tilde{H}_1 \cup K_n$. Then $H = H_1 + O_n$. From Lemma 1 and $\sigma(H) = \sigma(K(r, m, n))$, we have

$$\sigma(H_1)\sigma(O_n) = \sigma(O_r + O_m)\sigma(O_n).$$

So

$$\sigma(H_1) = \sigma(O_r + O_m),$$

which implies that $P(H_1, \chi) = P(K_{r,m}, \chi)$. Hence, from Lemma 5 and the condition of the theorem, we have $H_1 = K_{r,m}$. So $y = m$, which contradicts $y < m$. This completes the proof.

From Theorem 1, we know that $z = n$ if $n = m$. Therefore, a positive answer to the conjecture is described in the following theorem.

Theorem 2. For any integers n and k with $n \geq k + 2 \geq 4$, $K(n - k, n, n)$ is χ-unique.

Further we can give another set of χ-unique complete tripartite graphs.

Theorem 3. For any integers n and k with $n \geq 2k \geq 4$, $K(n - k, n - 1, n)$ is χ-unique.

Proof. Let $G = K(n - k, n - 1, n)$ and let $H \in [G]$. Then by Theorem 1, $H \in \{K(x, y, z) - S|1 \leq x \leq y \leq z, n - 1 \leq z \leq n, |S| = xy + xz + yz - 3n^2 + 2nk + 2n - k, x + y + z = 3n - k - 1\}.$

Further $H = G$ if $z = n$. For $z = n - 1$, we distinguish the following cases.

Case 1: $y = z = n - 1$. Then $H = K(n - k + 1, n - 1, n - 1) - S$. Let $F = K(n - k + 1, n - 1, n - 1)$ and $|S| = s$. Obviously, $s = q(F) - q(G) = k - 1$. Let $\theta(H) = \chi(H, 4) - \chi(F, 4)$.
From Lemmas 2 and 3,
\[\chi(G, 4) = 2^{n-k-1} + 2^{n-2} + 2^{n-1} - 3, \]
\[\chi(H, 4) = 2^{n-k} + 2^{n-1} - 3 + \theta(H). \]

By Lemma 3 and the condition of the theorem, one can see that
\[s \leq \theta(H) \leq 2^{z} - 1. \]
Since \(k \geq 2 \), from (5) and (6) it follows that
\[\chi(G, 4) - \chi(H, 4) \geq 2^{n-3} - \theta(H). \]

Remembering the condition of the theorem and \(s = k - 1 \), we have immediately that
\[\chi(G, 4) - \chi(H, 4) \geq 2^{k-1} - 2^{k-1} + 1 \geq 1. \]
This contradicts that \(\chi(G, 4) = \chi(H, 4) \).

Case 2: \(z = n - 1 \) and \(x \leq y \leq n - 2 \). By completely analogous arguments with Case 3 in the proof of Theorem 1, we can obtain that \(H = H_{1} + O_{n-1} \) and \(P(H_{1}, \chi) = P(K_{r,n}, \chi) \). Hence we have \(y = n \), which contradicts \(y \leq n - 2 \). \(\square \)

Acknowledgements

The authors are grateful to the referees and Prof. Heping Zhang who carefully read this paper and gave valuable suggestions; in particular, one referee pointed out a mistake of the previous version. This work is supported by National Science Foundation of China and the Science Foundation of Education Ministry, China.

References