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Abstract

Wegner conjectured that the chromatic number of the square of any planavéaghmaximum
degreeA > 8 is bounded by(Gz) < L% A] + 1. We prove the boung(Gz) < f% Al + 78. This is
asymptotically an improvement on the previously best-known bound. For large valdes@five
the bound ofx(Gz)g [% Al + 25. We generalize this result #(p, g)-labeling of planar graphs,
by showing thatig(G) gqrg A1+ 18p + 77¢ — 18. For each of the results, the proof provides a
guadratic time algorithm.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Chromatic number; Square of a graph; Planar graphs; Distance-2-coloring; Frequency channel
assignment; Wegner’s conjecture

1. Introduction

In this paper bygraphwe mean a simple graph. The vertex set and edge set of a graph
G are denoted by (G) andE(G), respectively. The length of a path between two vertices
is the number of edges on that path. We define the distance between two vertices to be the
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length of the shortest path between them. The square of a @aghnoted byG?2, is a
graph on the same vertex set such that two vertices are adjacgftfirtheir distance inG
is at most 2. The degree of a verteis the number of edges incident withand is denoted
by dg (v) or simplyd(v) if it is not confusing. We denote the maximum degree of a graph
G by A(G) or simplyA. If the degree ob isi, at least, or at mosi we call it ani-vertex, a
>i-vertex, or a<i-vertex, respectively. BW¢ (v), we mean the open neighborhoodvof
in G, which contains all those vertices that are adjacentitoG. The closed neighborhood
of v, which is denoted by [v], is Ng (v) U {v}. We usually us&V (v) andN[v] instead of
Ng(v) andNg[v], respectively.

A vertex k-coloring of a graphG is a mappingC : V. — {1,...,k} such that any
two adjacent vertices andv are mapped to different integers. The minimkrfior which
a coloring exists is called the chromatic numbeiGoaind is denoted by (G). The well
known result of Appel and Hakd@] states that:

Theorem 1.1(The Four Color Theorein For every planar graph Gy (G) <4.

The question of finding the best-possible upper bound for the chromatic number of the
square of a planar graph seems to first have been asked by WedheHe posed the
following conjecture:

Conjecture 1.2. For a planar graph G

2 A+5 if 4<AL7,
KOS { 3A]+1 if A>8.

Wegner gave examples illustrating that these bounds are best possible. He also showed
that if A = 3thenG? can be 8-colored and conjectured that 7 colors would be enough. Very
recently, Thomass€i 8] has solved this conjecture fdr= 3, by showing that the square
of every cubic planar graph is 7-colorable, but the conjecture for general planar graphs
remains open.

Wegner's conjecture is mentioned in [14, Section 2.18], followed by a brief history of it.
One might think that since every planar graph has%vertex then this trivially implies a
greedy algorithm fot5A + 1)-coloring of G2. See [20] why this straightforward argument
does not work. Jonas [13] in his Ph.D. Thesis proyéd?) <8A — 22. This bound was
later improved by Wong [23] tg(G?2) <3A + 5. Then van den Heuvel and McGuinness
[20] provedy(G2) < 2A + 25. For large values of, Agnarsson and Halldérsson [1] have
a better asymptotic bound. They showed thaBifs a planar graph witth > 749, then
2(G?) < Lg A] + 2. Recently, Borodin et al. [4,5] have been able to extend this result
further by provingy(G?) < [g A7 + 1 for planar graphs witiA >47. We improve these
results asymptotically by showing that:

Theorem 1.3. For a planar graph G y(G?) < fg Al +78.

Theorem 1.4. For a planar graph Gif A>241,theny(G2) < {% A7 + 25.
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Remark. The constants 78 and 25 in the above theorems can be improved. For example
with an extra page of proof the first constant can be brought down to 61 but we do not know
how to bring it down to a number close to 1, using this proof.

The technique we use is inspired by that used by Sanders andZtjdao obtain a similar
bound on the cyclic chromatic number of planar graphs.

A generalization of ordinary vertex coloring IS(p, ¢)-labeling. Letdist(x, v) denote
the distance betweanandv. For integersp, ¢ >0, anL(p, g)-labeling of a graplG is a
mappingL : V(G) — {0, ..., k} such that

e |L(u) — L(v)| > pif dist(u, v) = 1, and
o |L(u) — L(v)|>q if distu, v) = 2.

The p, g-span ofG, denoted byig(G), is the minimumk for which anL(p, ¢)-labeling

exists. Itis easy to see that for any graaty(G2) = )&(G)Jrl. The problem of determining

Af]’(G) has been studied for some specific classes of gr§fbs12,15,16,19,22]. The
motivation for this problem comes from the channel assignment problemin radio and cellular
phone systems, where each vertex of the graph corresponds to a transmitter location, with the
label assigned to it determining the frequency channel on which it transmits. In applications,
because of possible interference between neighboring transmitters, the channels assigned
to them must have a certain distance from each other. A similar requirement arises from
transmitters that are not neighbors but are close, i.e. at distance 2. This problem is also
known as the Frequency Assignment Problem. Because of the motivating application for
this problem, it is quite natural to consider it on planar graphs. Since theqcase0
corresponds to labeling the vertices of a graph with integers such that adjacent vertices
receive labels at leaptapart, the upper bouncpFor ig of planar graphs follows from the

Four Color Theorem (if we use colors froi@y, p, 2p, 3p}). So let us assume that> 1. For

any planar grapl, a straightforward argument shows thgtc) >qA+p—qg+1. There

are planar graph@ for which ig(G) = % gA+ O(p, g). The best-known upper bound for
/"Lfl’(G), for a planar grapl®, is proved in [20].

Theorem 1.5(van den Heuvel and McGuine0]). Forany planar graph G and positive
integers p and gsuch thatp > g: }v{;(G) <(4g — 2)A + 10p + 38 — 24.

We sharpen the gap between this result and the best-possible bound asymptotically, by
showing that:

Theorem 1.6. For any planar graph G and positive integers p artdzg(G) <q [% Al +
18p + 779 — 18.

Section® and 3 contain the proof of Theorem 1.3. In Section 4 we show how to modify the
proof of Theorem 1.3 to prove Theorem 1.4. In Section 5 we explain why any modifications
of the lemmas used in the proof of Theorem 1.3 are not sufficient to improve this theorem
asymptotically, and one has to come up with a new configuration. These arguments will be
cleared later in the paper. We generalize the proof of Theorem 1.3 in Section 6 to prove
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Theorem1.6. Finally, in Section 7 we describe @h(n2) time algorithm for finding a
coloring as described in Theorems 1.3, 1.4, and 1.6.

2. Preliminaries

A vertex v is calledbig if dg(v) >47, otherwise we call it amall vertex. From now
on we assume th& is a counter-example to Theorem 1.3 with the minimum number of
vertices. By a coloring we mean a coloring in which vertices at distance at most two from
each other get different colors. Trivially is connected.

Lemma 2.1. For every vertex of G, if there exists a vertex € N (v), such thatdg (v) +
dg(u) <A+ 2thendgz(v) >3 Al + 78.

Proof. Assume that is such a vertex. Contraet on edgexv. The resulting graph has
maximum degree at mogt and becaus& was a minimum counter-example, the new
graph can be colored wit[% A7 + 78 colors. Now consider this coloring induced@nin

which every vertex other thamis colored. Ifd;2(v) < [g A7 + 78 then we can assign a
color tov to extend the coloring to, which contradicts the definition @. [J

Observation 2.2. We can assume that> 160, otherwise2A + 25< (% A1+ 78.
Lemma 2.3. Every <5-vertex in G must be adjacent to at least two big vertices

Proof. By way of contradiction assume that this is not true. Then theredbavertexv
which is adjacent to at most one big vertex and all its other neighbors<até-
vertices. Then, using Observati22,v along with one of these small vertices will contradict
Lemma2.1. J

Corollary 2.4. Every vertex of G is g 2-vertex
Lemma 2.5. G is 2-connected

Proof. By contradiction, letv be a cut-vertex oG and letCy, ..., C; (r >2) be the con-
nected components 6f — {v}. By the definition ofG, for each i <¢, there is a coloring
@; of G; = C; U {v} with [% A7 + 78 colors. We can permute the colors in eggh(if
needed) such that has the same color in af;’s, and the sets of colors appearing in
Ng, (v), 1<i <1, are all disjoint. Now the union of these colorings will be a coloringof

a contradiction. [J

The proof of Theorenl.3 becomes significantly simpler if we can assume that the
underlying graph is a triangulation, i.e. all faces are triangles, and has minimum degree at
least 4. To be able to make these assumptions, we begin by modifying the@ratvo
phases.

Phasel: In this phase we transforfa into a (simple) triangulated grapl’, by adding
edges to every non-triangle face @f Let G’ be initially equal toG. Consider any non-
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triangle facef = vy, vy, ..., v; of G'. BecauseG is 2-connected, we cannot have both
vivz € E(G') andwvug € E(G') at the same time since they both have to be outside

of f. So we can add at least one of these edgeE(G’) insidef, without creating any
multiple edges. We follow this procedure to reduce the faces’ sizes as long as we have any
non-triangle face inG’. At the end we have a triangulated graphwhich containsG as

a subgraph.

Observation 2.6. For every vertex, Ng(v) € Ng/(v).
Lemma 2.7. All vertices ofG’ are > 3-vertices

Proof. By Corollary2.4 and Observation 2.6 all the verticegBfare > 2-vertices. Suppose
that we have a 2-vertaxin G’ having neighborg andy. SinceG’ is triangulated, the faces
on each side of edger must be triangles, call therfy and f2. So we must havey € f;
and alsacy € f». SinceG’ has at least 4 verticeg; # f2 and so we have a multiple edge.
But G’ is simple. O

Lemma 2.8. Each>4-vertexv in G’ can have at most neighbors which arg-vertices

Proof. Let xo, x1, ..., X4, -1 be the sequence of neighborswfn G’, in clockwise

order. We show that we cannot have two consecutive 3-vertices in this sequence. If there
are two consecutive 3-vertices, séft;) = d(x;+1) = 3, where addition is in modg: (v),

then there is a face containing_1, x;, x; 11, xi+2. But G’ is a triangulated graph.[

Phase2: In this phase we transform graph into another triangulated gragh’, whose
minimum degree is at least 4. Initially” is equal toG’. As long as there is any 3-vertex
v we do the followingswitchingoperation: letx, y, z be the three neighbors of At least
two of them, sayx andy, are big inG’ by Lemma2.3 and Observation 2.6. Remove edge
xy. SinceG’ (and alsoG”) is triangulated this leaves a face of size 4, say, y, t. Add
edgevr to G” (see Fig. 1). This way, the graph is still triangulated.

Observation 2.9. If v is not a big vertex in G theVg (v) € Ng» (v).
Lemma 2.10. If v is a big vertex in G thedg» (v) > 24.
Proof. Follows easily from Lemma.8 and the definition of the switching operatiori]

So a big vertex in G will not be a <23-vertex inG”. Let v be a big vertex irG and

X0, X1, - - - » Xdgn (v)—1 b€ the neighbors af in G” in clockwise order. We call, . . ., x4+5
(where addition is in modg~ (v)) asparse segmeim G” iff:
e h>2,

e Eachy; is a 4-vertex.

In the next two lemmas, we assume that. .., x,45 iS @ maximal sparse segmentof
in G”, which is not equal to the whole neighborhoodvofAlso, we assume that,_1 and
xq+b+1 are the neighbors af right beforex, and right afterc, 5, respectively.
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z

Fig. 1. The switching operation.

Lemma 2.11. There is a big vertex in G other than that is connected to all the vertices
of x441, ..., Xq4p—1,iIN G” (@and in G.

Proof. Follows easily from ObservatioR.9, Lemma 2.3, and the definition of a sparse
segment. [

We useuto denote the big vertex, other thasthat is connected to at), 1, . . ., xg4p—1.

Lemma 2.12. All the verticesx,+1, ..., Xxq+5—1 are connected to both u andin G. If
x4—1 is not big in G therx, is connected to both u andin G. Otherwise it is connected to
at least one of them. Similarly if,; 1 is not big in G x;, is connected to both u andin
G, and otherwise it is connected to at least one of them

Proof. Since the only big neighbors 0f 1, ..., x,1»_1in G” arev andu, by Lemma2.3
they must be connected to both of thenGmas well. For the same reasenandx, 4, will
be connected ta andv in G, if x,—1 andx,4,—1 are not big. [J

We callx, 41, ..., xs1p—1 theinnervertices of the sparse segment, apdndx,, the
endvertices of the sparse segment. Consider vartamd let us denote the maximal sparse
segments oV (v) by Q1, Q2, ..., O in clockwise order, wher@®; = ¢; 1, ¢i.2,¢i 3, - - - -

The next two lemmas are the key lemmas in the proofs of Theorems 1.3 and 1.4. They
provide two reducible configurations for a graph that is a minimum counter-example to
theorem.

Lemma 2.13. |Q;| <dg(v) — [§ A] — 73,for 1<i <m.

Proof. We prove this by contradiction. Assume that for sam@;| > dg (v) — {% A]-T73.
Let u; be the big vertex that is adjacent to all the inner vertice® ofin bothG andG”).
See Fig2. For an inner vertex of;, sayg; 2, we have

dg2(gi2) < dgu;) +dc(w) +2—(1Qil —3)
<A+dg(v) —1Qi|+5
<[3A1+78.
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Fig. 3. Configuration of Lemma.14

If ¢; 2 is adjacent taz; 1 or ¢; 3 in G then it is contradicting Lemma.1. Otherwise it is
only adjacent tow andu; in G, therefore has degree 2, and so along with «; contradicts
Lemma2.1. O

Lemma 2.14. Consider G and suppose that andu; 1 are the big vertices adjacent to
all the inner vertices of; and Q; 11, respectively. Furthermore, assume that t is a vertex
adjacentto botl; andu; 1 but notadjacent to (seeFig. 3)andthereisavertex € Ng(¢)
such thatdg (r) + dg (w) <A + 2. Let X (¢) be the set of vertices at distance at mdsf t
that are not inNg[u; 1 U Nglu;11]. If | X (¢)|<6then

[Qil + |Qi+1|<L%AJ —67.

Proof. Again we use contradiction. Assume tha;| + |Q;+1| > L% A] — 66. Using the
argument of the proof of Lemnfal we can color every vertex & other thart. Note that
dg2(t) <dg(u;) + dg(ui+1) + | X (@) <2A + 6. If all the colors of the inner vertices of
Q; have appeared on the verticesMf[u; +1] U X (r) — Q;+1 and all the colors of inner
vertices ofQ; 1 have appeared on the verticesM[u;]1 U X (t) — Q; then there are at
least|Q;| — 2+ |Qi+1| — 2 repeated colors &@{;2(¢). So the number of colors &f;2(¢)
isatmostA+6—|Q;| —|Qi+1] +4< [% A7+ 76 and so there is still one color available
for t, which is a contradiction.
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Therefore, without loss of generality, there exists an inner verteg;qfi, saygi1.2,
whose color is not inVg[u;] U X () — Q;. If there are less thaﬁg A7 + 77 colors at
Ng2(gi+1,2) then we could assign a new colorggy 1,2 and assign the old color of it to
and geta coloring foB. So there must bﬁg A1+77 or more different colors & ;2(gi+1.2)-

From the definition of a sparse segmeéV(¢i+1.2) < {v, ui+1, ¢i+1.1, gi+1.3}. There
are atmostl; (u;+1)+7 colors, called themallercolors, aVg [u; +11UX (1) UNGlgi+1.11U
Nglgiv1.3] — {v} — {gi+1.2} (note thatt is not colored). So there must be at Iebém +
70 different colors, called thiarger colors, atNg[v] — Q;+1. Since|Ng[v]| — | Q| —
[Qiv1|<A+1-— L% A] + 66< [% Al + 67, one of thdarger colors must be on an inner
vertex of Q;, which without loss of generality, we can assumey;is. Becausd is not
colored, we must have all th’% A7 + 78 colors atN;2(r). Otherwise we could assign a
color tot. As there are at mogt+ 6 colors, all from thesmallercolors, atNg[u;+1]U X (¢),
all thelarger colors must be iV [u;], too. LetL be the number of larger colors. Therefore,
the number of forbidden colors fay; » that are not from the larger colors, is at most
d(u;) — L +du;+1) — L<2A — 2L. By considering the vertices at distance exactly two
of ¢; 2 that have a larger color and noting tligt has a larger color too, the total number
of forbidden colors fog; 2 is at most A — L < L% A] — 70, and so we can assign a new
color tog; 2 and assign the old color @f 2, which is one of théarger colors and is not in
Ng2(t) — {gi+1,2}, tot and extend the coloring 16, a contradiction. [

3. Discharging rules

We give an initial charge of;#(v) — 6 units to each vertex. Using Euler’s formula,
V| —|E| + |F| = 2, and noting that3 (G")| = 2|E(G")|, it is straightforward to check
that

> (dgr(v) —6) = 2|E(G")| — 6|V| +4|E(G")| — 6|F(G")| = —12. (1)
veV
By these initial charges, the only vertices that have negative charges are 4- and 5-vertices,
which have charges-2 and—1, respectively. The goal is to show that, based on the as-
sumption thaG is a minimum counter-example, we can send charges from other vertices
to <5-vertices such that all the vertices have non-negative charge, which is of course a
contradiction since the total charge must be negative byBq. (
We call a vertew pseudo-bidin G”) if v is big (inG) anddg (v) > dg (v) — 11. Note that
a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a pseudo-big
vertex. Before explaining the discharging rules, we need a few more notations.
Suppose that, x1, x2, ..., xk, u IS a sequence of vertices such thas adjacent tocq,
x; is adjacent tog; 1, 1<i < k, andxy is adjacent ta.

Definition. By “v sends c units of charge through, .. ., x; to u” we mearw send< units
of charge toxy, it passes the charge tg, x3, . .., and finallyx; passes the chargetoln
this case, we also say ‘sends c units of charge through” and “u gets c units of charge
throughx;”. In order to simplify the calculations of the total charges on verted <i <k,
we do not take into account the charges that only pass thrgugh
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Rule 9: K d(vK 12

]
O
O
<&

: 4—vertex
: 5-vertex
: 6—vertex
: 7T—-vertex

*o o

Rule 11

: } 4—-vertex
: > 5-vertex

: } 6-vertex
: > T-vertex

4

4> >

Rule 8: g dvX 12

o
A7

Uy
Rule 12

W

:> 12—vertex @ : Any degree
: { 11-vertex

: Big

: Small

Fig. 4. Discharging rules.

In discharging phase, a big vertexf G (see Fig4):

(1) Sends 1 unit of charge to each 4-verter Ng» (v).
(2) Send% unit of charge to each 5-vertexin N (v).

In addition, if v is a big vertex andig, u1, uz, us, ugq are consecutive neighbors ofin
clockwise or counter-clockwise order, whetg: (ug) = 4, then:

(3) If dgr(u1) = 5, uz is big, dg»(u3z) = 4, dg»(us) =5, and the neighbors af; in
clockwise or counter-clockwise order argug, x1, x2, uz thenv send% toxp through

uz, uq.

(4) Ifdgr(u1) =5, 5<dgr(u2) <6,dg(u3) > 7, and the neighbors af; in clockwise or
counter-clockwise order ang ug, x1, x2, u2 thenv sends% to x1 throughus, uz, u1.

(5) Ifdgr(u1) = 5,uzisbig,dg»(u3) > 5, and the neighbors af; in clockwise or counter-
clockwise order are, ug, x1, x2, uz thenv sends% to x1 throughuo, u;.
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(6) If dg(u1) = 6, dgr(u2) <5, dg»(u3) =7, and the neighbors of; in clockwise or
counter-clockwise order ane ug, x1, x2, x3, u2 thenv sends% to x1 throughu1.

(7) Ifdgr(u1) = 6,dg»(u2) > 6, and the neighbors af in clockwise or counter-clockwise
order arev, ug, x1, x2, x3, u2 thenv sends}1 to x1 throughu1.

If 7<dgr(v) < 12 then:

(8) If uis a big vertex andko, u1, uz, v, us, usg, us are consecutive neighbors efvhere
all ug, u1, uz, us, ug, us are 4-vertices then sends% tou.

(9) If uo, u1, uz, uz are consecutive neighborswafsuch thatlg(u1) = dgr(u2) = 5, uo
andus are big, and is the other common neighbor of andu» (other tharv), thenv
sends; tot.

Every > 12-vertexv of G” that was not big irG:
(10) Sends; to each of its neighbors.
A <5-vertexv sends charges as follows:

(11) If dg(v) = 4 and its neighbors in clockwise order arg, u1, us, usz, such that
uo, u1, uz are big inG andus is small, therw sends% to each ofug andu» through
ui.

(12) If dg»(v) = 5 and its neighbors in clockwise order aig u1, uz, us, ug, such that
dgr(ug)<11,dgr(u1) >12,dgr(u2) >12,dgr(u3) <11, andug is big, thenv sends
1
5 toug.

2
From now on, by “the total charge sent framo one of its neighborg”, we mean the
total charge sent from to u or throughu. Similarly, by “the total charge received from

u”, we mean the total charge sent from or througio v.

Lemma 3.1. Every big vertex sends at mos% to everys- or 6-vertex inNg» (v).
Proof. For any 5- or 6-vertex, v sends charges toby at most one rule. [J

Lemma 3.2. If v is big anduo, u1, uz, us, us are consecutive neighbors ofin counter-
clockwise ordersuch thatis» (12) > 7 thenv sends at mos% throughu,, or senddl through
up anddgr (up) = dgr(us) = 5andu anduz are 5- or 6-vertices

Proof. If u; is big and one of rules 3 or 5 applies then it is easy to verify that it is the only
rule by whichuy gets charge from. If u1 andugz are both 5-vertices then rule 5 may apply
twice, one for sending charge to a neighbor@find one for sending charge to a neighbor
of uz, so overalluy gets at most%L from v. It is straightforward to check that there is no
configuration in which we can apply rule 3 twice.

The only other way fow to send charge tn; is by rule 4. Note that if this rule applies
then none of the other rules apply. Alsogcan send charge o, twice by rule 4 since it
might apply under clockwise and counter-clockwise orientations of neighbarsTiis
happens itlg» (uo) = 5, 5<dgr (u1) <6, 5<dgr (u3) <6, dgr(us) = 5, v, u1, x2, X1, xg
are neighbors afg in clockwise order wherégs» (xg) = 4, andyo, y1, y2, us, v are neigh-
bors ofuy in clockwise order wherég»(yg) = 4. In this case sends% to x1 through
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yi+1

Fig. 5. Configuration of Lemma.4.

up, uq, ug and send% to y1 throughuo, ug, ug, and this is the only configuration in which
v sends charge @, twice. This proves the lemma.]

Lemma 3.3. Every vertex that is not big in G will have non-negative charge

Proof. By Lemma2.3 every 4-vertex gets a total of at least 2 units of charge by rule 1 and
each 5-vertex gets a total of at least 1 unit of charge by rule 2. Also<theertices that

send charges by rules 11 and 12 will have non-negative charges, since they are adjacent
to at least three= 12-vertices. Ifdg»(v) >12 then it send% dgr(v) <dgr(v) — 6 by rule

10 and so will have non-negative charge. It is straightforward to verify that there is no
configuration in which a 7-vertex sends more than 1 unit of charge in rule 8 or 9. Finally,

itis not difficult to see that by rule 8 and 9, a vertex sends at r%lﬁmt every two neighbors

that it has. So if &dgr(v) < 12 it sends at mosf%(”) <dgr(v) — 6, and therefore it
will have non-negative charge in any of these cases. Finally, rules 3—7 do not apply to the
vertices that are not big i6. [

Lemma 3.4. Every big vertex that is not pseudo-big will have non-negative charge

Proof. Suppose thatis such avertex. Sé;~ (v) <dg(v)—12 and therefore was involved

in at least 12 switching operations, in each of which the edge betwegil another big
vertex of G was removed. Sinc€&’ is simple, these big vertices are distinct. Call them
Y1, ¥2, ..., Yk, Wherek > 12, in clockwise order. Let; z; be the edge that was added during
the switching operation that removed , and the order of;’s andz;’s is such that; comes
beforez; in clockwise order. Note that all;'s and allz;'s are neighbors of in G’ (see
Fig.5).

Let us call the vertices between andx; 11, u; 1, u; 2, ..., u;y;, starting fromz;. For
consistency, let us relabel temporarilyandx; 1 to u; o andu; ;,+1, respectively. Recall
thatk > 12 andv sends a total of no more than 1 to any vertex. Thus, in order to show that
v sends no more than its initial chargedyf-(v) — 6, it is enough to show that for each
1<i <k, either

(a) v sends a total of at mo%tto a vertex frony; to x;41; or
(b) v sends a total of at most,1 + 1 to thel; 11 + 2 vertices frong; 11 t0 x;12.
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First we show that there is at least opé-vertex inu; g, . . ., u; ,+1, for each ki <k.

If u; 0 is a 4-vertex we must havgu; 1 € G”, becauses” is a triangulation. Assuming
thatu; 1 is a 4-vertex we must haveu; » € G” and so on, until we have 1u; ;,+1 € G”
and sou; 7,41 will be a >5-vertex. So for every £i <k, there is a> 5-vertex between;
andx;1; take any such vertex and calldt ;. By Lemmas3.1 and 3.2 and rule 10, it can
be seen that sends a total of at mo%tto u; j;, unless dgr(u; j,) <11.

So assume thatZdgr (u; ;) <11 andv sends 1 through; ;. By Lemma 3.2 both of
the neighbors o before and aften; ; are 5- or 6-vertices and so to each of thesends
a total of at mos%. If z; # x;+1 then at least one of these lies betweeandx;,1 and
therefore we satisfy (a) above.

So we can assumg = x;41. Thusu; j, = z; = x;41, and so (i) Xdg»(zi+1) <6,
and (i) dgr(uit11) = 51if zi41 # xiq2, Ordgr(ziy2) = 5 otherwise. First assume that
Zi+1 = xi+2. Now if dg»(z;11) = 5 thenv gets back% from z; 11 by rule 12 and so sends
a total of at most O to it. Itl;(z;+1) = 6 then it is easy to verify that sends nothing to
zi+1 by any rule and so sends a total of at most O to it. Either way, we satisfy (b), above.

Otherwise ifz; 11 # x;42 then there are at least two vertices betwegn, ..., x; 12,
that are 5- or 6-vertices and so to each of thesends a total of at mo%t Therefore we
satisfy (b), above. [

Sothe only vertices that may have negative charges are pseudo-big verti€eAssume
thatv is a pseudo-big vertex a&” whose neighborhood sequence in clockwise order is
x1, ..., xx. Letmbe the number of maximal sparse segments of the neighborhaoaihaf
call these segmeni81, O, ..., O, in clockwise order. Also, leR; be the sequence of
neighbors of between the last vertex @f; and the first vertex of; . 1, whereQ,,+1 = Q1.

If m = 0 then we defing1 to be equal taV» (v).

Lemma 3.5. LetR = x,, ..., xp, Wwhere Ris one oRy, ..., R,,. Thenv sends at total of
at mostf%} to the vertices of R

Proof. SinceRdoes not overlap with any maximal sparse segment, from every three consec-
utive vertices;, x; 11, x;+2 in R(where we consider the neighbors cyclichRit= Ng» (v)),

at least one of them is & 5-vertex. Eitherw sends a total at mo% to this vertex, ow

sends 1 and by Lemnt&2 the two vertices before that and the two vertices after that are
5- or 6-vertices and so sends to each of them a total of at méstThus in either case

v sends a total of at mogt to every three consecutive verticesR®and so sends at most

2 —a+1)1 =128 tothe verticesoR. [
Lemma 3.6. Suppose that: > 4. Then for everyl <i <m eitherv sends at mostR; | — %
to R;, or v sends at mogiR;| — 1to R; and

10il +1Qi+1I <3 A] — 67. (2)

Proof. We consider different cases based &f:
|R;| = 1: Assume thaR; = u. Sinceu is the only vertex between two maximal sparse
segmentsdgr (1) > 5. First letdg (1) = 5. SinceQ; and Q;1 are sparse segments there
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' Y U1

Fig. 6. The first configuration in Lemnaé.

must be two big vertices; andu; 1 that are connected to all the vertices@fandQ; 11,
respectively. Alsoy must be connected to these two vertices, becatfss a triangulation
(see Figh).

Note that by rule 12 gets back theli charge it had sent tie. Sov is sending a total of at
most 0, so far. Letbe the other vertex that makes a triangle with edge, 1. Assume that
dgr(t) = 4,andws, wy are the two neighbors obther thans; andu; ;1. If dg»(w1) <4 and
dgr(w2) <4 then since); and Q;.1 are sparse segments andandu; 1 are big vertices
in G, by Lemma 2.14 Eq. (2) holds. Otherwise, assumedhatw1) > 5. Then by rule 3;
will be sending extr% to v throughu. So overally sends a total o#% tou. If dgr (1) =5
then each ofi; andu; 1 will send an extr% to v throughu by rule 5 and therefore sends
atotal of—3 tou.

Now assumég (1) = 6 and that the neighbors ofrev, u;, u; 1, t and the end vertices
of Q; and Q;11. Note that in this case will send nothing tou. Assume thati;- () = 4
and its other neighbor i&. If dg»(w) <6 then by Lemma 2.14 Eqg. (2) holds. Otherwise,
dg(w)>7 and so each af; andu; 41 sends an extré to v throughu by rule 6 and s@
sends a total of-1 tou. If dg~(r) = 5 and its other neighbors are; andw, then either
dgr(w1) <6 anddgr (w2) <6 and we can apply Lemma 2.14 to get Eq. (2), or at least one
of wy andwy has degree> 7 and so one af; oru; ;1 will send an extra%L unit of charge to
v throughu by rule 6 and s@ sends a total 0#% tou. If dg»(t) > 6 then bothy; andu; 1
send an extré charge tav throughu by rule 7. Sov sends a total o#% tou.

If 7 <dgr(u) <11, or 12<dgr (1) andu was not big inG, thenu sends% tov by rule 8
or 10 and sa sends a total 0#% tou.

If uwas big inG then by rule 1v gets back% throughu for each of the end vertices of
Q; andQ; 1 that are adjacent to, and sov sends a total of at most1 tou.

|R;| = 2: Assume thaR; = vy, v2. If dgr(v1) =6 ordgr(v2) > 6 then it is easy to check
thatv sends nothing to one afi, v2 and sends at mo% to the other one, or sem#to
each, and so sends at mésuo R;. So let us assume thag (v1) = dg»(v2) = 5 and lett

be the other vertex which makes a triangle withv,. Note thatv sends only% to each of
V1 andvz.
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Fig. 7. Two other configurations for Lemn3a6.

If dg»(t) = 4 then we can apply Lemnfal4 and get Equation (2). Lég~(¢) = 5 and
call the other neighbor df(other than;, v1, v2, u;+1), w (see Fig. 7(a)). lfig» (w) <6 then
we can apply Lemma 2.14 to get Eq. (2). Otherwige(w) > 7 and by rule 4; andu; 1
each send an extr%ito v (throughv1 andvy, respectively) and thereforesends a total of
at most 0 taR;. Now assume thals~ (r) = 6 and its neighbors ane;, wo, u;, u;11, v1, v2
(see Fig. 7(b)). lfdg»(w1) <6 anddgr(w2) <6 then by Lemma 2.14 we have Eg. (2).
Otherwise, at least one af; or wy is a > 7-vertex and so one of; or ;1 sends an extra
% to v (throughvi or v2) by rule 4 and therefore sends a total of at mos%( to R;. If
7<dgr(t) < 12 thent sends% to v by rule 9 and s@ sends a total of at mo%t toR;. If
12<dgr(¢) thenv gets back thc—lé it had sent to each af; andv, by rule 12 and so sends
a total of at most o t@R; .

|R;| > 3: If there is no 4-vertex iR; then they are all>5-vertices and by Lemmas 3.1
and 3.2v sends a total of at mos$R;| — % to R;. If |R;| =5, sinceR; cannot have three
consecutive 4-vertices, we must have at least thr@evertices and again by Lemmas 3.1
and 3.2v sends a total of at mo$R; | — %’ So consider the case th&t = v1, v, v3, v4,
dgr(v1) 25, dgr(va) 25, anddgr (v2) = dgr(v3) = 4 (exactly the same argument works
for the case thatR;| = 3 andv, = v3). There must be a big vertex, other thanv,
connected to all the vertices &. If dg(v1) = 5 thenv gets back% from vy by rule 12
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and so sends a total of at most Quto If d(v1) > 6 it can be verified that sends nothing
to vy by any rule. Sincev sends a total of at mo% to v2 and at most 1 to any vertex, it

sends a total of at mogR; | — 3 to R;.
Lemma 3.7. Every pseudo-big vertaxhas non-negative charge

Proof. Recall that the initial charge efwasdg~ (v) — 6 and thab sends a total of at most 1
to any neighbor. We will show thatsends a total of less than 1 to each of several neighbors,
enough so that the total charge thabses is at most#;~(v) — 6. We consider different
cases based on the valuemafthe number of maximal sparse segments.d®ecall that by
Observatior?2.2 we can assume thAt> 160.

m = 0: Sincev is pseudo-bigis~ (v) >dg(v) — 11>36. Using Lemma 3.5 will send
at mostf?3 dgr(v)] <dgr(v) — 6 and therefore will have non-negative charge.

1<m <3: By Lemma 2.13 and definition of a pseudo-big vertex:
e m =1:Then

[R1| = dgr(v) — | Q1l
> dgr(v) — dg(v) + [§ A1+ 73
> [ x 160] + 62

> 36.
So by Lemma3.5v sends a total of at mogR1| — 6 to R1.
e m = 2:Then
> IRl =dgr(v)— Y 10Qil
1<i<2 1<i<2
> dgr(v) — 2dG(v) +2 x [3 A] + 146
> [$A]+135
> 36.
So by Lemma&.5v sends a total of at mogR1 U Rp| — 6 t0 R1 U R».
e m = 3: Then
Y IRl =dor(v) = > 10l
1<i<3 1<i<3
> dgr(v) — 3dg(v) + 3 x [§A]+ 219
> 36.

Therefore by Lemm&.5v sends at mostR1 U R> U R3] — 6 t0 Ry U Ro U R3. )
m = 4: If v sends a total of at mo§R; | — % to eachr; then we are done. Otherwise by

Lemma 3.6, we can assume, without loss of generality,tfs@nds a total ofR1| — 1 to
Ry and that Eq. (2) holds fof1 and Q». Therefore using Lemma 2.13
[R2| + |R3| + |Ra| = dgr(v) — (1Q1] +1Q2]) — [Q3| — | Q4
> dgr(v) — |3 A + 67— 2(dg(v) — [2A] — 73)
> A—2dg(v) +dgr(v) + 213
> 36.

Thus by Lemma 3.5 sends a total of at mogR> U R3 U R4 —5t0 R2 U R3 U Ry.
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m = 5: v sends a total of at mo$R;| — 1 to eachR;, by Lemma3.6. If there are at
least two values off such that sends a total of at mo$R; | — %’ to R; then we are done.

Otherwise there is at most org, say Rs, to whichv sends a total of at mos$R;| — %
Therefore Eq. (2) must hold foQ1| + |Q2| and| Q3| + | Qa4l, i.e.

1011+ 102l + 103l + Q4] <2 x |3A] — 134
Then using Lemma&.13
> IRl = dgr(v) —dg(v) + [3A1+73—2x [ A] + 134

1<i<5
> 36.

Therefore by Lemma 3.5; sends a total of at mo$R1 U R2 U R3 U Rq4 U Rs| — 6 to
R1 U RoU R3U RqU Rs.
m > 6: v sends at mostR; | — 1 to eachr;, by Lemma 3.6. So we are donel]

Proof of Theorem 1.3. By Lemmas 3.3, 3.4, and 3.7 every vertex@f will have non-
negative charge, after applying the discharging rules. Therefore the total charge over all the
vertices of G” will be non-negative, but this is contradicting Eq. (1). This disproves the
existence of5, a minimum counter-example to the theorem.

Remark. Usingamore careful analysis one can prove the bQ@é@éJ inLemma 3.5which
in turn can be used to provgG?) < Lg A]| + 61. By being even more careful throughout

the analysis one can probably prove the boy@?) < L% A] + 51 or even maybe with 30
or 20 instead of 51.

4. A better bound for graphs with large A

The steps of the proof of Theorem 1.4 are very similar to those of Theorem 1.3, we only
have to modify a few lemmas and redo the calculations. For these lemmas, since the proofs
are almost identical and do not need any new ideas, we only state the lemmas without giving

further proofs. LetG be a minimum counter-example to Theorem 1.4 suchAhap41.

Lemma 4.1. For every vertex of G, if there exists a vertex € N (v), such thatdg (v) +
dg(u) <A+ 2thendga(v) >3 Al + 25.

We construct the triangulated grapiSand thenG” exactly in the same way. Lemmas
2.3-2.12 are still valid. The analogous of Lemmas 2.13 and 2.14 will be as follows.

Lemma 4.2. | Q| <dg (v) — [§ A] — 20, for 1<i <m.
Lemma 4.3. Under the same assumption as in Leniri4,we have

10il +1Qi11<[3A] — 14
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We apply the same initial charges and discharging rules. Again, all Le®rha3.5 hold.
The analogue of Lemma 3.6 will be:

Lemma 4.4. Suppose that: > 4. Then for everyl <i <m eitherv sends a total of at most
|R;| — % to R;, or v sends a total of at mo$R;| — 1to R; and

|0il +1Qi1l<[3A] — 14

Now it is straightforward to do the calculations of Lem@& with the above values to
see that it holds in this case too. This will complete the proof of Theorem 1.4.

5. On possible asymptotic improvement of Theorem 1.3

In this section, we only focus on the asymptotic order of the bounds, i.e. the coefficient
of A. The results of [1,4,5] are essentially based on showing that in a planar@rapére
exists a vertex such thatd;2(v) < (g Al 4+ O(2) ([5] actually obtains a slightly weaker,
but still sufficient bound). However, as pointed out in [1], this is the best-possible bound on
the minimum degree of a vertex@?. That s, there are 2-connected planar graphs in which
every vertex satisfiesi;z2(v) > [% A7. One of these extremal graphs can be obtained from
a icosahedron, by taking a perfect matching of it, addirgl paths of length two parallel
to each edge of the perfect matching, and replacing every other edge of the icosahedron by
k parallel paths of length two (see Fig. 8).

Therefore, by only bounding the minimum degreeisfwe cannot improve the bound
r% A1+ O(1), asymptotically. This is the reason we introduced the reducible configuration
of Lemma 2.14. We proved that any planar gr&pkither has a cut-vertex, or a vertex
such thatd;2 (v) < [g Al 4+ 0(2), or has the configuration of Lemma 2.14.

But there are graphs that are extremal for this new set of reducible configurations in
the following sense: these graphs do not have a cut-vertex, do not have awevitx
dg2(v) < [% A7, and do not have the configuration of Lemma 2.14. For an odd valke of
one of these graphs is shown in Fig. 9. To interpret this figure, we have to join the three
copies ofvg and remove the multiple edges (we draw the graph in this way for clarity). Also,
the dashed lines represent sequences of consecutive 4-vertices. Around each.ofvy
there are B— 6 such vertices. Sd,(v1) = d(v2) = d(v3) = d(va) = 3k,d(vs) = d(vg) =
d(v7) = d(vg) = 3k + 3, A = 3k + 3, and for any vertex € G: dg2(v) =5k + 3 (with
equality holding forv € {vy, ..., va}). The minimum degree of? is f% A1+ 0(1) and
it is easy to see thab does not have the configuration of Lemma 2.14. Therefore, using
reducible configurations similar to those of Section 2 the best asymptotic bound that we
can achieve i$§ A7 + 0(1). So we need another reducible configuration to improve the

multiplicative constang.

6. Generalization to L(p, ¢q)-labeling

In this section we prove Theorem 1.6. As we said before, the upper boufot 36’ ofa
planar graph follows from the Four Color Theorem (if we use colors ffonp, 2p, 3p}).
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Fig. 8. The icosahedron and the modified graph.

Fig. 9. The graph obtained based on a tetrahedron.

So let us assume that> 1. We prove the following theorem:

Theorem 6.1. For any planar graph G and positive integer p
M (G)<[3 A1+ 18p + 59.
Assuming Theorerg.1, we can prove Theorem 1.6 as follows:

Proof of Theorem 1.6. Let ¢ = fg Al + 18{51 + 60. By Theorem 6.1, there is an
L(ff}, 1)-labeling of G with thec colors in{0, ..., ¢ — 1}. Consider such a labeling and
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multiply every color byg. This yields an.(p, ¢)-labeling ofG with colors in{0, ..., g(c —
1)}. Noting thatf 27 < %—1 yieldsg(c — 1)<q[3 Al + 18p + 77¢ — 18 which in turn
completes the proof. [J

In the rest of this section we give the proof of Theoi@m The steps of the proof are very
similar to those of proof of Theorem 1.3. L@&be a planar graph which is a counter-example
to Theorem 6.1 with the minimum number of vertices. We set

C=T3A1+18p+60

and throughout this section we use colors friin. . ., C — 1}. Recall that a vertex is said
to be big ifdg (v) >47.

Lemma 6.2. Suppose that is a <5-vertex in G. If there exists a vertaxe N (v), such
thatdg (v) + dg () <A + 2 thendga (v) > dg (v) + [§ A1 + 73.

Proof. Assume thav is such a vertex and assume thgk(v) < dg(v) + [% Al 4+ 73.
Contractv on edgevu. The resulting graph has maximum degree at ndoahd because
G was a minimum counter-example, the new graph hal(@n 1)-labeling with at mos€C
colors. Now consider such a labeling induced@rin which every vertex other thanis
colored. Every vertex at distance (exactly) twaah G forbids one color fow, and every
vertex inN (v) forbids at most 2 — 1 colors forv. So the total number of forbidden colors
for v, i.e. the colors that we cannot assigrnitas at most

d6()(2p — 1) +dg2(v) — dG(v) < 10p — 5+ [3A] +73
=[3A]+10p +68
< C.

The last inequality follows from the assumption tiat 1. Therefore, there is still at least
one color available for whose absolute difference from its neighborgthis large enough
and so we can extend the coloring@Go [

Observation 6.3. By Theorenil.5we can assume that> 162, otherwise(4dg — 2)A +
10p + 38 — 24<C — 1 (withg = 1).

Lemma 6.4. Every <5-vertex must be adjacent to at le@sbig vertices

Proof. By way of contradiction assume that there is.&-vertexv which is adjacent to at
most one big vertex and so all its other neighborsa#6-vertices. Then, using Observation
6.3, v along with one of these small vertices will contradict Lemma 6.2

Now construct grapl;’ from G and thenG” from G’ in the same way we did in the
proof of Theorem 1.3. Also, we define the sparse segments in the same way. Consider vertex
v and let us call the maximal sparse segments @fiit 0o, ..., O, in clockwise order,
whereQ; =¢i1.4i2.4i3 - .
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Lemma 6.5. |Q;| <dg(v) — [ A] — 69.
Proof. Analogous to the proof of Lemna13. [

The next lemma is analogous to Lemma 2.14. The key difference is that we require a
bound on the degree bfThis is because each vertex adjacemttmn forbid fotupto 2p —1
colors. Thus we have to be more careful about controlling the number of such vertices.

Lemma 6.6. Suppose that; andu;1 are the big vertices adjacent to all the vertices of
Q; and Q; 1, respectively. Furthermoreassume that t is a<6-vertex adjacent to both

u; andu;41 but not adjacent ta (see Fig.3) and there is a vertew € N(t) such that

dg () +dg(w) <A+ 2.Let X () be the set of vertices at distance at most two of t that are
notin N{u;] U Nuj11]. If |X ()| <6 then

10l + 1Qi+11 <[5 A — 60. (3)

Proof. Again, by way of contradiction, assume thé@; | + | Q; 1| > L% A| —59. Using the
same argument as at the beginning of the proof of LerirBawe can color every vertex

of G other thant using colors in{0, ..., C — 1} such that the vertices that are adjacent
receive colors that are at legsipart and the vertices at distance two receive distinct colors.
Consider such a coloring.

Note. We often focus on the inner vertices @f. So recall that there are exacti@;| — 2
such vertices (similarly foQ;.1). Also, for a setS of vertices each of which has a color,
we sometimes use “the colors $ito refer to the set of colors that appear on the vertices
of S

We say that a vertex € Nj;2(w) forbidsa colory for w if either (i) u is a distance 2
from w andu has colour or (i) uis adjacent tav andu has a colour that differs fromby
less tharp; i.e., if an assignment of to w would create a conflict with the colour an A
setSof verticesforbidsa setT of colours forw if for each coloury € T, some vertex irs
forbidsy for w. A coloury is forbiddenfor w if someu € N2 (w) forbids it for w.

Claim 1. There are at Ieasf% A7 + 78 colors in Ng2(r) and Ng2(t) forbids all the C
colors for t

Proof. Trivially, if there is a non-forbidden color fdrthen we can extend the coloring to
t, which contradicts the minimality d&.

If there are at mos|t§ A7 + 77 colors inN42(t) then (becauseis not colored and has
degree at most 6) they forbid at mgs$tA] +71+6(2p — 1) = [3A] +12p +65 < C
colors fort, which contradicts what we proved in the previous paragraph.

Claim 2. There exists an inner vertex ¢f or Q;+1 whose color is distinct from the color
of every other vertex itN;2(¢) and differs from the color of every vertex M(z) by at
least p



M. Molloy, M.R. Salavatipour / Journal of Combinatorial Theory, Series B 94 (2005) 189—-21309

Proof. By way of contradiction assume the above statement is false. Let us count the
number of forbidden colors fdr The neighbors afforbid at mostig (t) x (2p — 1) colors
for t. Let us denote this set of forbidden colorsRyThe vertices at distance exactly two
oftare inN(u;) U N(u;+1) U X () — N(t), and each of them forbids its own color for
However, by assumption, at legg?;| — 2+ |Q;+1| — 2 of these forbidden colors (fdy
are counted twice. This is because we assumed the claim is false; i.e. for every ttalor
appears on an inner vertex 6f or Q; 1 there is a neighbor dfwhose color differs from
o by less tharp (and sox € R) or there is another vertex iN;2(r) with color «. Since
dgu;) +dg(ui+1) + | X (¢)] < 2A 4 6, the total number of forbidden colors fois at most
dG(t) x 2p—1)+2A+6—ds(t) —|Qi| = Qi+1|+4< r% A1+6(2p—1)+63< r% Al+
12p + 57 < C. This contradicts Claim 1. [

Thus, without loss of generality, we can assume there exists an inner veexnfsay
gi+1,2, whose color is different from the color of every vertexNi.2 () and differs from
the color of every vertex itV () by at leasp.

Claim 3. There are at Ieas[% A1 + 77 colors in N;2(gi+1,2) and they forbid foig; 11,2,
C — 1 colors(all the colors except the one that appearsgni 2).

Proof. First we show that the vertices M;2(¢;+1,2) must forbid all the colors (except the
one that appears @jiy1.2) for ¢;+1.2. Otherwise, we can produce a valid labelling®by
removing the color of;+1.2 and assigning it to, and then assigning a new colorgo.1 2
(from the other colors that are not forbidden for it). Hence, the number of forbidden colors
for gi+1.2 must beC — 1.

If there are fewer thaﬁg A1 + 77 different colors inV42(gi+1,2) then, sincelg (gi+1,2)
<4, the vertices iNV;2(gi+1,2) forbid fewer than €2p — 1) + fg A+ 73 = fg Al +
8p + 69<C — 1 colors forg;11.2. This contradicts what we proved in the previous
paragraph. OJ

From the definition of a sparse segmeénty;+12) < {v, uit1, gi+1.1, gi+1.3}. Let us
denote the set of colors on the verticesMfu; 1] U N(#) U X (1) U N[gi+1.1]1 U N[qi+1.3]
by Sand call it the set o§maller colors

Claim 4. |S] <dg(uiyr) + 14
Proof. Follows from the definition o6, [

Every vertex inN[u;+1] U N (1) U X () U N[gi+1.1] U N[gi+1,3] is of distance at most 2
from eithert or g;+1,2, and therefore forbids some colors far for ¢; 11 2. Let us call the
set of colors that are forbidden foor g; 1 2 by those vertices themaller forbiddercolors,

and denote them b8F. Sinced (1) <6 andd(g;+1,2) <4 andu;1 iS @ common neighbor
of tandgi;1.2,

ISFI<9(2p — 1)+ |S| — 9= || + 18p — 18. )
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So,SFcontainsSalong with at most 1& — 1) colors which differ from the color of some
neighbor oft or some neighbor af; ;1.2 by at mostp — 1.

Claim 5. Every color that is not in SF differs from every colorM(r) U N (g;+1,2) by at
least p

Proof. By the definition of SF, every color which differs from the color of a vertex in
N(t) U N(gi+1.2) by less thapisin SFE [

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at least
C — 1 — |SF| colors, different from the smaller forbidden colors Niiv) — Q; 1. We call
this set thdarger colors and denote it bly.

Claim 6. |L|>[3 Al —|S|+77>[3 Al — dg (ui+1) + 63

Proof. Follows from the definition ofL, Claim 4, and the bound onSF|
(Inequality4). O

Since|lNW)| — (|1Qil — 2) — |Qi+1| <A — L% A + 61 < |L|, one of thdarger colors
must be on an inner vertex @f;, which without loss of generality, we can assume;is.

Claim 7. The vertices inV(v) — Qi+1 — {gi.2} forbid for ¢; » all the colors in L, except
the one that appears af 2.

Proof. Allthe larger colors appear iN (v) — Q;+1 and so they are at distance at most two
of qi,2- J

Claim 8. The number of forbidden colors fgy ; is at mostL% Al +8p—68<C.

Proof. By noting thatd(g; 2) <4, neighbors of; » forbid at most 42p — 1) colors forg; 5.
Now let us count the number of forbidden colors §pp by the vertices at distance exactly
two of it.

Nlu;+1] U N(¢t) U X (¢r) forbids fort only colors that are ir8F. Thus, by Claim 1, all
the larger colors must appearN{u;] — N (t). Remember that the larger colors appear in
N () — Q;+1, too. Therefore, the number of colors that are ndt end are forbidden for
qi 2 by the vertices at distance exactly 2¢ob is at mostd (u;) —1— (L] — 1) +d(v) —

1— (|L]| — 1)<2A — 2|L|. By considering the vertices at distance exactly twg;ofthat
have a larger color and noting thato has a larger color too, and using Claim 6, the total

number of colors forbidden fay; 2 is at most
42p - D+ QA-2IL) +(|L] - 1) L% Al +dg(uit1) +8p — 68

<
<|3A/+8p—68 O

By Claim 8, we can produce a valid labelling Gfby assignning the color af; 2 to t
(because it is a larger color and so it is different from the colot¥ () and, by Claim 5,
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differs from all the colors inV (¢) by at leasp) and then finding a new color faf » that is
not forbidden for it. This completes the proof of Lem@&&é. [

The rest of the proof is almost identical to that of Theorem 1.3. We use Lemmas 6.4, 6.5,
and 6.6, instead of Lemmas 2.3, 2.13, and 2.14, respectively. The initial charges and the
discharging rules are the same. Without any modifications, Lemmas 3.1-3.5 hold in this
case, too. In Lemma 3.6 we should replace Eqg. (2) with Eq. (3) and use Lemma 6.6 instead
of Lemma 2.14. To do so, it is important to note that whenever we used Lemma 2.14 in the
proof of Lemma 3.6, the degree bivas at most 6; thus, we can use Lemma 6.6, instead.
After doing these modifications, the calculations for the proof of this revised version of
Lemma 3.6 are fairly straightforward.

7. An O (#?) time algorithm

In this section we show how to transform the proof of Theorem 1.3 into a coloring
algorithm which uses at mo$§ A + 78 colors. With some minor modifications in the
algorithm, we can obtain coloring algorithms for Theorems 1.4 and 1.6.

Consider a planar grapgB. We may assume that> 160 since for smaller values of
it is straightforward to obtain an algorithm based on the result of [20] that uses at most
r% A7+ 78 colors. Also, we assume that the input to our algorithm is connected, since for a
disconnected graphitis enoughto color each connected component, separately. One iteration
of the algorithm either finds a cut-vertex and breaks the graph into smaller subgraphs, or
reduces the size of the problem by contracting a suitable ed@eTen it colors the new
smaller graph(s) recursively, and extends the coloring(&) tdore specifically, we do the
following steps, as long as the graph has at least one vertex:

1. Check to see whethé& has a cut-vertex. |b is a cut-vertex and’y, ..., Cy are the
connected components 6f — v then color eaclG; = C; U {v}, independently. The
union of these colorings, after permuting the colors in some of them, will be a coloring
of G.

2. Else, check to see whether there is.&-vertex adjacent to at most one big vertex. If
such a vertex exists, then that vertex along with one of its small neighbours will be the
suitable edge to be contracted.

. Else, construct the triangulated gra@h.

. Apply the initial charges and the discharging rules.

5. As the total charge is negative, we can find a vertaith negative charge. This vertex

must be in one of the reducible configurations described in Leéifor 2.14.
If we find the reducible configuration of Lemn2al3 aroundv then one of the inner
vertices of the sparse segment along with one of its two big neighbours will be the
suitable edge to contract. Otherwise, if we find the reducible configuration of Lemma
2.14 aroundv then we can contract edge (recall the specification dfandw from
Lemma 2.14).

. Color the new graph (after contracting the suitable edge), recursively.

7. This coloring can be easily extendedGdy the arguments of proofs of Lemmas3,

2.13 0r 2.14.

W

»
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That this algorithm works follows easily from the proofs of Lemn3a3, 3.4, and 3.7.
Since in a planar graph the number of edges and faces is linear in the number of vertices we
may letn = | V| be the size of the graph. Finding a cut-vertex in a graph takes linear time.
To see if there is al5-vertex with less than 2 big neighbors we spend at migsl) time.
Also, applying the initial charges and the discharging rules takes time. After finding
a vertex with negative charge, finding the suitable edge and then contracting it can be done
in O(n). Since there ar® (n) iterations of the main procedure, the total running time of
the algorithm would b (1n2).

The algorithms for Theorems 1.4 and 1.6 work almost identically.
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