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Abstract

Wegner conjectured that the chromatic number of the square of any planar graphGwith maximum
degree��8 is bounded by�(G2)��3

2 �� + 1. We prove the bound�(G2)��5
3 �� + 78. This is

asymptotically an improvement on the previously best-known bound. For large values of� we give
the bound of�(G2)��5

3 �� + 25. We generalize this result toL(p, q)-labeling of planar graphs,

by showing that�pq (G)�q�5
3 �� + 18p + 77q − 18. For each of the results, the proof provides a

quadratic time algorithm.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper bygraphwe mean a simple graph. The vertex set and edge set of a graph
G are denoted byV (G) andE(G), respectively. The length of a path between two vertices
is the number of edges on that path. We define the distance between two vertices to be the
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length of the shortest path between them. The square of a graphG, denoted byG2, is a
graph on the same vertex set such that two vertices are adjacent inG2 iff their distance inG
is at most 2. The degree of a vertexv is the number of edges incident withv and is denoted
by dG(v) or simplyd(v) if it is not confusing. We denote the maximum degree of a graph
G by �(G) or simply�. If the degree ofv is i, at leasti, or at mosti we call it ani-vertex, a
� i-vertex, or a� i-vertex, respectively. ByNG(v), we mean the open neighborhood ofv
inG, which contains all those vertices that are adjacent tov inG. The closed neighborhood
of v, which is denoted byNG[v], isNG(v)∪ {v}. We usually useN(v) andN [v] instead of
NG(v) andNG[v], respectively.

A vertex k-coloring of a graphG is a mappingC : V −→ {1, . . . , k} such that any
two adjacent verticesu andv are mapped to different integers. The minimumk for which
a coloring exists is called the chromatic number ofG and is denoted by�(G). The well
known result of Appel and Haken[2] states that:

Theorem 1.1(The Four Color Theorem). For every planar graph G: �(G)�4.

The question of finding the best-possible upper bound for the chromatic number of the
square of a planar graph seems to first have been asked by Wegner[21]. He posed the
following conjecture:

Conjecture 1.2. For a planar graph G,

�(G2)�
{

� + 5 if 4���7,
�3

2 �� + 1 if ��8.

Wegner gave examples illustrating that these bounds are best possible. He also showed
that if� = 3 thenG2 can be 8-colored and conjectured that 7 colors would be enough. Very
recently, Thomassen[18] has solved this conjecture for� = 3, by showing that the square
of every cubic planar graph is 7-colorable, but the conjecture for general planar graphs
remains open.

Wegner’s conjecture is mentioned in [14, Section 2.18], followed by a brief history of it.
One might think that since every planar graph has a�5-vertex then this trivially implies a
greedy algorithm for(5� + 1)-coloring ofG2. See [20] why this straightforward argument
does not work. Jonas [13] in his Ph.D. Thesis proved�(G2)�8� − 22. This bound was
later improved by Wong [23] to�(G2)�3� + 5. Then van den Heuvel and McGuinness
[20] proved�(G2)�2� + 25. For large values of�, Agnarsson and Halldórsson [1] have
a better asymptotic bound. They showed that ifG is a planar graph with��749, then
�(G2)��9

5 �� + 2. Recently, Borodin et al. [4,5] have been able to extend this result
further by proving�(G2)��9

5 �� + 1 for planar graphs with��47. We improve these
results asymptotically by showing that:

Theorem 1.3. For a planar graph G, �(G2)��5
3 �� + 78.

Theorem 1.4. For a planar graph G, if ��241,then�(G2)��5
3 �� + 25.
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Remark. The constants 78 and 25 in the above theorems can be improved. For example
with an extra page of proof the first constant can be brought down to 61 but we do not know
how to bring it down to a number close to 1, using this proof.

The technique we use is inspired by that used by Sanders and Zhao[17] to obtain a similar
bound on the cyclic chromatic number of planar graphs.

A generalization of ordinary vertex coloring isL(p, q)-labeling. Letdist(u, v) denote
the distance betweenu andv. For integersp, q�0, anL(p, q)-labeling of a graphG is a
mappingL : V (G) −→ {0, . . . , k} such that

• |L(u)− L(v)|�p if dist(u, v) = 1, and
• |L(u)− L(v)|�q if dist(u, v) = 2.

Thep, q-span ofG, denoted by�pq (G), is the minimumk for which anL(p, q)-labeling

exists. It is easy to see that for any graphG: �(G2) = �1
1(G)+1. The problem of determining

�pq (G) has been studied for some specific classes of graphs[3,6–12,15,16,19,22]. The
motivation for this problem comes from the channel assignment problem in radio and cellular
phone systems, where each vertex of the graph corresponds to a transmitter location, with the
label assigned to it determining the frequency channel on which it transmits. In applications,
because of possible interference between neighboring transmitters, the channels assigned
to them must have a certain distance from each other. A similar requirement arises from
transmitters that are not neighbors but are close, i.e. at distance 2. This problem is also
known as the Frequency Assignment Problem. Because of the motivating application for
this problem, it is quite natural to consider it on planar graphs. Since the caseq = 0
corresponds to labeling the vertices of a graph with integers such that adjacent vertices
receive labels at leastp apart, the upper bound 3p for �p0 of planar graphs follows from the
Four Color Theorem (if we use colors from{0, p,2p,3p}). So let us assume thatq�1. For
any planar graphG, a straightforward argument shows that�pq (G)�q�+p−q+1. There

are planar graphsG for which�pq (G)� 3
2 q� +O(p, q). The best-known upper bound for

�pq (G), for a planar graphG, is proved in [20].

Theorem 1.5(van den Heuvel and McGuiness[20] ). For anyplanar graphGandpositive
integers p and q, such thatp�q: �pq (G)�(4q − 2)� + 10p + 38q − 24.

We sharpen the gap between this result and the best-possible bound asymptotically, by
showing that:

Theorem 1.6. For any planar graph G and positive integers p and q: �pq (G)�q�5
3 �� +

18p + 77q − 18.

Sections2 and 3 contain the proof of Theorem 1.3. In Section 4 we show how to modify the
proof of Theorem 1.3 to prove Theorem 1.4. In Section 5 we explain why any modifications
of the lemmas used in the proof of Theorem 1.3 are not sufficient to improve this theorem
asymptotically, and one has to come up with a new configuration. These arguments will be
cleared later in the paper. We generalize the proof of Theorem 1.3 in Section 6 to prove
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Theorem1.6. Finally, in Section 7 we describe anO(n2) time algorithm for finding a
coloring as described in Theorems 1.3, 1.4, and 1.6.

2. Preliminaries

A vertex v is calledbig if dG(v)�47, otherwise we call it asmall vertex. From now
on we assume thatG is a counter-example to Theorem 1.3 with the minimum number of
vertices. By a coloring we mean a coloring in which vertices at distance at most two from
each other get different colors. TriviallyG is connected.

Lemma 2.1. For every vertexv of G, if there exists a vertexu ∈ N(v), such thatdG(v)+
dG(u)�� + 2 thendG2(v)��5

3 �� + 78.

Proof. Assume thatv is such a vertex. Contractv on edgeuv. The resulting graph has
maximum degree at most� and becauseG was a minimum counter-example, the new
graph can be colored with�5

3 �� + 78 colors. Now consider this coloring induced onG, in
which every vertex other thanv is colored. IfdG2(v) < �5

3 �� + 78 then we can assign a
color tov to extend the coloring tov, which contradicts the definition ofG. �

Observation 2.2.We can assume that��160,otherwise2� + 25��5
3 �� + 78.

Lemma 2.3. Every�5-vertex in G must be adjacent to at least two big vertices.

Proof. By way of contradiction assume that this is not true. Then there is a�5-vertexv
which is adjacent to at most one big vertex and all its other neighbors are�46-
vertices. Then, using Observation2.2,v along with one of these small vertices will contradict
Lemma 2.1. �

Corollary 2.4. Every vertex of G is a�2-vertex.

Lemma 2.5. G is2-connected.

Proof. By contradiction, letv be a cut-vertex ofG and letC1, . . . , Ct (t�2) be the con-
nected components ofG−{v}. By the definition ofG, for each 1� i� t , there is a coloring
�i of Gi = Ci ∪ {v} with �5

3 �� + 78 colors. We can permute the colors in each�i (if
needed) such thatv has the same color in all�i ’s, and the sets of colors appearing in
NGi (v), 1� i� t , are all disjoint. Now the union of these colorings will be a coloring ofG,
a contradiction. �

The proof of Theorem1.3 becomes significantly simpler if we can assume that the
underlying graph is a triangulation, i.e. all faces are triangles, and has minimum degree at
least 4. To be able to make these assumptions, we begin by modifying the graphG in two
phases.
Phase1: In this phase we transformG into a (simple) triangulated graphG′, by adding

edges to every non-triangle face ofG. LetG′ be initially equal toG. Consider any non-
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triangle facef = v1, v2, . . . , vk of G′. BecauseG is 2-connected, we cannot have both
v1v3 ∈ E(G′) andv2v4 ∈ E(G′) at the same time since they both have to be outside
of f. So we can add at least one of these edges toE(G′) inside f, without creating any
multiple edges. We follow this procedure to reduce the faces’ sizes as long as we have any
non-triangle face inG′. At the end we have a triangulated graphG′ which containsG as
a subgraph.

Observation 2.6. For every vertexv,NG(v) ⊆ NG′(v).

Lemma 2.7. All vertices ofG′ are�3-vertices.

Proof. By Corollary2.4 and Observation 2.6 all the vertices ofG′ are�2-vertices. Suppose
that we have a 2-vertexv inG′ having neighborsxandy. SinceG′ is triangulated, the faces
on each side of edgevx must be triangles, call themf1 andf2. So we must havexy ∈ f1
and alsoxy ∈ f2. SinceG′ has at least 4 vertices,f1 �= f2 and so we have a multiple edge.
ButG′ is simple. �

Lemma 2.8. Each�4-vertexv inG′ can have atmostd(v)2 neighborswhich are3-vertices.

Proof. Let x0, x1, . . . , xdG′ (v)−1 be the sequence of neighbors ofv in G′, in clockwise
order. We show that we cannot have two consecutive 3-vertices in this sequence. If there
are two consecutive 3-vertices, sayd(xi) = d(xi+1) = 3, where addition is in moddG′(v),
then there is a face containingxi−1, xi, xi+1, xi+2. ButG′ is a triangulated graph.�

Phase2: In this phase we transform graphG′ into another triangulated graphG′′, whose
minimum degree is at least 4. InitiallyG′′ is equal toG′. As long as there is any 3-vertex
v we do the followingswitchingoperation: letx, y, z be the three neighbors ofv. At least
two of them, sayx andy, are big inG′ by Lemma2.3 and Observation 2.6. Remove edge
xy. SinceG′ (and alsoG′′) is triangulated this leaves a face of size 4, sayx, v, y, t . Add
edgevt toG′′ (see Fig. 1). This way, the graph is still triangulated.

Observation 2.9. If v is not a big vertex in G thenNG(v) ⊆ NG′′(v).

Lemma 2.10. If v is a big vertex in G thendG′′(v)�24.

Proof. Follows easily from Lemma2.8 and the definition of the switching operation.�

So a big vertexv in G will not be a �23-vertex inG′′. Let v be a big vertex inG and
x0, x1, . . . , xdG′′ (v)−1 be the neighbors ofv inG′′ in clockwise order. We callxa, . . . , xa+b
(where addition is in moddG′′(v)) asparse segmentin G′′ iff:

• b�2,
• Eachxi is a 4-vertex.

In the next two lemmas, we assume thatxa, . . . , xa+b is a maximal sparse segment ofv
in G′′, which is not equal to the whole neighborhood ofv. Also, we assume thatxa−1 and
xa+b+1 are the neighbors ofv right beforexa and right afterxa+b, respectively.
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t
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z

v

Fig. 1. The switching operation.

Lemma 2.11. There is a big vertex in G other thanv, that is connected to all the vertices
of xa+1, . . . , xa+b−1, in G′′ (and in G).

Proof. Follows easily from Observation2.9, Lemma 2.3, and the definition of a sparse
segment. �

We useu to denote the big vertex, other thanv, that is connected to allxa+1, . . . , xa+b−1.

Lemma 2.12. All the verticesxa+1, . . . , xa+b−1 are connected to both u andv in G. If
xa−1 is not big in G thenxa is connected to both u andv in G. Otherwise it is connected to
at least one of them. Similarly ifxa+b+1 is not big in G, xb is connected to both u andv in
G, and otherwise it is connected to at least one of them.

Proof. Since the only big neighbors ofxa+1, . . . , xa+b−1 inG′′ arev andu, by Lemma2.3
they must be connected to both of them inG as well. For the same reasonxa andxa+b will
be connected tou andv in G, if xa−1 andxa+b−1 are not big. �

We callxa+1, . . . , xa+b−1 the innervertices of the sparse segment, andxa andxa+b the
endvertices of the sparse segment. Consider vertexv and let us denote the maximal sparse
segments ofN(v) byQ1,Q2, . . . ,Qm in clockwise order, whereQi = qi,1, qi,2, qi,3, . . . .
The next two lemmas are the key lemmas in the proofs of Theorems 1.3 and 1.4. They
provide two reducible configurations for a graph that is a minimum counter-example to
theorem.

Lemma 2.13. |Qi |�dG(v)− �2
3 �� − 73, for 1� i�m.

Proof. We prove this by contradiction. Assume that for somei, |Qi | > dG(v)−�2
3 ��−73.

Let ui be the big vertex that is adjacent to all the inner vertices ofQi (in bothG andG′′).
See Fig.2. For an inner vertex ofQi , sayqi,2, we have

dG2(qi,2) � dG(ui)+ dG(v)+ 2 − (|Qi | − 3)

� � + dG(v)− |Qi | + 5

< �5
3 �� + 78.
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Fig. 2. The configuration of Lemma2.13.

w

v

ui+1

t

qi,2

ui

qi+1,2

iQ Qi+1

Fig. 3. Configuration of Lemma2.14.

If qi,2 is adjacent toqi,1 or qi,3 in G then it is contradicting Lemma2.1. Otherwise it is
only adjacent tov andui inG, therefore has degree 2, and so along withv orui contradicts
Lemma 2.1. �

Lemma 2.14. Consider G and suppose thatui andui+1 are the big vertices adjacent to
all the inner vertices ofQi andQi+1, respectively. Furthermore, assume that t is a vertex
adjacent to bothui andui+1but not adjacent tov (seeFig.3)and there is a vertexw ∈ NG(t)
such thatdG(t)+ dG(w)�� + 2. LetX(t) be the set of vertices at distance at most2 of t
that are not inNG[ui] ∪NG[ui+1]. If |X(t)|�6 then:

|Qi | + |Qi+1|��1
3 �� − 67.

Proof. Again we use contradiction. Assume that|Qi | + |Qi+1|��1
3 �� − 66. Using the

argument of the proof of Lemma2.1 we can color every vertex ofG other thant. Note that
dG2(t)�dG(ui) + dG(ui+1) + |X(t)|�2� + 6. If all the colors of the inner vertices of
Qi have appeared on the vertices ofNG[ui+1] ∪ X(t) −Qi+1 and all the colors of inner
vertices ofQi+1 have appeared on the vertices ofNG[ui] ∪ X(t) − Qi then there are at
least|Qi | − 2 + |Qi+1| − 2 repeated colors atNG2(t). So the number of colors atNG2(t)

is at most 2� + 6− |Qi | − |Qi+1| + 4��5
3 �� + 76 and so there is still one color available

for t, which is a contradiction.
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Therefore, without loss of generality, there exists an inner vertex ofQi+1, sayqi+1,2,
whose color is not inNG[ui] ∪ X(t) − Qi . If there are less than�5

3 �� + 77 colors at
NG2(qi+1,2) then we could assign a new color toqi+1,2 and assign the old color of it tot
and get a coloring forG. So there must be�5

3 ��+77 or more different colors atNG2(qi+1,2).
From the definition of a sparse segmentNG(qi+1,2) ⊆ {v, ui+1, qi+1,1, qi+1,3}. There

are at mostdG(ui+1)+7 colors, called thesmallercolors, atNG[ui+1]∪X(t)∪NG[qi+1,1]∪
NG[qi+1,3] − {v} − {qi+1,2} (note thatt is not colored). So there must be at least�2

3 �� +
70 different colors, called thelarger colors, atNG[v] − Qi+1. Since|NG[v]| − |Qi | −
|Qi+1|�� + 1 − �1

3 �� + 66��2
3 �� + 67, one of thelarger colors must be on an inner

vertex ofQi , which without loss of generality, we can assume isqi,2. Becauset is not
colored, we must have all the�5

3 �� + 78 colors atNG2(t). Otherwise we could assign a
color tot. As there are at most�+6 colors, all from thesmallercolors, atNG[ui+1]∪X(t),
all thelargercolors must be inNG[ui], too. LetL be the number of larger colors. Therefore,
the number of forbidden colors forqi,2 that are not from the larger colors, is at most
d(ui)− L+ d(ui+1)− L�2� − 2L. By considering the vertices at distance exactly two
of qi,2 that have a larger color and noting thatqi,2 has a larger color too, the total number
of forbidden colors forqi,2 is at most 2� − L��4

3 �� − 70, and so we can assign a new
color toqi,2 and assign the old color ofqi,2, which is one of thelarger colors and is not in
NG2(t)− {qi+1,2}, to t and extend the coloring toG, a contradiction. �

3. Discharging rules

We give an initial charge ofdG′′(v) − 6 units to each vertexv. Using Euler’s formula,
|V | − |E| + |F | = 2, and noting that 3|F(G′′)| = 2|E(G′′)|, it is straightforward to check
that

∑
v∈V
(dG′′(v)− 6) = 2|E(G′′)| − 6|V | + 4|E(G′′)| − 6|F(G′′)| = −12. (1)

By these initial charges, the only vertices that have negative charges are 4- and 5-vertices,
which have charges−2 and−1, respectively. The goal is to show that, based on the as-
sumption thatG is a minimum counter-example, we can send charges from other vertices
to �5-vertices such that all the vertices have non-negative charge, which is of course a
contradiction since the total charge must be negative by Eq. (1).

We call a vertexv pseudo-big(inG′′) if v is big (inG) anddG′′(v)�dG(v)−11. Note that
a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a pseudo-big
vertex. Before explaining the discharging rules, we need a few more notations.

Suppose thatv, x1, x2, . . . , xk, u is a sequence of vertices such thatv is adjacent tox1,
xi is adjacent toxi+1, 1� i < k, andxk is adjacent tou.

Definition. By “v sends c units of charge throughx1, . . . , xk tou” we meanv sendscunits
of charge tox1, it passes the charge tox2, x3, . . . , and finallyxk passes the charge tou. In
this case, we also say “v sends c units of charge throughx1” and “u gets c units of charge
throughxk”. In order to simplify the calculations of the total charges on vertexxi , 1� i�k,
we do not take into account the charges that only pass throughxi .
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Fig. 4. Discharging rules.

In discharging phase, a big vertexv of G (see Fig.4):

(1) Sends 1 unit of charge to each 4-vertexu in NG′′(v).
(2) Sends1

2 unit of charge to each 5-vertexu in NG′′(v).

In addition, if v is a big vertex andu0, u1, u2, u3, u4 are consecutive neighbors ofv in
clockwise or counter-clockwise order, wheredG′′(u0) = 4, then:

(3) If dG′′(u1) = 5, u2 is big, dG′′(u3) = 4, dG′′(u4)�5, and the neighbors ofu1 in
clockwise or counter-clockwise order arev, u0, x1, x2, u2 thenv sends1

2 to x1 through
u2, u1.

(4) If dG′′(u1) = 5, 5�dG′′(u2)�6, dG′′(u3)�7, and the neighbors ofu1 in clockwise or
counter-clockwise order arev, u0, x1, x2, u2 thenv sends1

2 to x1 throughu3, u2, u1.
(5) If dG′′(u1) = 5,u2 is big,dG′′(u3)�5, and the neighbors ofu1 in clockwise or counter-

clockwise order arev, u0, x1, x2, u2 thenv sends1
4 to x1 throughu2, u1.
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(6) If dG′′(u1) = 6, dG′′(u2)�5, dG′′(u3)�7, and the neighbors ofu1 in clockwise or
counter-clockwise order arev, u0, x1, x2, x3, u2 thenv sends1

2 to x1 throughu1.
(7) If dG′′(u1) = 6,dG′′(u2)�6, and the neighbors ofu1 in clockwise or counter-clockwise

order arev, u0, x1, x2, x3, u2 thenv sends1
4 to x1 throughu1.

If 7�dG′′(v) < 12 then:

(8) If u is a big vertex andu0, u1, u2, v, u3, u4, u5 are consecutive neighbors ofu where
all u0, u1, u2, u3, u4, u5 are 4-vertices thenv sends1

2 to u.
(9) If u0, u1, u2, u3 are consecutive neighbors ofv, such thatdG′′(u1) = dG′′(u2) = 5,u0

andu3 are big, andt is the other common neighbor ofu1 andu2 (other thanv), thenv
sends1

2 to t.

Every �12-vertexv of G′′ that was not big inG:

(10) Sends12 to each of its neighbors.

A �5-vertexv sends charges as follows:

(11) If dG′′(v) = 4 and its neighbors in clockwise order areu0, u1, u2, u3, such that
u0, u1, u2 are big inG andu3 is small, thenv sends1

2 to each ofu0 andu2 through
u1.

(12) If dG′′(v) = 5 and its neighbors in clockwise order areu0, u1, u2, u3, u4, such that
dG′′(u0)�11,dG′′(u1)�12,dG′′(u2)�12,dG′′(u3)�11, andu4 is big, thenv sends
1
2 to u4.

From now on, by “the total charge sent fromv to one of its neighborsu”, we mean the
total charge sent fromv to u or throughu. Similarly, by “the total chargev received from
u”, we mean the total charge sent from or throughu to v.

Lemma 3.1. Every big vertexv sends at most12 to every5- or 6-vertex inNG′′(v).

Proof. For any 5- or 6-vertexu, v sends charges tou by at most one rule. �

Lemma 3.2. If v is big andu0, u1, u2, u3, u4 are consecutive neighbors ofv in counter-
clockwise order,such thatdG′′(u2)�7 thenv sends atmost12 throughu2,or sends1 through
u2 anddG′′(u0) = dG′′(u4) = 5 andu1 andu3 are5- or 6-vertices.

Proof. If u2 is big and one of rules 3 or 5 applies then it is easy to verify that it is the only
rule by whichu2 gets charge fromv. If u1 andu3 are both 5-vertices then rule 5 may apply
twice, one for sending charge to a neighbor ofu1 and one for sending charge to a neighbor
of u3, so overallu2 gets at most12 from v. It is straightforward to check that there is no
configuration in which we can apply rule 3 twice.

The only other way forv to send charge tou2 is by rule 4. Note that if this rule applies
then none of the other rules apply. Also,v can send charge tou2 twice by rule 4 since it
might apply under clockwise and counter-clockwise orientations of neighbors ofv. This
happens ifdG′′(u0) = 5, 5�dG′′(u1)�6, 5�dG′′(u3)�6, dG′′(u4) = 5, v, u1, x2, x1, x0
are neighbors ofu0 in clockwise order wheredG′′(x0) = 4, andy0, y1, y2, u3, v are neigh-
bors ofu4 in clockwise order wheredG′′(y0) = 4. In this casev sends1

2 to x1 through
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Fig. 5. Configuration of Lemma3.4.

u2, u1, u0 and sends12 to y1 throughu2, u3, u4, and this is the only configuration in which
v sends charge tou2 twice. This proves the lemma.�

Lemma 3.3. Every vertexv that is not big in G will have non-negative charge.

Proof. By Lemma2.3 every 4-vertex gets a total of at least 2 units of charge by rule 1 and
each 5-vertex gets a total of at least 1 unit of charge by rule 2. Also, the�5-vertices that
send charges by rules 11 and 12 will have non-negative charges, since they are adjacent
to at least three�12-vertices. IfdG′′(v)�12 then it sends12 dG′′(v)�dG′′(v) − 6 by rule
10 and so will have non-negative charge. It is straightforward to verify that there is no
configuration in which a 7-vertexv sends more than 1 unit of charge in rule 8 or 9. Finally,
it is not difficult to see that by rule 8 and 9, a vertex sends at most1

2 for every two neighbors

that it has. So if 8�dG′′(v) < 12 it sends at mostdG′′ (v)
4 �dG′′(v) − 6, and therefore it

will have non-negative charge in any of these cases. Finally, rules 3–7 do not apply to the
vertices that are not big inG. �

Lemma 3.4. Every big vertexv that is not pseudo-big will have non-negative charge.

Proof. Suppose thatv is such a vertex. SodG′′(v)�dG(v)−12 and thereforevwas involved
in at least 12 switching operations, in each of which the edge betweenv and another big
vertex ofG was removed. SinceG′ is simple, these big vertices are distinct. Call them
y1, y2, . . . , yk, wherek�12, in clockwise order. Letxizi be the edge that was added during
the switching operation that removedvyi , and the order ofxi ’s andzi ’s is such thatxi comes
beforezi in clockwise order. Note that allxi ’s and allzi ’s are neighbors ofv in G′′ (see
Fig. 5).

Let us call the vertices betweenzi andxi+1, ui,1, ui,2, . . . , ui,li , starting fromzi . For
consistency, let us relabel temporarilyzi andxi+1 to ui,0 andui,li+1, respectively. Recall
thatk�12 andv sends a total of no more than 1 to any vertex. Thus, in order to show that
v sends no more than its initial charge ofdG′′(v) − 6, it is enough to show that for each
1� i�k, either

(a) v sends a total of at most1
2 to a vertex fromzi to xi+1; or

(b) v sends a total of at mostli+1 + 1 to theli+1 + 2 vertices fromzi+1 to xi+2.
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First we show that there is at least one�5-vertex inui,0, . . . , ui,li+1, for each 1� i�k.
If ui,0 is a 4-vertex we must haveyiui,1 ∈ G′′, becauseG′′ is a triangulation. Assuming
thatui,1 is a 4-vertex we must haveyiui,2 ∈ G′′ and so on, until we haveyi+1ui,li+1 ∈ G′′
and soui,li+1 will be a �5-vertex. So for every 1� i�k, there is a�5-vertex betweenzi
andxi+1; take any such vertex and call itui,ji . By Lemmas3.1 and 3.2 and rule 10, it can
be seen thatv sends a total of at most1

2 to ui,ji , unless 7�dG′′(ui,ji )�11.
So assume that 7�dG′′(ui,ji )�11 andv sends 1 throughui,ji . By Lemma 3.2 both of

the neighbors ofv before and afterui,ji are 5- or 6-vertices and so to each of themv sends
a total of at most12. If zi �= xi+1 then at least one of these lies betweenzi andxi+1 and
therefore we satisfy (a) above.

So we can assumezi = xi+1. Thusui,ji = zi = xi+1, and so (i) 5�dG′′(zi+1)�6,
and (ii) dG′′(ui+1,1) = 5 if zi+1 �= xi+2, or dG′′(zi+2) = 5 otherwise. First assume that
zi+1 = xi+2. Now if dG′′(zi+1) = 5 thenv gets back1

2 from zi+1 by rule 12 and so sends
a total of at most 0 to it. IfdG′′(zi+1) = 6 then it is easy to verify thatv sends nothing to
zi+1 by any rule and so sends a total of at most 0 to it. Either way, we satisfy (b), above.

Otherwise ifzi+1 �= xi+2 then there are at least two vertices betweenzi+1, . . . , xi+2,
that are 5- or 6-vertices and so to each of themv sends a total of at most12. Therefore we
satisfy (b), above. �

So the only vertices that may have negative charges are pseudo-big vertices inG′′. Assume
that v is a pseudo-big vertex ofG′′ whose neighborhood sequence in clockwise order is
x1, . . . , xk. Letmbe the number of maximal sparse segments of the neighborhood ofv and
call these segmentsQ1,Q2, . . . ,Qm in clockwise order. Also, letRi be the sequence of
neighbors ofv between the last vertex ofQi and the first vertex ofQi+1, whereQm+1 = Q1.
If m = 0 then we defineR1 to be equal toNG′′(v).

Lemma 3.5. LetR = xa, . . . , xb, where R is one ofR1, . . . , Rm. Thenv sends at total of
at most�5|R|

6 � to the vertices of R.

Proof. SinceRdoes not overlap with any maximal sparse segment, from every three consec-
utive verticesxi, xi+1, xi+2 inR(where we consider the neighbors cyclicly ifR = NG′′(v)),
at least one of them is a�5-vertex. Eitherv sends a total at most12 to this vertex, orv
sends 1 and by Lemma3.2 the two vertices before that and the two vertices after that are
5- or 6-vertices and sov sends to each of them a total of at most1

2. Thus in either case
v sends a total of at most52 to every three consecutive vertices ofR and so sends at most

�5
6 (b − a + 1)� = �5|R|

6 � to the vertices ofR. �

Lemma 3.6. Suppose thatm�4.Then for every1� i�m eitherv sends at most|Ri | − 3
2

toRi , or v sends at most|Ri | − 1 toRi and

|Qi | + |Qi+1|��1
3 �� − 67. (2)

Proof. We consider different cases based on|Ri |:
|Ri | = 1: Assume thatRi = u. Sinceu is the only vertex between two maximal sparse

segments,dG′′(u)�5. First letdG′′(u) = 5. SinceQi andQi+1 are sparse segments there
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Fig. 6. The first configuration in Lemma3.6.

must be two big verticesui andui+1 that are connected to all the vertices ofQi andQi+1,
respectively. Also,umust be connected to these two vertices, becauseG′′ is a triangulation
(see Fig.6).

Note that by rule 12v gets back the12 charge it had sent tou. Sov is sending a total of at
most 0, so far. Lett be the other vertex that makes a triangle with edgeuiui+1. Assume that
dG′′(t) = 4, andw1, w2 are the two neighbors oft other thanui andui+1. If dG′′(w1)�4 and
dG′′(w2)�4 then sinceQi andQi+1 are sparse segments andui andui+1 are big vertices
inG, by Lemma 2.14 Eq. (2) holds. Otherwise, assume thatdG′′(w1)�5. Then by rule 3ui
will be sending extra12 to v throughu. So overall,v sends a total of−1

2 to u. If dG′′(t)�5
then each ofui andui+1 will send an extra1

4 to v throughu by rule 5 and thereforev sends
a total of−1

2 to u.
Now assumedG′′(u) = 6 and that the neighbors ofuarev, ui, ui+1, t and the end vertices

of Qi andQi+1. Note that in this casev will send nothing tou. Assume thatdG′′(t) = 4
and its other neighbor isw. If dG′′(w)�6 then by Lemma 2.14 Eq. (2) holds. Otherwise,
dG′′(w)�7 and so each ofui andui+1 sends an extra12 to v throughu by rule 6 and sov
sends a total of−1 to u. If dG′′(t) = 5 and its other neighbors arew1 andw2 then either
dG′′(w1)�6 anddG′′(w2)�6 and we can apply Lemma 2.14 to get Eq. (2), or at least one
of w1 andw2 has degree�7 and so one ofui or ui+1 will send an extra1

2 unit of charge to
v throughu by rule 6 and sov sends a total of−1

2 to u. If dG′′(t)�6 then bothui andui+1

send an extra14 charge tov throughu by rule 7. Sov sends a total of−1
2 to u.

If 7�dG′′(u)�11, or 12�dG′′(u) anduwas not big inG, thenu sends1
2 to v by rule 8

or 10 and sov sends a total of−1
2 to u.

If uwas big inG then by rule 11v gets back1
2 throughu for each of the end vertices of

Qi andQi+1 that are adjacent tou, and sov sends a total of at most−1 tou.
|Ri | = 2: Assume thatRi = v1, v2. If dG′′(v1)�6 ordG′′(v2)�6 then it is easy to check

thatv sends nothing to one ofv1, v2 and sends at most12 to the other one, or sends14 to
each, and so sends at most1

2 toRi . So let us assume thatdG′′(v1) = dG′′(v2) = 5 and lett
be the other vertex which makes a triangle withv1, v2. Note thatv sends only1

2 to each of
v1 andv2.



202 M. Molloy, M.R. Salavatipour / Journal of Combinatorial Theory, Series B 94 (2005) 189–213

2v1v

w

(a)

v

ui+1

t
ui

iQ Qi+1

2v1v

(b)

v

ui+1

t
ui

iQ Qi+1

1w 2w

Fig. 7. Two other configurations for Lemma3.6.

If dG′′(t) = 4 then we can apply Lemma2.14 and get Equation (2). LetdG′′(t) = 5 and
call the other neighbor oft (other thanui, v1, v2, ui+1),w (see Fig. 7(a)). IfdG′′(w)�6 then
we can apply Lemma 2.14 to get Eq. (2). OtherwisedG′′(w)�7 and by rule 4ui andui+1
each send an extra12 to v (throughv1 andv2, respectively) and thereforev sends a total of
at most 0 toRi . Now assume thatdG′′(t) = 6 and its neighbors arew1, w2, ui, ui+1, v1, v2
(see Fig. 7(b)). IfdG′′(w1)�6 anddG′′(w2)�6 then by Lemma 2.14 we have Eq. (2).
Otherwise, at least one ofw1 orw2 is a �7-vertex and so one ofui or ui+1 sends an extra
1
2 to v (throughv1 or v2) by rule 4 and thereforev sends a total of at most12 to Ri . If
7�dG′′(t) < 12 thent sends1

2 to v by rule 9 and sov sends a total of at most12 to Ri . If
12�dG′′(t) thenv gets back the12 it had sent to each ofv1 andv2 by rule 12 and so sends
a total of at most o toRi .

|Ri |�3: If there is no 4-vertex inRi then they are all�5-vertices and by Lemmas 3.1
and 3.2v sends a total of at most|Ri | − 3

2 to Ri . If |Ri |�5, sinceRi cannot have three
consecutive 4-vertices, we must have at least three�5-vertices and again by Lemmas 3.1
and 3.2v sends a total of at most|Ri | − 3

2. So consider the case thatRi = v1, v2, v3, v4,
dG′′(v1)�5, dG′′(v4)�5, anddG′′(v2) = dG′′(v3) = 4 (exactly the same argument works
for the case that|Ri | = 3 andv2 = v3). There must be a big vertexw, other thanv,
connected to all the vertices ofRi . If dG′′(v1) = 5 thenv gets back1

2 from v1 by rule 12
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and so sends a total of at most 0 tov1. If dG′′(v1)�6 it can be verified thatv sends nothing
to v1 by any rule. Sincev sends a total of at most12 to v2 and at most 1 to any vertex, it
sends a total of at most|Ri | − 3

2 toRi .

Lemma 3.7. Every pseudo-big vertexv has non-negative charge.

Proof. Recall that the initial charge ofv wasdG′′(v)−6 and thatv sends a total of at most 1
to any neighbor. We will show thatv sends a total of less than 1 to each of several neighbors,
enough so that the total charge thatv loses is at mostdG′′(v) − 6. We consider different
cases based on the value ofm, the number of maximal sparse segments ofv. Recall that by
Observation2.2 we can assume that��160.
m = 0: Sincev is pseudo-bigdG′′(v)�dG(v)− 11�36. Using Lemma 3.5v will send

at most�5
6 dG′′(v)��dG′′(v)− 6 and therefore will have non-negative charge.

1�m�3: By Lemma 2.13 and definition of a pseudo-big vertex:
• m = 1: Then

|R1| = dG′′(v)− |Q1|
� dG′′(v)− dG(v)+ �2

3 �� + 73

� �2
3 × 160� + 62

� 36.

So by Lemma3.5v sends a total of at most|R1| − 6 toR1.
• m = 2: Then∑

1� i�2
|Ri | = dG′′(v)− ∑

1� i�2
|Qi |

� dG′′(v)− 2dG(v)+ 2 × �2
3 �� + 146

� �1
3 �� + 135

� 36.

So by Lemma3.5v sends a total of at most|R1 ∪ R2| − 6 toR1 ∪ R2.
• m = 3: Then∑

1� i�3
|Ri | = dG′′(v)− ∑

1� i�3
|Qi |

� dG′′(v)− 3dG(v)+ 3 × �2
3 �� + 219

� 36.

Therefore by Lemma3.5v sends at most|R1 ∪ R2 ∪ R3| − 6 toR1 ∪ R2 ∪ R3.
m = 4: If v sends a total of at most|Ri | − 3

2 to eachRi then we are done. Otherwise by
Lemma 3.6, we can assume, without loss of generality, thatv sends a total of|R1| − 1 to
R1 and that Eq. (2) holds forQ1 andQ2. Therefore using Lemma 2.13

|R2| + |R3| + |R4| � dG′′(v)− (|Q1| + |Q2|)− |Q3| − |Q4|
� dG′′(v)− �1

3 �� + 67− 2(dG(v)− �2
3 �� − 73)

� � − 2dG(v)+ dG′′(v)+ 213

� 36.

Thus by Lemma 3.5,v sends a total of at most|R2 ∪ R3 ∪ R4| − 5 toR2 ∪ R3 ∪ R4.
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m = 5: v sends a total of at most|Ri | − 1 to eachRi , by Lemma3.6. If there are at
least two values ofi such thatv sends a total of at most|Ri | − 3

2 to Ri then we are done.
Otherwise there is at most oneRi , sayR5, to whichv sends a total of at most|Ri | − 3

2.
Therefore Eq. (2) must hold for|Q1| + |Q2| and|Q3| + |Q4|, i.e.

|Q1| + |Q2| + |Q3| + |Q4|�2 × �1
3 �� − 134.

Then using Lemma2.13∑
1� i�5

|Ri | � dG′′(v)− dG(v)+ �2
3 �� + 73− 2 × �1

3 �� + 134

� 36.

Therefore by Lemma 3.5,v sends a total of at most|R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5| − 6 to
R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5.
m�6: v sends at most|Ri | − 1 to eachRi , by Lemma 3.6. So we are done.�

Proof of Theorem 1.3. By Lemmas 3.3, 3.4, and 3.7 every vertex ofG′′ will have non-
negative charge, after applying the discharging rules. Therefore the total charge over all the
vertices ofG′′ will be non-negative, but this is contradicting Eq. (1). This disproves the
existence ofG, a minimum counter-example to the theorem.

Remark. Using a more careful analysis one can prove the bound�4|R|
5 � in Lemma 3.5 which

in turn can be used to prove�(G2)��5
3 �� + 61. By being even more careful throughout

the analysis one can probably prove the bound�(G2)��5
3 �� + 51 or even maybe with 30

or 20 instead of 51.

4. A better bound for graphs with large �

The steps of the proof of Theorem 1.4 are very similar to those of Theorem 1.3, we only
have to modify a few lemmas and redo the calculations. For these lemmas, since the proofs
are almost identical and do not need any new ideas, we only state the lemmas without giving
further proofs. LetG be a minimum counter-example to Theorem 1.4 such that��241.

Lemma 4.1. For every vertexv of G, if there exists a vertexu ∈ N(v), such thatdG(v)+
dG(u)�� + 2 thendG2(v)��5

3 �� + 25.

We construct the triangulated graphsG′ and thenG′′ exactly in the same way. Lemmas
2.3–2.12 are still valid. The analogous of Lemmas 2.13 and 2.14 will be as follows.

Lemma 4.2. |Qi |�dG(v)− �2
3 �� − 20, for 1� i�m.

Lemma 4.3. Under the same assumption as in Lemma2.14,we have

|Qi | + |Qi+1|��1
3 �� − 14.
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We apply the same initial charges and discharging rules. Again, all Lemmas3.1–3.5 hold.
The analogue of Lemma 3.6 will be:

Lemma 4.4. Suppose thatm�4.Then for every1� i�m eitherv sends a total of at most
|Ri | − 3

2 toRi , or v sends a total of at most|Ri | − 1 toRi and

|Qi | + |Qi+1|��1
3 �� − 14.

Now it is straightforward to do the calculations of Lemma3.7 with the above values to
see that it holds in this case too. This will complete the proof of Theorem 1.4.

5. On possible asymptotic improvement of Theorem 1.3

In this section, we only focus on the asymptotic order of the bounds, i.e. the coefficient
of �. The results of [1,4,5] are essentially based on showing that in a planar graphG, there
exists a vertexv such thatdG2(v)��9

5 �� + O(1) ([5] actually obtains a slightly weaker,
but still sufficient bound). However, as pointed out in [1], this is the best-possible bound on
the minimum degree of a vertex inG2. That is, there are 2-connected planar graphs in which
every vertexv satisfiesdG2(v)��9

5 ��. One of these extremal graphs can be obtained from
a icosahedron, by taking a perfect matching of it, addingk − 1 paths of length two parallel
to each edge of the perfect matching, and replacing every other edge of the icosahedron by
k parallel paths of length two (see Fig. 8).

Therefore, by only bounding the minimum degree ofG2 we cannot improve the bound
�9

5 ��+O(1), asymptotically. This is the reason we introduced the reducible configuration
of Lemma 2.14. We proved that any planar graphG either has a cut-vertex, or a vertexv
such thatdG2(v)��5

3 �� +O(1), or has the configuration of Lemma 2.14.
But there are graphs that are extremal for this new set of reducible configurations in

the following sense: these graphs do not have a cut-vertex, do not have a vertexv with
dG2(v)��5

3 ��, and do not have the configuration of Lemma 2.14. For an odd value ofk,
one of these graphs is shown in Fig. 9. To interpret this figure, we have to join the three
copies ofv8 and remove the multiple edges (we draw the graph in this way for clarity). Also,
the dashed lines represent sequences of consecutive 4-vertices. Around each ofv1, . . . , v4
there are 3k−6 such vertices. So,d(v1) = d(v2) = d(v3) = d(v4) = 3k, d(v5) = d(v6) =
d(v7) = d(v8) = 3k + 3, � = 3k + 3, and for any vertexv ∈ G: dG2(v)�5k + 3 (with
equality holding forv ∈ {v1, . . . , v4}). The minimum degree ofG2 is �5

3 �� + O(1) and
it is easy to see thatG does not have the configuration of Lemma 2.14. Therefore, using
reducible configurations similar to those of Section 2 the best asymptotic bound that we
can achieve is�5

3 �� + O(1). So we need another reducible configuration to improve the
multiplicative constant53.

6. Generalization toL(p, q)-labeling

In this section we prove Theorem 1.6. As we said before, the upper bound 3p for �p0 of a
planar graph follows from the Four Color Theorem (if we use colors from{0, p,2p,3p}).
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Fig. 8. The icosahedron and the modified graph.
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Fig. 9. The graph obtained based on a tetrahedron.

So let us assume thatq�1. We prove the following theorem:

Theorem 6.1. For any planar graph G and positive integer p:

�p1 (G)��5
3 �� + 18p + 59.

Assuming Theorem6.1, we can prove Theorem 1.6 as follows:

Proof of Theorem 1.6. Let c = �5
3 �� + 18�p

q
� + 60. By Theorem 6.1, there is an

L(�p
q
�,1)-labeling ofG with thec colors in{0, . . . , c − 1}. Consider such a labeling and
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multiply every color byq. This yields anL(p, q)-labeling ofGwith colors in{0, . . . , q(c−
1)}. Noting that�p

q
�� p+q−1

q
yieldsq(c − 1)�q�5

3 �� + 18p + 77q − 18 which in turn
completes the proof. �

In the rest of this section we give the proof of Theorem6.1. The steps of the proof are very
similar to those of proof of Theorem 1.3. LetGbe a planar graph which is a counter-example
to Theorem 6.1 with the minimum number of vertices. We set

C = �5
3 �� + 18p + 60

and throughout this section we use colors from{0, . . . , C − 1}. Recall that a vertex is said
to be big ifdG(v)�47.

Lemma 6.2. Suppose thatv is a �5-vertex in G. If there exists a vertexu ∈ N(v), such
thatdG(v)+ dG(u)�� + 2 thendG2(v)�dG(v)+ �5

3 �� + 73.

Proof. Assume thatv is such a vertex and assume thatdG2(v) < dG(v) + �5
3 �� + 73.

Contractv on edgevu. The resulting graph has maximum degree at most� and because
Gwas a minimum counter-example, the new graph has anL(p,1)-labeling with at mostC
colors. Now consider such a labeling induced onG, in which every vertex other thanv is
colored. Every vertex at distance (exactly) two ofv in G forbids one color forv, and every
vertex inN(v) forbids at most 2p− 1 colors forv. So the total number of forbidden colors
for v, i.e. the colors that we cannot assign tov, is at most

dG(v)(2p − 1)+ dG2(v)− dG(v) < 10p − 5 + �5
3 �� + 73

= �5
3 �� + 10p + 68

� C.

The last inequality follows from the assumption thatp�1. Therefore, there is still at least
one color available forv whose absolute difference from its neighbors inG2 is large enough
and so we can extend the coloring toG. �

Observation 6.3. By Theorem1.5we can assume that��162,otherwise(4q − 2)� +
10p + 38q − 24�C − 1 (with q = 1).

Lemma 6.4. Every�5-vertex must be adjacent to at least2 big vertices.

Proof. By way of contradiction assume that there is a�5-vertexv which is adjacent to at
most one big vertex and so all its other neighbors are�46-vertices. Then, using Observation
6.3,v along with one of these small vertices will contradict Lemma 6.2.�

Now construct graphG′ from G and thenG′′ from G′ in the same way we did in the
proof of Theorem 1.3. Also, we define the sparse segments in the same way. Consider vertex
v and let us call the maximal sparse segments of itQ1,Q2, . . . ,Qm in clockwise order,
whereQi = qi,1, qi,2, qi,3, . . . .
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Lemma 6.5. |Qi |�dG(v)− �2
3 �� − 69.

Proof. Analogous to the proof of Lemma2.13. �

The next lemma is analogous to Lemma 2.14. The key difference is that we require a
bound on the degree oft. This is because each vertex adjacent tot can forbid fort up to 2p−1
colors. Thus we have to be more careful about controlling the number of such vertices.

Lemma 6.6. Suppose thatui andui+1 are the big vertices adjacent to all the vertices of
Qi andQi+1, respectively. Furthermore, assume that t is a�6-vertex adjacent to both
ui andui+1 but not adjacent tov (see Fig.3) and there is a vertexw ∈ N(t) such that
dG(t)+ dG(w)�� + 2.LetX(t) be the set of vertices at distance at most two of t that are
not inN [ui] ∪N [ui+1]. If |X(t)|�6 then

|Qi | + |Qi+1|��1
3 �� − 60. (3)

Proof. Again, by way of contradiction, assume that|Qi |+ |Qi+1|��1
3 ��−59. Using the

same argument as at the beginning of the proof of Lemma6.2, we can color every vertex
of G other thant using colors in{0, . . . , C − 1} such that the vertices that are adjacent
receive colors that are at leastpapart and the vertices at distance two receive distinct colors.
Consider such a coloring.

Note. We often focus on the inner vertices ofQi . So recall that there are exactly|Qi | − 2
such vertices (similarly forQi+1). Also, for a setSof vertices each of which has a color,
we sometimes use “the colors inS” to refer to the set of colors that appear on the vertices
of S.

We say that a vertexu ∈ NG2(w) forbidsa color� for w if either (i) u is a distance 2
fromw andu has colour� or (ii) u is adjacent tow andu has a colour that differs from� by
less thanp; i.e., if an assignment of� tow would create a conflict with the colour onu. A
setSof verticesforbidsa setT of colours forw if for each colour� ∈ T , some vertex inS
forbids� for w. A colour� is forbiddenfor w if someu ∈ NG2(w) forbids it forw.

Claim 1. There are at least�5
3 �� + 78 colors inNG2(t) andNG2(t) forbids all the C

colors for t.

Proof. Trivially, if there is a non-forbidden color fort then we can extend the coloring to
t, which contradicts the minimality ofG.

If there are at most�5
3 �� + 77 colors inNG2(t) then (becauset is not colored and has

degree at most 6) they forbid at most�5
3 �� + 71+ 6(2p − 1) = �5

3 �� + 12p + 65< C
colors fort, which contradicts what we proved in the previous paragraph.�

Claim 2. There exists an inner vertex ofQi orQi+1 whose color is distinct from the color
of every other vertex inNG2(t) and differs from the color of every vertex inN(t) by at
least p.
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Proof. By way of contradiction assume the above statement is false. Let us count the
number of forbidden colors fort. The neighbors oft forbid at mostdG(t)× (2p− 1) colors
for t. Let us denote this set of forbidden colors byR. The vertices at distance exactly two
of t are inN(ui) ∪ N(ui+1) ∪ X(t) − N(t), and each of them forbids its own color fort.
However, by assumption, at least|Qi | − 2 + |Qi+1| − 2 of these forbidden colors (fort)
are counted twice. This is because we assumed the claim is false; i.e. for every color� that
appears on an inner vertex ofQi orQi+1 there is a neighbor oft whose color differs from
� by less thanp (and so� ∈ R) or there is another vertex inNG2(t) with color �. Since
dG(ui)+ dG(ui+1)+ |X(t)|�2� + 6, the total number of forbidden colors fort is at most
dG(t)×(2p−1)+2�+6−dG(t)−|Qi |−|Qi+1|+4��5

3 ��+6(2p−1)+63��5
3 ��+

12p + 57< C. This contradicts Claim 1. �

Thus, without loss of generality, we can assume there exists an inner vertex ofQi+1, say
qi+1,2, whose color is different from the color of every vertex inNG2(t) and differs from
the color of every vertex inN(t) by at leastp.

Claim 3. There are at least�5
3 �� + 77 colors inNG2(qi+1,2) and they forbid forqi+1,2,

C − 1 colors(all the colors except the one that appears onqi+1,2).

Proof. First we show that the vertices inNG2(qi+1,2)must forbid all the colors (except the
one that appears onqi+1,2) for qi+1,2. Otherwise, we can produce a valid labelling ofG by
removing the color ofqi+1,2 and assigning it tot, and then assigning a new color toqi+1,2
(from the other colors that are not forbidden for it). Hence, the number of forbidden colors
for qi+1,2 must beC − 1.

If there are fewer than�5
3 �� + 77 different colors inNG2(qi+1,2) then, sincedG(qi+1,2)

�4, the vertices inNG2(qi+1,2) forbid fewer than 4(2p − 1) + �5
3 �� + 73 = �5

3 �� +
8p + 69�C − 1 colors for qi+1,2. This contradicts what we proved in the previous
paragraph. �

From the definition of a sparse segmentN(qi+1,2) ⊆ {v, ui+1, qi+1,1, qi+1,3}. Let us
denote the set of colors on the vertices inN [ui+1] ∪N(t) ∪X(t) ∪N [qi+1,1] ∪N [qi+1,3]
bySand call it the set ofsmaller colors.

Claim 4. |S|�dG(ui+1)+ 14.

Proof. Follows from the definition ofS. �

Every vertex inN [ui+1] ∪N(t)∪X(t)∪N [qi+1,1] ∪N [qi+1,3] is of distance at most 2
from eithert or qi+1,2, and therefore forbids some colors fort or for qi+1,2. Let us call the
set of colors that are forbidden fort orqi+1,2 by those vertices thesmaller forbiddencolors,
and denote them bySF. Sinced(t)�6 andd(qi+1,2)�4 andui+1 is a common neighbor
of t andqi+1,2,

|SF |�9(2p − 1)+ |S| − 9 = |S| + 18p − 18. (4)
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So,SFcontainsSalong with at most 18(p− 1) colors which differ from the color of some
neighbor oft or some neighbor ofqi+1,2 by at mostp − 1.

Claim 5. Every color that is not in SF differs from every color inN(t) ∪ N(qi+1,2) by at
least p.

Proof. By the definition ofSF, every color which differs from the color of a vertex in
N(t) ∪N(qi+1,2) by less thanp is inSF. �

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at least
C − 1− |SF | colors, different from the smaller forbidden colors, inN(v)−Qi+1. We call
this set thelarger colors and denote it byL.

Claim 6. |L|��5
3 �� − |S| + 77��5

3 �� − dG(ui+1)+ 63.

Proof. Follows from the definition of L, Claim 4, and the bound on|SF |
(Inequality4). �

Since|N(v)| − (|Qi | − 2) − |Qi+1|�� − �1
3 �� + 61< |L|, one of thelarger colors

must be on an inner vertex ofQi , which without loss of generality, we can assume isqi,2.

Claim 7. The vertices inN(v) −Qi+1 − {qi,2} forbid for qi,2 all the colors in L, except
the one that appears onqi,2.

Proof. All the larger colors appear inN(v)−Qi+1 and so they are at distance at most two
of qi,2. �

Claim 8. The number of forbidden colors forqi,2 is at most�4
3 �� + 8p − 68< C.

Proof. By noting thatd(qi,2)�4, neighbors ofqi,2 forbid at most 4(2p−1) colors forqi,2.
Now let us count the number of forbidden colors forqi,2 by the vertices at distance exactly
two of it.
N [ui+1] ∪ N(t) ∪ X(t) forbids for t only colors that are inSF. Thus, by Claim 1, all

the larger colors must appear inN [ui] − N(t). Remember that the larger colors appear in
N(v)−Qi+1, too. Therefore, the number of colors that are not inL and are forbidden for
qi,2 by the vertices at distance exactly 2 ofqi,2 is at most:d(ui)− 1 − (|L| − 1)+ d(v)−
1 − (|L| − 1)�2� − 2|L|. By considering the vertices at distance exactly two ofqi,2 that
have a larger color and noting thatqi,2 has a larger color too, and using Claim 6, the total
number of colors forbidden forqi,2 is at most

4(2p − 1)+ (2� − 2|L|)+ (|L| − 1) � �1
3 �� + dG(ui+1)+ 8p − 68

� �4
3 �� + 8p − 68. �

By Claim 8, we can produce a valid labelling ofG by assignning the color ofqi,2 to t
(because it is a larger color and so it is different from the colors inX(t) and, by Claim 5,
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differs from all the colors inN(t) by at leastp) and then finding a new color forqi,2 that is
not forbidden for it. This completes the proof of Lemma6.6. �

The rest of the proof is almost identical to that of Theorem 1.3. We use Lemmas 6.4, 6.5,
and 6.6, instead of Lemmas 2.3, 2.13, and 2.14, respectively. The initial charges and the
discharging rules are the same. Without any modifications, Lemmas 3.1–3.5 hold in this
case, too. In Lemma 3.6 we should replace Eq. (2) with Eq. (3) and use Lemma 6.6 instead
of Lemma 2.14. To do so, it is important to note that whenever we used Lemma 2.14 in the
proof of Lemma 3.6, the degree oft was at most 6; thus, we can use Lemma 6.6, instead.
After doing these modifications, the calculations for the proof of this revised version of
Lemma 3.6 are fairly straightforward.

7. An O(n2) time algorithm

In this section we show how to transform the proof of Theorem 1.3 into a coloring
algorithm which uses at most�5

3 �� + 78 colors. With some minor modifications in the
algorithm, we can obtain coloring algorithms for Theorems 1.4 and 1.6.

Consider a planar graphG. We may assume that��160 since for smaller values of�
it is straightforward to obtain an algorithm based on the result of [20] that uses at most
�5

3 ��+78 colors. Also, we assume that the input to our algorithm is connected, since for a
disconnected graph it is enough to color each connected component, separately. One iteration
of the algorithm either finds a cut-vertex and breaks the graph into smaller subgraphs, or
reduces the size of the problem by contracting a suitable edge ofG. Then it colors the new
smaller graph(s) recursively, and extends the coloring(s) toG. More specifically, we do the
following steps, as long as the graph has at least one vertex:

1. Check to see whetherG has a cut-vertex. Ifv is a cut-vertex andC1, . . . , Ck are the
connected components ofG − v then color eachGi = Ci ∪ {v}, independently. The
union of these colorings, after permuting the colors in some of them, will be a coloring
of G.

2. Else, check to see whether there is a�5-vertex adjacent to at most one big vertex. If
such a vertex exists, then that vertex along with one of its small neighbours will be the
suitable edge to be contracted.

3. Else, construct the triangulated graphG′′.
4. Apply the initial charges and the discharging rules.
5. As the total charge is negative, we can find a vertexv with negative charge. This vertex

must be in one of the reducible configurations described in Lemma2.13 or 2.14.
If we find the reducible configuration of Lemma2.13 aroundv then one of the inner
vertices of the sparse segment along with one of its two big neighbours will be the
suitable edge to contract. Otherwise, if we find the reducible configuration of Lemma
2.14 aroundv then we can contract edgetw (recall the specification oft andw from
Lemma 2.14).

6. Color the new graph (after contracting the suitable edge), recursively.
7. This coloring can be easily extended toG by the arguments of proofs of Lemmas2.3,

2.13 or 2.14.
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That this algorithm works follows easily from the proofs of Lemmas3.3, 3.4, and 3.7.
Since in a planar graph the number of edges and faces is linear in the number of vertices we
may letn = |V | be the size of the graph. Finding a cut-vertex in a graph takes linear time.
To see if there is a�5-vertex with less than 2 big neighbors we spend at mostO(n) time.
Also, applying the initial charges and the discharging rules takesO(n) time. After finding
a vertex with negative charge, finding the suitable edge and then contracting it can be done
in O(n). Since there areO(n) iterations of the main procedure, the total running time of
the algorithm would beO(n2).

The algorithms for Theorems 1.4 and 1.6 work almost identically.
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