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1. INTRODUCTION 

In this paper, which extends earlier work on decision proceures for various quan- 
tified and unquantified restricted sublanguages of set theory (see [FOSSO, BFOS81, 
BF84, CFMS86]), we consider the language 9 built using the elementary Boolean 
connectives (conjunction, disjunction, implication, negation) from set-theoretic 
clauses of the forms 

x=yuz, x = Y\Z, x EY, x=0, u = Un( y). (1) 

In (l), the symbol Un(y) designates the union of all members of y, i.e., 
{x ( (32 E y) x E z}, Note that relationships x G y, x = y n z, etc. (and obviously x 4 y, 
x # y, etc.), can easily be expressed in this language. The still more restricted 
language obtained by forbidding appearances of the operator Un is studied in 
[FOS80] and a (relatively simple) decision algorithm given for it. The case in 
which only one clause of the form u = Un(y) is allowed was treated in [BF84]. 

As in the previous papers in this sequence, the intended meaning of the language 
is that in which variables range over (possibly infinite) sets in the standard universe 
of “naive” set theory, and the various standard set-theoretic operator and predicate 
symbols appearing in (1) have their standard meanings; hence an interpretation M 
of a set of sentences P of the language 9 is a function which maps every variable x 
into a set Mx. If all the sentences of P are true under some interpretation of this 
kind, P is said to be satisfiuble and each interpretation which satisfies P is called a 
model of P. Our aim is to exhibit an algorithm which decides the satisfiability of 
such sets P of sentences. 

As the domain of the interpretation is fixed (the standard universe of von 
Neumann), we should speak of standard interpretations (resp. standard models of P) 
rather than interpretations (resp. models of P). But we will not belabor this 
technical point since this paper is concerned with computational rather than foun- 
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dational or model-theoretic questions, so that all our discussions are carried out in 
ordinary “naive” set theory, no other domain of interpretation ever being intended. 
(Note in this connection that all our considerations are easily formalizable in ZFC 
(see [J]), and, in fact even in weaker set-theoretical systems, since the language 
with which we work includes only a very few constructs.) 

The question we address is motivated by the large goal of implementing a proof- 
verifier which makes essential use of decision procedures of the kind developed in 
this paper and others in the same series (see also [CFOSSS]). Such a verifier would 
include the following components (cf. [S78]), among others: 

(a) An irtferential core, comprising a collection of decision procedures for 
fragments of mathematical theories (e.g., predicate calculus, simple set-theoretic 
languages, elementary analysis, and geometry, etc.). These procedures would be 
managed by 

(b) An outer layer qf administrative routines. These routines would, e.g., main- 
tain a growing library of proved theorems, keep track of demonstrations in 
progress, define the temporary set of hypotheses under which a proof is currently 
proceeding, etc. 

(c) A family of extension mechanisms, to allow the system’s user to define per- 
sonalized families of auxiliary routines, and also to allow new decision procedures 
to be added to the inferential core. 

2. PRELIMINARIES 

As in the preceding papers of this sequence, we can limit ourselves without loss of 
generality to considering simply conjunctions of clauses of the form (1) as well as 
clauses of the form x&y. In what follows, this assumption is made unless the con- 
trary is explicitly indicated. 

Suppose that a set P of simple clauses of the kind described above is given. Then 
a place c( (for P) is a O/l-valued function defined on the set of all variables in P such 
that a(x)=cc(v) v a(z) (resp. c~(x)=cr(y) & -ICC(Z)) if x=yuz (resp. x=,v\z) 
appears in P, and such that a(.~) f 0 if x = @ appears in P. Given a variable x, the 
place 2 is said to be a place at x (for P) if cc(y) = 1 whenever x EL’ appears in P and 
x(_Y)=O when x$y appears in P. 

Any model M of the statements of P defines a set of places for P, and the struc- 
ture of this set of places goes a long way toward describing the structure of the 
model M. More specifically, let p be any point appearing in the model; then the 
function c( defined by R(X) = 1 if p E Mx, U(X) = 0 if p $ Mx is clearly a place, and for 
each x, the place which contains Mx is clearly a place at x. Moreover, if we are 
given any model M and any place CI, then we can consider the set 

gs= {PIPEMX ++ a(x) = 1, for all variables x}, (2) 
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which can be called the set of points (of the universal space of the model M) 
associated with the place a. It is convenient to consider only places a for which 
cz # @ as places of the model M and to exclude the others. This will be done in 
what follows. With this understanding, the subsets gz are clearly disjoint and 
CJ~ 5 Mx if and only if a(x) = 1. Each set cI is either wholly contained in Mx or 
wholly disjoint from it, and Mx = UslCr)=, (T,. Note also that two variables x, y 
have the same representation in a model M if and only if a(x) = a(y) for all places 
of the model. It will be convenient in what follows always to use lowercase Greek 
letters to designate places, and also to write a E x when (TV c x, i.e., when a(x) = 1. 

The set Z7, of all possible places associated with the set P of clauses is clearly 
finite and easily calculated. We aim to state the condition that P should be 
satisfiable using only combinatorial conditions on the clauses of P and on the set of 
places which actually appear in a model M of P. This is clearly some subset l7 of 
I7,, which we suppose to have been chosen in advance. As noted just above, once 
I7 is known we know exactly which variables are equal. We shall therefore suppose 
that (after ZZ is chosen) equal variables are identified in our set of clauses. 

All the essential complications that need to be faced are connected with the 
presence in P of linitely many clauses of the form ui = Un( y,), which will be referred 
to as the U&uses of P. The variables yi appearing on the right of clauses of this 
form will be called Uvariuhfes. Since u = Un(y) and u’ = Un(y) implies u = u’, we 
can clearly suppose without loss of generality that each Uvariable yi appears in just 
one Uclause. 

The following definition takes a first step toward elucidating the logical weight of 
the Uclauses in P. 

DEFINITION 1. Given P and IZ as above, the Ugruph G of P, IZ is the graph 
whose set of nodes is I?, plus one additional node Sz, and whose edges are as 
follows: 

(i) A directed edge connects c1 to s2 if and only if a(y,) =0 for every 
Uvariableyi. (Intuitively, this means that the Uclauses of P tell us nothing about 
the set Un(a,)). 

(ii) Otherwise, a directed edge connects the place a to the place fi if and only 
if B(ui) = 1 for all clauses ui = Un( yi) such that a(y,) = 1. In this case, we write 
a dfl. (If there are no such fl, then a is not the source node of any edge of G.) 
Intuitively, the nodes fl such that a - fi represent all the sets oa in which elements of 
Un(o,) can appear. If there are no such fl, Un(a,) is necessarily null. 

We shall call a node a of G safe if there is a directed path through G starting at a 
which reaches R. A node a will be called null if there is no p such that a =z- fl, and is 
said to be trapped if every sufficiently long path forward from a eventually reaches a 
null node. A node a which is neither safe nor trapped will be called cyclic; some 
path forward from such a node can always be extended indefinitely, but must then 
traverse certain other nodes repeatedly. Note that if a is safe, so is every fi such that 
p-a; hence if a is trapped or cyclic and a * j?, /I is also trapped or cyclic. 
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It is very easy to see that complications greater than those encountered when no 
clauses ui = Un(y,) are present must be expected in the case before us. For example, 
the clauses u = Un(v), L’= Un(u), u # @ can be satisfied, but only by an infinite 
model. Nevertheless, the arguments which follow will show that it is not hard to 
deal with these infinities. However, worse combinatorial difficulties are connected 
with the possible existence of trapped places. To see why this should be so, define 
the height of a trapped place T as one more than the length of the longest path 
forward from r to a null place. Suppose that there is a model for our set of clauses, 
which therefore associates a set Mx with every variable x and a set 0% with every 
place X. If t is of height 1, i.e., null, we have Un(a,) = 0, so err = (@}; hence there 
can be only one such place, which must be a place at 0. Define the height of any 
set s inductively as one more than the maximum height of any of its elements. Then 
it follows inductively that if T is a trapped place the height of ci is at most the 
height of r. This restricts gr to one of a linite collection of possible values, namely if 
H is the maximum height of any trapped place and F, is the (finite) collection of all 
sets of height less than H, CT~ must have some value in FN+ , . We will see in the next 
section that if there are no trapped places, restrictions of this kind, which prevent cry 
from being infinite and cause the combinatorial complications alluded to above, do 
not occur. 

3. THE DECN~N ALGORITHM IN THE ABSENCE OF TRAPPED PLACES 

In this section we deduce some conditions which are necessary for P to be 
satisfiable, regardless of the presence or absence of trapped places. Moreover, we 
show that if trapped places are absent then these conditions are also sufficient for 
the satisfiability of P. 

The conditions with which we work assert that the Ugraph G of P and Zi’has cer- 
tain connectivity properties. Then imply that the sets o,, CI E Z7, can be initialized in 
a manner assuring that the initial interpretation Mx= Uz(_Y,= I cx satisfies all 
equalities in P and allows a subsequent “stabilization” phase to force all remaining 
clauses of P of the type (E, 4) to be satisfied without disrupting any other clause 
already modeled correctly. 

To deduce our first condition we argue as follows. Suppose once more that a 
model of P exists. Form the union Z of o%, c( running over all trapped and cyclic 
places. Then since every /3 such that CC =S /I must also be trapped or cyclic, it follows 
that Un(Z) EC. Take any element p, EC, CC. If p, # 0, it has an element p2 
belonging to some p such that 01 */I; if pz # 0, we can repeat this argument to 
produce p3, etc. This gives a sequence . . +p3 EP~ up, E oa, which by the set-theoretic 
axiom of well-foundedness cannot be infinite. It follows that there must be a path 
through G to a node ct which is a place at 0. This gives a first necessary condition 
for satisfiability: 

C0NDrTI0N C 1. Let the set P of clauses be satisfiable by a model whose set of 
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places is n, and define the Ugraph G corresponding to P, I7 as above. Then, if there 
are any non-safe places in Z7, there must exist a non-safe place y which lies along a 
path through G from every non-safe node. Moreover, y must be a place at 0. 

If condition Cl is satisfied, we can define a useful auxiliary map J/ of places to 
places as follows: given c(, let $(a) be any node j3 which is one step closer to 52 
(resp. y) along a path of minimum length leading from a to Sz (resp. y). If a => Sz, 
put $(a) = 52. Moreover if y is not null (which implies that no a is null) choose any 
a such that y * a, and put $(y) = a. The map $ will be used later when we construct 
a model for P. Before this, however, we need to state additional satisfiability 
conditions. 

Suppose once more that we have a model A4 for P, and derive the sets 0% and the 
Ugraph G from this model as above. For any two sets S, t write s E* t if there is a 
chain of intermediate elements si such that SES, E ... E.S~ E t. Since in set theory a 
circular sequence of membership relations si E* si is impossible, any finite collec- 
tion C of sets can be enumerated in such a way as to ensure that no set s of C can 
satisfy s E* t for a set t coming earlier in sequence. In the following discussion it is 
supposed that the variables appearing in P are arranged in a sequence derived from 
such an enumeration of the sets Mx. For each variable x, consider the set Z7, of all 
places a such that Mx E* oz. Then plainly we must have a(y) = 0 for all y preceding 
.Y in sequence. Moreover, if Mx E* CT~ and O? c Mu,= Un(My,) for some 
Uvariable yi and clause ui = Un( y,), then there must exist a place /? E yi such that 
fl j a, and such that Mx E* os. For each a such that Mx E* CT% for any variable x 
and for each Uvariable y, such that a G ui, choose any j3 c yi such that fl- a and 
Mx E* CT,] and call it cj,(a, y,). Finally, define q5(a, y,) for all Uvariables yi such that 
cx z u, as any b E y, such that J => a. This gives us a collection of maps 4, 4, and a 
collection of sets L’, of places, one for each variable x appearing in P, having the 
following properties: 

(i) d(a, y,) is defined for all places a and Uvariables yi such that a G ui, 
where ui = Un(yi) is in P; and the value /3 = &a, yi) is a place such that j? E y; and 
p =3 2. 

(ii) For each variable x, the place a, at x defined by a,(y) = 1 iff Mx E My 
belongs to Z7,, and moreover if c( E I7, and ac ui, then #\-(a, yi) is defined and 
4,(a3 Y,) E n,, dV(a, Y;) au, 4Ja, Y;) EY,. 

(iii) For each variable x, none of the places acJI, satisfy a c y for any 
variable y which is either equal to x or comes before x in the enumeration of 
variables defined above. 

In what follows, it will be convenient to call an enumeration of variables and 
maps 4 and 4, having properties (i)-(iii) a good Uorder (of variables) and good 
Umups respectively; we will not bother to introduce a corresponding term for the 
sets Z7, of places, though of course such sets of places must be defined in connection 
with any purported good Umap 4,. 
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The preceding discussion allows us to state a second condition necessary for 
satisliability: 

CONDITION C2. Let P, I7, G, etc., be as in condition Cl above. Then (if P is 
satisfiable) a place a, E I7 such that a,(v) = 1 (resp. (w,(v) = 0) if x my (resp. x .$I’) 
occurs in P must be defined for each variable x appearing in P and there must exist 
sets Z7, c 27 for each variables, a good Uorder of variables, and good Umaps q4 
and I$,, which by definition will have the properties listed in (i)-( iii) above. 

Still one more necessary condition remains to be stated. To see what this is, let 
M, ox, rv, etc., be as above. Then if u, = Un(y,) is a clause and Mx E Mq’,, we must 
have Mx s Mu,. Hence the following condition must obviously be satisfied: 

CONDITION C3. If u, = Un(y) is a Uclause of P and a, EL’; & x crx, then ;Y c u,. 

This completes the statement of all conditions for satisfiability, at least in the 
absence of trapped places. That is, we can now go on to show that if there are no 
trapped places in the Ugraph G of P, and if conditions Cl-C3 are all satisfied, then 
a model for the clauses of P can be constructed. The construction of this model is 
easy once a sufficient supply of “auxiliary elements” is assured; accordingly, we will 
begin by assuming that such auxiliary elements with the needed properties have 
been constructed, and will show how these can be used to build a model M. After 
this, the narrower technical problem of constructing the auxiliary elements will be 
adressed. 

The properties which the auxiliary elements must have are as follows: 

(a) Suppose that condition Cl is satisfied, and let the set Z7 of places, the 
Ugraph G, and the map $, etc., be as in that condition. Then we assume that 
infinitely many distinct singleton sets A, called auxiliary elements, as well as various 
other sets B, not necessarily singletons, can be associated with each place a E I7. The 
elements B will be called secondary elements, and any auxiliary or secondary 
element associated with c( E I7 will be said to be resident at c(. Every secondary 
element B must satisfy BE* A, where A is some auxiliary element. (As above, the 
relationship s E * is defined by the condition that there should exist a chain of sets 
s, ,..., sk such that .r E s, E . E ,sk E t.) 

(b) No two auxiliary elements A, A’ can satisfy A E* A’. 
(c) If $(a) # 52, every element of an auxiliary or secondary element A resident 

at the place x is a secondary element resident at the place Il/(cr). 

(d) The sets of auxiliary and secondary elements resident at distinct places c(, 
p are always disjoint. 

Suppose that infinitely many distinct auxiliary and secondary elements having all 
the properties (a), (b), (c), (d) are available. Then we can build a model M for the 
clauses of P as follows: 
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(1) Arrange the infinite sequence of auxiliary elements resident at each a in l-l 
association with the lattice points of the plane, i.e., divide them into infinitely many 
infinite “rows.” The construction to be described will iterate through a sequence of 
steps, each of which may require countably many elements, and this arrangement 
simply ensures that the construction will never exhaust the available supply of 
auxiliary elements A resident at any ~1. In what follows, we will suppose that the A 
have the lexicographic order imposed by this arrangement and when A are required 
we will select them in this order. 

(2) Initialize each of the sets c, by inserting all the secondary elements resident 
at a into frZ. In addition, put three distinct and unique auxiliary elements into each 
CJ~. Let {A, ... A j,,) be the set of all auxiliary elements used for this. Note that at 
the end of this step, all the c1 are disjoint and every one of them contains at least 3 
elements. 

(3) By the stabilization process defined by the maps 4 and 4, appearing in con- 
dition C2 we designate the following operation. If p has been put into (rX (either in 
initialization step (2) or in the first phase of the stabilization process itself), then for 
every Uclause u, = Un(y,) such that a c u,, choose a previously unused auxiliary 
element A resident at a, put the pair (p, A } into the set eB,, where pi = d(c(, y,), and 
also put A into 0%. Note that when it is generated, the pair (p, A} must be distinct 
from all elements previously inserted into any of the (T,, and so must the auxiliary 
element A. Indeed, A, which is a singleton, cannot be a previously formed pair; we 
will also see below that it cannot equal any of the sets MX that we form, because 
such sets always contain at least three elements. For the same reason, {p, A} can 
never equal a set M.u or a previously used auxiliary element, nor can it equal any 
secondary element B, since then there would exist an auxiliary A’ such that A E* A’, 
which is impossible. Finally, { p, A } can never equal any previously formed pair 
{q, A’}, since this could only happen if p= A’, q = A, but A follows A’ in 
lexicographic order so that the pair {A, A’} would never have been formed. 

The stabilization process continues until such a pair {p, A} has been formed for 
every p inserted into any one of the sets (T,. The argument just given shows that the 
sets cr? remain disjoint throughout the stabilization process. Moreover, whenever 
{ p, A ) is inserted in fl= ~(cY, y ;), we have a E ui and p is already in (T,. A is put in 
o,, but all the elements of A are secondary elements which will already have been 
put into atic%, if $(a) #Q, i.e., if a cyi for any Uvariable yi. Hence, since the 
condition 

holds initially for every Uclause ui = Un( y,), it holds throughout the stabilization 
process. Thus if Mx denotes the value ulS.Y cr%, Mui 3 Un(My,) must hold when 
the stabilization process ceases to generate new pairs. But because of all the pairs 
{ p, A j inserted, we must also have Mu, E Un(My,), and therefore we must have 
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Mu, = Un(M_r,,) for every Uclause II, = Un(_rt,). Moreover, since all the CT, remain 
disjoint, all clauses of the form s = y n 2, .Y = J~\z. and .Y = @ must also be modeled 
correctly. Thus it only remains to force all clauses x E J and .Y $_rl to be modeled 
correctly. 

For this, we simply work through the sequence of all variables, X, treating them 
in the (ascending) good Uorder mentioned in condition C2. When a variable x is 
processed, all the places 2 c .Y will have received values CJ~ which will never change 
subsequently, so that we can define MX = lJ,, , CT~. The variable (;7 can be 
bypassed, since M@ = @ E ma will always hold (see below). To process other 
variables X, Mx is inserted in the set (T,? (where c(, is the designated place at x (see 
above)), and the stabilization process is applied, this time using the map 4,. in place 
of the map 4. Note in this connection that 

(i) M.u cannot be identical with any previously generated element. To see 
this, note that, for reasons already explained, Mx cannot be identical with any 
auxiliary or secondary element, or any pair (p, A ). Moreover, no two sets Mx, My 
can be equal, since at the start of our construction Mx n {A , ,..., A 3,r ) = U 31 L , CJ? n 
{A, ,..., A3,, ), and this relationship is never disrupted by a subsequent insertion of 
any one of the elements of (A, ,..., A,,,) into any of the sets uI. 

(ii) If 2,. c y, and c( c .Y, then M c u, by condition C3. Hence if Mx is inserted 
into MJ-, all the elements of Mx must already belong to Mu,, proving that the 
relationship Mu; 2 Un(My,) is not disrupted by insertion of Mx into n2,. Thus 
application of the stabilization process restores all relationships Mu, = Un(M_r,). 

(iii) By condition C2, no r which is included either in .Y (i.e., LY CX) or in a 
variable _r which comes before .Y in the good Uorder of variables can be part of a 
chain a, of places satisfying 2, = 3, , cc, + , = dy(u,, JV,,). However, it is only such 
places that are affected either by insertion of Mx into LX,. or by the subsequent 
stabilization process. It follows that no relationship My = iJZL ,. CT% is disrupted by 
the said insertion or stabilization operations. This guarantees that literals of type 
_t’ E : or ~94; are correctly modeled. Therefore at the end of the series of steps 
described M will be a model for all the clauses P. 

We therefore will have proved that conditions Cl, C2, and C3 are necessary and 
sufficient for satisfiability of P (at least in the situation in which there are no trap- 
ped places) as soon as we show how to construct a family of auxiliary and secon- 
dary elements having all the properties (a), (b), and (c) listed above. For this, we 
can proceed as follows. 

Begin with all places c( such that $(cx) = Q. Assign disjoint infinite sets of integers 
n 3 3 to these places, and for each integer n assigned to a build the singleton {n f. 
Define half these singletons to be auxiliary elements resident at CX, and the other half 
of these singletons to be secondary elements resident at a. 

Next suppose that there are cyclic places a, but continue to suppose that there 
are no trapped places. Then, as has been shown earlier, there is a place y = c(~ at 0 
and a path through the Ugraph G (see condition (1)) to y from any other cyclic 
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node. Hence by definition of the map \I/ there is some cycle y , ,..., ym + , of length m 
at least 2, such that y I = y, + , = y, and yi+ 1 = $(y,), i = l,..., m. (Note that this cycle 
is allowed to contain repetitions.) Define the set 0, for all n >O by aO= 0, 
0 ,+ , = (rzci}, and let all the sets a,, of this form with n E 1 -j (mod m) be secon- 
dary elements resident at y,. (Since all these elements are inserted into o;., initially, 
we have 0 E (T,., = (T,@ as noted above.) Then form all pairs { @,,, @,,+,} and let all 
such pairs with n E m -j (mod m) be additional secondary elements resident at yi. 
Finally, form all singletons rr,, = { (@,, , a,, + , } ) and let all those with n s m - 1 -j 
(mod m) be resident at y,. Take the infinite set of the singletons of this last form 
resident at y, and divide this set, in any convenient way, into disjoint parts, both 
infinite; define the singletons belonging to one of these parts to be auxiliary 
elements resident at I’,, while the singletons of the other part are defined to be 
secon&r_r elements resident at 7,. 

Next define further singletons rr,,. , by rr,,, , = 7t,,, n,, , + , = {T-C,,, ,}. It is easy to see 
that TC,,,; E* TT,,~ if and only if n = I and j< k. Indeed, rr ,,., E* r~,,~ implies that 
i0,,, 0,,+,,,) E* x/.~:, and then clearly {0,,, 0,,+,,1) E* {{0,, Ozr,+m)>, so either 
(la,,, 0,,+,,,1= (0,, 0,+,,1)3 impbk n=L or {0,,, 0,,+,) E* 0,+,w7 which is 
impossible. But once we know that rr,,,, E* rc,, k implies n = 1, it follows trivially that 
it must also imply k >j. 

We have associated infinitely many auxiliary and secondary elements of the form 
(a), where n is an integer 33, with each place c1 such that $(a) = Q. Much as 
previously, define rr:, , , by rr,T. , = {n}, nz.,, , = in:, ,}. Then n,,, , E* n/Tk would imply 
that (a,,, @,, +,,Ij E* n/Tk, and hence { aa,,, 0,, +#,> E* I, which is impossible since 
all the elements of an integer are themselves integers. For the same reason, 
Jr:, e* n/. A is impossible, and n,$*rr&. implies that n = 1 and j < k. 

At this point we have associated infinitely many auxiliary and secondary elements 
rl II. I with each place 2” of the cycle y, . yn, + , , and with each y such that $(y)=Q, 
and it only remains to extend this association to the remaining cyclic and safe 
places. For this, a simple iterative construction can be used. Regard a place as hav- 
ing been treuted if secondary and auxiliary elements rr,,, , or rr,T, have already been 
associated with it. If any untreated places remain, choose some tl which has already 
been treated, but for which there remain untreated fl, ,..., Pk such that $(Br) = . = 
$(/lk) = cc. Divide the infinitely many secondary elements rr,,, , or rr,T., resident at M 
into k subsequences, all infinite, and define the elements rr,,. , + , (or rr:, , + , ) such that 
n,,,, (or rc,Ti) belongs to the ith of these subsequences to be resident at pi, i= l,..., k. 
Divide the infinite set of resident items thereby associated with each of the fl, into 
two infinite subsequences, and define the elements of one of these subsequences to 
be uu.uiliury elements resident at /?,, while the elements of the other subsequence are 
defined to be secondary elements resident at /3,. Continue in this way as long as any 
untreated places remain. Finally, in order to ensure that every secondary element p 
is a member of some auxiliary element, we adopt the technical convention of form- 
ing {b) as an auxiliary element without specific residence whenever fi is a singleton 
secondary element for which i/j} is not otherwise introduced. 

It is clear that the collection of auxiliary and secondary elements A constructed in 
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this way satisfies all the conditions (a), (b). (c), (d) stated previously. This com- 
pletes our treatment of the case in which no trapped places exist, i.e., shows that if 
the Ugraph G appearing in condition Cl has no trapped nodes, then conditions Cl, 
C2, C3 are necessary and sufficient for the satisfiability of P by a model having I7 as 
its set of places. The case in which trapped places can exist is considered in the 
section. 

next 

4. THE DECISION ALGORITHM WHEN TRAPPED PLACES ARE PRESENT 

The construction of a model of P in the presence of trapped places is a bit subtler 
than that applicable in the case considered in the previous section. The main dif- 
ferences stem from the fact that in this case the role of the single place y must be 
played by a finite set of places, called y,, Ye,..., yl. in the discussion which follows; 
moreover, sets associated with trapped places can only range over a finite family of 
finite sets known a priori. This last limitation makes the stabilization phase more 
complicated. 

Define the height of a trapped place r and the height of a set s as in Section 2; let 
H be the maximum height of any trapped place t, and suppose that there exists a 
model M with places I7, sets G,, etc., all as in our preceding discussion. For each h, 
let F,, designate the finite family of all sets of height <h; note (for implicit use in 
what follows) that the union of subsets of F,, is itself a subset of Fh. As shown 
earlier, or s F, for all trapped t. Put a; = 0, n I;H+, for each a. Call a variable x 
trapped if z c .Y implies that a is trapped. Plainly if T is trapped then cr = 0: c FH, 
hence if x is trapped Mx= lJZi \ uq = IJ,, ~ 0: c F,, that is, MXE F,, , and then 
M.YEQ,~~F,,,,= ok,. Let x be a variable such that a_, is trapped. Since x _C_X 
implies 2, * sl, it follows that .Y is trapped and U,, ~ a: E ok,. Let ui = Un(y,) be a 
Uclause. Let r~ be a trapped place and suppose that CI c J,. Then Un(o:) = 
Un(g,) c (Uljth ap)n FH+ I = UljBh & where h is the set of places /I’ such that 
X+/Z?. Note that these /J’s are all trapped and PC u,. 

Forcc,BE17uIn}weputa-_ifcw~*BandP~*~,wherey~*6meansthat 
there is a directed path, possibly null (i.e., ‘/ = 6), from y to b. 

Clearly - is an equivalence relation. Moreover the partition of Z7 induced by - 
refines the crude partition of the set of all places into safe, trapped, and cyclic 
places. 

By [a] we will denote the equivalence class (relative to the relation -) contain- 
ing c(. (These are the strongly connected components of the Ugraph G. See [AHU, 
p. 1891.) Define the auxiliary directed graph (7 induced by the Ugraph G as the 
graph whose nodes are the equivalence classes of - and whose edges are the 
following: 

[a] jc [fi] is an edge of G if [cl] # [/?I and there are M’E [a], B’E [/?I such 
that a’ ac; B’ is an edge of the Ugraph G. 

It is obvious that C has no self-loops, and that G is acyclic. Next suppose that 
there are cyclic places. Consider the subgraph L = {[a] ( c1 is cyclic) induced by c. 
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Obviously L is acyclic too, and hence since L is finite there exist elements of L with 
no outgoing edge to any other element of L, i.e., the set M = ( [a] E L 1 [a] has no 
outgoing edge in L} is non-null. Let [a] EM. Then if [a] =z-~ [/I], /I must be trap- 
ped. Indeed, by the definition of M, p cannot be cyclic; and clearly fl cannot be safe 
because otherwise a would also be safe. Moreover there must be at least one trap- 
ped place /I such that [a] ac [p], because as observed earlier there is a path from 
every non-safe place to the place at 0, and the place at @ is not an element of [a] 
since it is not cyclic. Let [a,], [a,],..., [ak] be the elements of M. For each [ail, 
i = l,..., k, consder the set Si = UaE rr,] (rp. Let yi be an element of Si having minimal 
height. Without loss of generality we can assume that yio gz,. Clearly yic lJPEb og, 
where h is the set of places /? such that ai =-G /?. Moreover, by the minimality of the 
height of yi, no element of yi belongs to Si; from which it follows that every such 
element lies outside the union lJ 0% extended over all cyclic places a. Thus 
y,~ lJllEh, (T,~, where h’ is the set of places in b which are trapped. Hence 
i’iE U,ltzh’ ag, which implies that yip (T,, n FH+ , = a:,. Various other useful proper- 
ties of the elements yi now follow easily. First, for every i,j~ { 1, 2,..., k), yi E* yi is 
false. Indeed if there exist i,j such that y;~* yj, then i#j and for some si,..., s, we 
must have ~~e.7, E ... ES, E y,. That implies the existence of places fli ,..., p, such 
that ai ati /I, =J~..’ +G fl, JG. a,, and then plainly all the fiis are cyclic places. 
From this it follows at once that [ai] =s-: [a,] which, by the definition of the [ail’s, 
is a contradiction. Moreover for each iE { 1, 2,..., k} and each trapped place z, 
yi E* 0: is false. Indeed if this were not the case, it would follow as above that 
ax aG /3, *G.. . dG /?, aG ai, which is impossible, since a, is trapped while ai is 
cyclic. Another important property of the classes [ai] is that every element in such 
a class lies in a cycle. To see this take any element a of [a,]. Then there must be a 
path from a to a cycle of places. But no edges along this path can exit [ai], since if 
any did it would have to terminate at a trapped place, which is clearly impossible. 
It follows that [a,] must contain at least one cycle; but then since all the elements 
of [z,] are equivalent, it follows that every element of [a;] lies on a cycle. 

By the definition of a, ,..., ak, there is a path from every cyclic place to at least 
one of the a,‘s. This allows us to define various maps which will be useful in the 
following. Specifically, let ui = Un(y,) be a Uclause. For each place a s uj, there 
must exist a p G I’, such that fi aG a. If any such p is non-trapped, choose such a fi 
and call it &cl, y,); otherwise let &a, y,) be any trapped fi such that /I jG a and 
B GY;. If 44 Y;) is trapped then a is trapped too, and CJ: = B, E lJBEh Un(aB) = 
Up, h Un(o;,), where b is the set of all places B such that /I E yi and /I z-G a. As in the 
previous case in which no trapped places exist, we can define a good Uorder of the 
variables occurring in P and a good Umap 4\-(a, y,) having properties (ii), (iii) 
listed just before condition C2 as well as the following property: 

(iv) If a, is non-trapped, then all places in I7, are non-trapped. 

To show that if a model exists condition (iv) can always be satisfied along with the 
other conditions (ii), (iii) we reason as follows. Let a., be non-trapped and a EZRA. 
By the definition of n, (see the paragraph preceding the statement of conditions (i), 
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(ii), and (iii)) we have A4.u E* (rl. Hence there are elements s,,..., s, such that 
MXES, E .” ES, E crz. Suppose that c2 is a trapped place. Let c(,, ,0, ,..., 8, be places 
such that MXECJ I,, s, E ail!. None of these places can be safe, and the preceding 
chain of memberships imphes (inductively) that r = 8, +G ... aG 8, dc a,, so that 
all the places in the sequence must be trapped, contradicting our assumption that 
X, is not trapped. 

The preceding discussion shows that if there exists a model M of P with places Z7 
and Ugraph G involving trapped places 5, the following combinatorial conditions 
must be satisfied: 

CONDITION Cl ‘. Let H be the maximum height, in the Ugraph G, of any trap- 
ped place z, and let F,,, , be as above. Then there must be a map 1 --t a; of places 
to disjoint subsets of FH+ , such that ai # @ whenever a is trapped, and there must 
exist a map x + a, of the set of all the variables occurring in P to the set of all 
places, such that: 

(i) If SE_V (resp. .u$_v) occurs in P then r,(y)= 1 (resp. a,(y)=O). 
(ii) If .Y is trapped (that is, all places a such that c( EX are trapped), then 

UXiY4E4\. 
(iii) If u, = Un(y,) is a Uclause and cx: is a trapped place for which sl c y,, then 

Un(4) E UPEh + where h is the set of places p such that c1 jc D. 

(iv) If there are any cyclic places, then there exists a set {a, ,..., ak} of such 
places, each lying in some cycle of the Ugraph G, and for each i = l,..., k an element 
‘J,E~J:, such that ‘J, E* y, is false for every i,j= l,..., k, and such that y, E* ah is also 
false for every i = l,..., k and every trapped place b. Moreover for each cli the set hi 
of trapped places /? such that E, ac p, is non-empty and y, E UBEhr oil. Finally, 
there must exist a path through the Ugraph G forward from every cyclic place a to 
some r,, i= 1, 2 ,..., k. 

CONDITION C2’. There must exist maps #(a, yi) and ~,(oL, yi) defined for 
places u, variables X, and Uclauses u, = Un(y,), both having values (when defined) 
which are places B 5 y, such that p ac c(. Moreover, there must exist a good Uor- 
der of the variables and a set of places Z7,, for each variable x, such that if IX, is 
non-trapped then all places in Z7, are non-trapped, and 4, must be a good Umap in 
the sense of the previously stated Condition C2 in the preceding section, and must 
be defined for every a E 17, and every Uclause ui= Un(y,) such that CI E ui. In 
addition, d(c(, yi) must be defined for each CI s ui and must be non-trapped if there is 
any non-trapped /3 c y, such that fi aG a. Moreover if &a, yi) is trapped, then we 
must have a;~ UliEh Un(ah), where b is the set of a11 places psy, such that 
p=PG.x. 

CONDITION C3’. This is identical to condition C3 stated in Section 3. 

We shall now complete our analysis by showing that the three conditions Cl ‘, 
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C2’, C3’ are not only necessary but also sufficient for satisliability of the clauses P 
by a model having the set of places ZZ. Suppose therefore that these conditions are 
satisfied. To construct a model A4 for the clauses P, we will use much the same 
method as in the easier case in which no trapped places exist, but with the dif- 
ference that no elements are ever added to a set 0x if the place a is trapped; thus for 
trapped places we will always have rzrI = a:. Our first step is to construct a sufficient 
supply of auxiliary and secondary elements resident at each non-trapped place. We 
begin by considering the case in which cyclic places do occur. (However, if there are 
no cyclic places the proof is much the same; in this case the reader has only to 
ignore what is said about cyclic places in the following paragraphs.) Define an 
auxiliary map II/ from non-trapped places to non-trapped places as follows. 
Clause (iv) of condition Cl’ implies the existence of cyclic places CI, ,..., CQ, all of 
them lying in some simple cycle, which we will designate by cli = /Ii, I =z-~ pi, 2 aG 

“’ *Bi,m,+I=@,? i = l,..., k, m, 2 1. For each of the places /Ii,i we put $(/?,,l) = 
B ,.,+ , , 1 Q< rn;, with the understanding that j and j+ 1 are taken modulo mi. 
(Note that no two of the cycles pi, ,,..., /I;,,,, intersect.) For all remaining cyclic 
places a we put $(LY) = /I, where B lies one step closer than c( along some shortest 
path through the Ugraph G to an element in one of these cycles. If CI is safe, we put 
$(a) = R if c( * Sz; otherwise we put Il/(cc) = /I, where fl lies one step closer to L2 than 
does a (again, along some shortest path through G to one of the cycles above). 
Condition (iv) of Cl ’ ensures that $ is well defined for all cyclic places, Moreover it 
is obvious that if a is cyclic than $(a) is cyclic too. For each cli, i= 1, 2,..., k, define 
sets y)“) by y!O’=yi, yin+‘)= {JJ’“‘}, where yie ai, is the element appearing in (iv) of 
Cl’. Define all the yi”) with n s 1 -j (mod mi) to be secondary elements resident at 
fl,, ,; also, form all pairs {yi”), yf”+mr) >, and let all the pairs of this form with 
n = m, -j (mod m;) be secondary elements resident at fli,i also. Next define 
singletons rr; = ( { yi”), ,)‘I+ W) } }, and take each such singleton with n E mi- 1 -J’ 
(mod m,) to be resident at pi, j. Divide the infinite set of these singletons resident at 
/Ii,i in any convenient way into two disjoint infinite parts; define singletons belong- 
ing to one of these parts to be auxiliary elements resident at lJi,j, and define the 
singletons belonging to the other of these parts to be secondary elements resident at 
Pi.,. 

Next define further singletons rr{ ” by rrf O = ni, 7~; n + ’ = { nf “}. Using the fact 
that 7, E* y, is false for every i, I= l,..., k it is easy to see that we have zt” E* zp m iff 
i = I, j = p, and n < m. The definitions stated in the preceding paragraph associate 
infinitely many secondary and auxiliary elements of the form 7~;” with each place /I 
belonging to any cycle LX,, +(q), ti2(cr,) ,... with in { 1, 2 ,..., k}, but we need to extend 
this association to the remaining cyclic places and to treat the safe places. For this, 
much the same simple construction as before is available. We use the fact that if tl is 
cyclic (resp. safe) then $(cr) is cyclic (resp. safe or Q), and that repeated application 
of the map I,$ must eventually bring any place a to one of the places with which 
auxiliary and secondary places have already been associated. More specifically, 
regard a cyclic place as having been treated if secondary and auxiliary elements 7r; ’ 
have already been associated with it. If any untreated cyclic places remain, choose 
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some x which has already been treated but for which there remain untreated 
PI,..., /I, such that $(p,)= ... =$(/I,)=% (by the observation made just above, 
such an x must exist). Divide the infinitely many secondary elements 7~; n resident at 
a into I subsequences, all infinite, and let the elements z/.“+’ such that 7~;” belongs 
to the pth of these subsequences be resident at I(,,, p = l,..., 1. Divide the infinite set 
of resident items associated in this way with each of the /I,, into two infinite sub- 
sequences, and define the elements of one of these subsequences to be auxiliary 
elements resident at BP, and the elements of the other subsequence to be secondary 
elements resident at [j,,. Continue in this way as long as there remain any untreated 
cyclic places. 

To handle the safe elements begin with the finite set N of places c( such that 
i(z) =Q. Divide the infinite set of singletons {n}, where n is an integer and 
n 3 H + 1, into an appropriate number of infinite subsets, and define the elements of 
each of these subsequences to be resident at a corresponding place (Y in N. Divide 
the singletons thereby assigned to z into two infinite subsequences, and define the 
elements of one of these subsequences to be secondary elements resident at cc; the 
elements of the other subsequence are defined to be auxiliary elements resident at c(. 
Then use the map IJ in the same iterative fashion as in the preceding paragraph, 
until resident auxiliary and secondary elements have been assigned to all safe 
places. (Again, we adopt the technical convention of regarding {A ) as an auxilary 
element without specific residence whenever A is a singleton secondary element for 
which j A ) is not otherwise introduced.) 

Much as in the simple case, free of trapped places, treated earlier, the construc- 
tion just outlined associates infinitely many resident auxiliary elements A and 
secondary elements B with each non-trapped place z. These are easily seen to have 
the following properties: 

(a) Every secondary element B satisfies BE* A, where A is some auxiliary 
element (not necessarily resident at the same place). 

(b) No two auxiliary elements A, A’ can satisfy A E* A’. 

(c) If $(x) #Q, every element of an auxiliary or secondary element resident 
at a non-trapped place z is either a secondary element resident at $(a), or an 
element of G;{ for some trapped place ,!I such that E 3 b, the second possibility only 
arising for elements of secondary items. 

(d) No auxiliary or secondary element A resident at a non-trapped place c( 
satisfies A E* ai, for any trapped place b. 

(e) The sets of auxiliary and secondary elements resident at distinct non-trap- 
ped places are disjoint. 

Once having associated infinitely many distinct auxiliary and secondary places 
with each non-trapped place CI in a manner satisfying conditions (a)-(e), we can 
build a model for the clauses of P as follows: 

(1) Arrange the infinite sequence of auxiliary elements resident at each non- 
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trapped c1 in 1-l association with the lattice points of the plane, thereby giving 
them a lexicographic order. As in the simpler case considered previously, this 
ensures that the iterative construction described in the next few paragraphs will 
never exhaust the supply of auxiliary elements A resident at any cc 

(2) Initialize each of the sets ran, for trapped CI only, by inserting all the elements 
of a: into (T,. If x is not trapped, insert all the secondary elements resident at CI into 
os. In addition, if r is non-trapped, put three distinct and unique auxiliary elements 
resident at H into CT, of height at least H + 1. Let (A, ,..., A3,,} be the set of all 
auxiliary elements used for this. Note that at the end of this step, all the 0% are 
disjoint, and if x is non-trapped gZ contains at least three elements. 

(3) By the &$-stabilization process defined by the map 4 appearing in con- 
dition C2’ and the map II/ defined previously we designate the following operation: 

If p has been put into crl, then for all Uclauses ui = Un(y,) such that c( E ui which 
are such that the place /I, = #(c(, _v;) is non-trapped, proceed as follows. Choose a 
previously unused auxiliary element A, resident at I,+(/?~) (observe that since pi is 
non-trapped and pi aG I1/(fli), I,@,) is a non-trapped place and thus has associated 
auxiliary and secondary elements), put the pair {p, A i} into the set (TV,, and also 
put A, into a,bcl,,. 

Note that when it is generated, the pair {p, Ai} must be distinct from all 
elements previously inserted into any of the CJ%, and so must the auxiliary 
element A,. Indeed, the singleton Ai cannot be a previously formed pair, nor can it 
equal any element of any ai, t trapped, or any secondary element resident at any 
non-trapped place or any previously used auxiliary element A. Moreover, {p, Ai} 
can never equal any previously used auxiliary element, nor can it equal any secon- 
dary element B, since then there would exist an auxiliary A such that Ai E* A, 
which is impossible. Finally, for the same reason as in the simpler case considered 
previously, in which there exist no trapped places, {p, A} can never equal any 
previously formed pair {q, A’ ). 

It follows that the sets CT% remain disjoint throughout the &$-stabilization 
process, which continues until a pair { p, A} has been formed for any p inserted into 
any set c_* such that there is a Uclause ui = Un(y,) for which CI G ui and &a, yi) is 
non-trapped. Moreover, before the &+kstabilization process begins, we have 
Un(a,)c IJ,IS1,, G,~ for each Uclause u,=Un(y,) and cxc_y,. Indeed, for CI trapped 
Un(a:) G lJllsh 0; by (iii) of condition Cl’, where h is the set of places /3 G uj such 
that r ac. /I. Moreover by condition (c) just above, every element of a secondary 
element p inserted into cX is either a secondary element inserted into 11/(b) c ui or an 
element of CT;, for some trapped /I such that /I c ui and c1 =z-~ 0. On the other hand 
the +$-stabilization process does not disturb this condition, since a pair {p, A} is 
only inserted into IT,{, where p cyi, when p is already in some CT, with M. c ui; 
moreover A is then inserted into c~,~), which must also satisfy $(fi) G ui. (Note also 
that by (c) above, when A is inserted into oticp,, all the elements of A are already 
present: Upcu, op.) 

571 ‘3411-2 
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Thus, for each Uclause u, = Un(jx,) and LY CJ!, we continue to have Un(a,) G 
U,ic ,,i cr,) at the end of the &$-stabilization process. However, we also have a,, c 
Un(olcB, ,,)) if b G ui and 4(/J, y,) is non-trapped. Moreover, if #(b, yi) is trapped then 
/) is trapped too and it follows by condition C2’ that o8 = ah E lJYE,, Un(ai.), where 
h is the set of places y G _Y, such that y +G /I (all these places are trapped). But in 
this case UYs,, Un(a;,) = Uj,Eh Un(a,.), and hence c/1 L UjEh Un(a,.) in every case; 
i.e., at the end of the &$-stabilization process all Uclauses are correctly modeled. 
Moreover, since the non-empty sets ap remain disjoint throughout the &ll/- 
stabilization process, all clauses x = ~1 u Z, .Y = ,v\-_, and x = @ are correctly modeled 
also. In addition, since the value Mx assigned to a variable x is always understood 
to be Uzi_\-~x, it follows from (i) and (ii) of condition Cl’ that the clauses XEJ 
and x $ J’ containing a given variable x are correctly modeled whenever the place c( u 
is trapped (indeed if c(, is trapped, by condition C3’ the variable x is also trapped). 

(4) It only remains to extend the model A4 so as to force clauses x E,V and ~$4 
to be correctly modeled even if 2, is not trapped. This can be done by applying 
exactly the method described previously for the case in which no trapped places 
exist. That is, we arrange all the variables appearing in P in the (ascending) good 
Uorder mentioned in condition C2’. To process a variable X, we insert Mx into the 
set r~%, if Mx is not already in gr,. (Note, in particular, that variables x such that x, 
is trapped require no processing.) After each such insertion, we restabilize to ensure 
the validity of all Uclauses, using the d,-stabilization process, just as in the absence 
of trapped places, rather than the &$-stabilization process used in step (3). Note 
that if ax, is non-trapped then by condition C2’ all the places b for which crp is 
affected by the d.-stabilization process are non-trapped. Moreover, as was pointed 
out in (iii) just preceding the definition of the auxiliary and secondary elements in 
the case in which no trapped places exist, neither insertion of the Mx’s into gX, nor 
the subsequent stabilization operations disrupt any relationship My = U,, , oz, 
where _r either precedes x in the good Uorder of variables or is equal to X. 

As in the simpler case considered previously, to justify the remarks made in the 
preceding paragraph we must establish that no set Mx inserted into a set o?, at the 
start of a phase of the construction described in the preceding paragraph is equal to 
a previously constructed auxiliary or secondary element A, a pair (p, A }, an 
element of a set a;! with fl trapped, or a previously constructed model My. This can 
be shown as follows. Suppose, first, that x is non-trapped, so that Mx contains at 
least three elements, all of height at least H + 1. Thus, A4x clearly cannot equal any 
auxiliary element A or pair { p, A >, nor can it equal any secondary element B since 
every such element is B E* A for some auxiliary A, and thus we would have A’ E* A, 
where A’ E A4x. Moreover, A4x = My cannot hold if the variables x and ~1 are dis- 
tinct because at every stage of our construction the sets c1 remain pairwise disjoint. 
Finally, Mx 4 UP trapped 41 t because, as observed above, Mx has elements of height 
at least H + 1. This shows that if x is non-trapped, neither insertion of Mx into o%, 
nor the subsequent stabilization process disrupts the disjointness of sets 6,. Next 
consider the case in which the variable x is trapped, but in which the place tl, is 
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non-trapped (since otherwise we would not have to insert Mx in gr,, because by 
(ii) of condition Cl ‘, Mx would already be there). Since x is trapped, Mx has 
height at most H. Hence Mx is different from any auxiliary or secondary element 
resident at any safe place, since these elements have height greater than H. For the 
same reason Mx is different from any pair {p, A } with A resident at a safe place. 
On the other hand, Mx cannot equal any auxiliary A or pair {p, A } with A 
resident at a cyclic place, nor can it equal any secondary element B resident at a 
cyclic place and different from the yi’s, because for each such pair or element C, we 
have yj E* C for some Jo { 1, 2 ,..., k}, whereas by (iv) of Cl’, it follows from MXG 
u ,j trapped CT;{ that y, E* Mx is false for all yj. Moreover, by (ii) of Cl’, we have 
Mx E CT;,, and hence since LX, is non-trapped it follows by the disjointness of the cri 
that M-u $ U B (rapped c+. For the same reason, Mx can neither equal any y, which 
does not belong to ok, nor equal an element yi E a:, since we suppose that Mx is not 
in oZ, before processing of the variable x (whereas all yi are inserted into the oZ to 
which they belong during the initialization phase). Finally Mx cannot equal any 
M_v with J distinct from .Y since at every stage of our construction the sets (T, 
remain pairwise disjoint. 

As in the absence of trapped places, the insertion of Mx into oZ, does not upset 
any relationship Un(Mll;) G Mui, since whenever Mx is inserted into Myi we have 
XV G_l’{, and then x G .Y implies a E u, by condition C3’, so Un(My,) G Mu; remains 
valid. 

Taken all in all it follows that, just as in the simpler case considered previously 
(i.e., in the absence of trapped places), all the clauses of P will be modeled correctly 
at the end of the series of steps described. This shows that P is satisfiable by a 
model having I7 as its set of places if and only if conditions Cl’, C2’, and C3’ are 
satisfied. Note finally that, even though the wording of the preceding occasionally 
assumes that cyclic places are present, no real use is made of the existence of cyclic 
places; i.e., simply by ignoring what is said about such places we can still build a 
model of P. 

This completes the proof of decidability of multilevel syllogistic extended by the 
general union operator in all possible cases. 
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