
Journal of Computational and Applied Mathematics 234 (2010) 1860–1867

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Low and high frequency approximations to eigenvibrations of string
with double contrasts
Natalia Babych a,∗, Yuri Golovaty b
a University of Bath, Bath BA2 7AY, United Kingdom
b Lviv National University, Lviv 79000, Ukraine

a r t i c l e i n f o

Article history:
Received 3 December 2007
Received in revised form 11 April 2008

MSC:
34L20
65L15
47A55

Keywords:
High frequency
Eigenfunction approximation
Stiff problem
Mass perturbation
WKB method
Quantization

a b s t r a c t

We study eigenvibrations for inhomogeneous string consisting of two parts with strongly
contrasting stiffness and mass density. In this work we treat a critical case for the high
frequency approximations, namely the case when the order of mass density inhomogeneity
is the same as the order of stiffness inhomogeneity, with heavier part being softer. The
limit problem for high frequency approximations depends nonlinearly on the spectral
parameter. The quantization of the spectral semiaxis is applied in order to get a close
approximations of eigenvalues as well as eigenfunctions for the prime problem under
perturbation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and problem statement

Models with high contrasts are widely studied since their unusual properties give insight into the behaviour of new
meta and nanomaterials, including those which already exist or are reachable nowadays via modern technologies. The
corresponding mathematical problems often cause computational difficulties and require new methods of numerical
approximation. A system under consideration possessing two components with double high contrasts, both in stiffness
and mass density, expresses two distinguishing cases of the limit eigenvibration behaviour for each of low and high
frequency levels. The description of such systems should not be restricted to the construction of classical number-by-number
eigenfunction asymptotics, which are called low frequency approximations. They only ensure close approximations to several
eigenfunctions corresponding to the bottom of the spectrum. For more precise eigenfunction description in the upper part
of the spectrum the classical approach sets the requirement for ε to be negligibly small. Nevertheless, in actual physical
models the parameter ε, denoting the ratio of inhomogeneity for a certain physical characteristic, is often small but fixed.
Then describing actual vibrating systems, a problemof adequate approximation to eigenfunctionswith large numbers arises.
In order to solve the problemwe propose a new asymptotics, being called high frequency approximations, and compare them
with the classical ones. The high frequency approximations quite precisely describe eigenvibrations forwhich low frequency
approximations are not precise enough.
Methods and results. Starting from an operatorwith a discrete spectrum a classical spectral analysis provides the discreteness
of low frequency limits for eigenelements of the system with high contrasts. Nevertheless, the standard approach misses
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a certain important characteristic, because the completeness of eigenfunction system is lost in the limit. Accomplishing
the investigation and filling up the gaps in the limit behaviour description we construct and justify high frequency
approximations to the eigenfunctions. The quantization conditions play a vital part in the asymptotics providing an ε-
network on the spectral axis in the range of approximation. Therefore even the leading terms in the spectral approximations
change along with ε. Thus we obtain a quite precise approximations to eigenelements of the prime problem with a fixed
small ε. Comparing to the previous study of the stiff problems [1], where the leading terms of high frequency approximations
are independent of ε and the quantization provides a right choice of the correctors, in the present problem the quantization
conditions, arising in particular frommatchingWKB and power series expansions, come alongwith the choice of the leading
terms.
The preliminary results on the limit behaviour of the systemunder consideration have been discussed in [2]. The question

of asymptotic description of low and high frequency eigenvibrations originates in work [3] arising again in [4,5,1,6] for
problems with perturbations of the stiffness only. Elastic problems with perturbations of stiffness and mass density, either
with other geometries or at different perturbation rates, have been studied in [6–12].
Problem statement. Let a soft and heavy part of the string, which occupies an interval (a, 0), be complemented by a stiff and
relatively light body part occupying (0, b)with a < 0 < b. We consider a stiffness coefficient being k(x) on (a, 0) and ε~(x)
on (0, b), and mass density being εr(x) on (a, 0) and ρ(x) on (0, b), with all functions being positive and smooth in [a, 0]
and [0, b] respectively. We assume that eigenvibrations of the string are described by the self-adjoint eigenvalue problem

(k(x)u′ε)
′
+ ελεr(x)uε = 0, x ∈ (a, 0), uε(a) = 0, (1)

ε(~(x)u′ε)
′
+ λερ(x)uε = 0, x ∈ (0, b), uε(b) = 0, (2)

uε(−0) = uε(+0), k(0)u′ε(−0) = ε~(0)u
′

ε(+0). (3)

We investigate the question how the eigenvibrations of the media, namely eigenvalues λε and eigenfunctions uε , change if
the parameter ε tends to 0. More precisely, we look for the good approximations of λε and uε as ε→ 0.

2. Low frequency approximations

It is well known that for each fixed ε > 0 the spectrum of problem (1)–(3) is real and discrete, consisting of simple
eigenvalues that form a sequence 0 < λε1 < λε2 < · · · < λεn < · · · → ∞ as n → ∞. The corresponding eigenfunctions
{uε,n}∞n=1 form a basis in L

2(a, b). Moreover, for each number n the eigenvalue branchλεn is a continuous function of ε ∈ (0, 1)
such that λεn ≤ cnεwith a positive constant cn independent of ε, which follows from themini–max principle since quadratic
forms are continuously depending on ε [13].
Studying the asymptotic behaviour as ε → 0 of each eigenvalue branch λεn with fixed number n and corresponding

eigenfunctions uε,n, we immediately have the convergence ε−1λεn → λn and uε,n → Un, where Un = 0 in (a, 0) and Un in
(0, b) coincides with an eigenfunction u+n of the limit problem (6) for the eigenvalue λn.
We look for the approximations of eigenvalues and eigenfunctions in the form

λεn ∼ εµn + ε
2νn + · · · , uε,n ∼ un(x)+ εwn(x)+ · · · , x ∈ (a, b). (4)

Constructing standardly the asymptotic expansions we first define the leading terms, which satisfy the problem

for x ∈ (a, 0): (k(x)u′n)
′
= 0, un(a) = 0, u′n(−0) = 0. (5)

Hence un ≡ 0 on (a, 0) and therefore

for x ∈ (0, b): (~(x)u′n)
′
= −µnρ(x)un, un(+0) = un(b) = 0. (6)

Since we are looking for the eigenfunction approximations, which are supposed to be different from zero, the limit µn has
to be an eigenvalue with corresponding eigenfunction un of problem (6).
Let us fix an eigenvalue µn of (6), and corresponding eigenfunction un such that

∫ b
0 ρu

2
ndx = 1. Then the next terms of

(4) satisfy the problem

for x ∈ (a, 0): (k(x)w′n)
′
= 0, wn(a) = 0, (kw′n)(−0) = (~u

′

n)(+0). (7)

Therefore on (a, 0)we havewn = (~u′n)(+0)
∫ x
a k
−1(t)dt , and

for x ∈ (0, b): (~(x)w′n)
′
+ µnρ(x)wn = −νnρ(x)un, (8)

wn(b) = 0, wn(+0) = vn(−0). (9)

The solvability of (8) and (9) along with (7) and the normalization of un implies

νn = −(kwnw′n)(−0) = −
∫ 0

a
k(w′n)

2dx. (10)

Then on the interval (0, b)we fix a uniquewn such that
∫ b
0 ρunwndx = 0.
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Justification of low frequency approximations. We use the same letter f both for a function defined on the interval (a, b)
and a vector (f−, f+), where f−, f+ are the restrictions of f to (a, 0) and (0, b) respectively. Let L be the Hilbert space
L2r (a, 0) × L

2
ρ(0, b) with the scalar product (u, v)L =

∫ 0
a ru−v−dx +

∫ b
0 ρu+v+dx and norm ‖u‖ = (u, u)1/2L , where

u = (u−, u+). Let us introduce the matrix operatorAε inL

Aε =

−
1
εr
d
dx

(
k
d
dx

)
0

0 −
ε

ρ

d
dx

(
~
d
dx

)
 .

with the domain

D(Aε) =
{
u ∈ L: u− ∈ W 12 (a, 0), u−(a) = 0, u+ ∈ W

1
2 (0, b), u+(b) = 0,

u−(0) = u+(0), k(0)u′−(0) = ε~(0)u
′

+
(0)
}
.

TheAε is a self-adjoint operator with a compact resolvent. The spectrum σ(Aε) is the set of all eigenvalues of (1)–(3).
Let B be a self-adjoint operator inHilbert spaceH with a domainD(B). Recall that a pair (µ, u) ∈ R×D(B)with ‖u‖H = 1

is a quasimode of the operator Bwith an accuracy up to σ > 0 if ‖(B− µI)u‖H ≤ σ .

Lemma 1. Suppose that the spectrumof B is discrete. If (µ, u) is a quasimode of Bwith accuracy toσ , then interval [µ−σ ,µ+σ ]
contains an eigenvalue of B. Furthermore, if segment [µ− τ , µ+ τ ], τ > 0, contains one and only one eigenvalue λ of B, then
‖u− v‖H ≤ 2τ−1σ , where v is an eigenfunction of B for the eigenvalue λ, ‖v‖H = 1 [14].

Theorem 2. For each n ∈ N there exists Cn > 0 such that the Cnε2-vicinity of εµn contains exactly one eigenvalue λεn of problem
(1)–(3):

|λεn − εµn| ≤ Cnε
2. (11)

The corresponding normalized eigenfunction uε,n satisfies the estimate ‖uε,n − un − εwn‖L2(a,b) ≤ C̃nε
2, with a certain C̃n > 0

independent of ε.

Proof. We introduce a correctorφn(x) = a−1w′n(+0)x(x−a)on (a, 0) andφn(x) = 0on (0, b) such thatU
ε
n = un+ε(wn+φn)

belongs toD(Aε). LetΛεn = εµn + ε
2νn and Ũεn = τ

ε
nU

ε
n with τ

ε
n = ‖U

ε
n‖
−1
L . By the construction

‖AεŨεn −Λ
ε
nŨ

ε
n‖
2
L ≤ K1ε

4(τ εn )
2
|µn + ενn|

2(u′n(+0)
2
+ w′n(+0)

2)+ K2ε6(τ εn )
2ν2n‖wn‖

2
L2ρ (0,b)

, (12)

with positive constants Kj independent of ε and n, and also

|τ εn | ≤ (1− ε‖wn + φn‖L)
−1
≤ 1+ Ĉnε (13)

for ε small enough. Therefore a pairΛεn and Ũ
ε
n is a quasimodeofAεwith the accuracy up toCnε2. By Lemma1, inCnε2-vicinity

ofΛεn there exists a certain eigenvalue λ
ε
j of (1)–(3). Additionally, it can be easily shown that the eigenvalues converge saving

multiplicity, ε−1λεn → µn. Since the limit problem has only simple eigenvalues, in a certain Ĉnε-vicinity of µn there is no
other eigenvalues of (1)–(3) that provides (11). Applying again Lemma 1 finishes the proof. �

Note that low frequency vibrations vanish in (a, 0) as ε → 0. This naturally raises the question on the possibility of
constructing other nontrivial on (a, 0) approximations of eigenvibrations addressed next.

3. High frequency approximations

Considering sufficiently large eigenvalues λεn ∼ ε
−1(ω + εω1)

2 with ω > 0, we look for the asymptotic expansions of
eigenfunctions uε,n(x) ∼ Y (ε, x)with

Y (ε, x) =
{
v0(x)+ εv1(x)+ ε2v2(x), x ∈ (a, 0),
(c0(x)+ εc1(x)) sin γεS(x)+ εc2(x) cos γεS(x), x ∈ (0, b), (14)

where v0 is different from zero and γε = ω
ε
+ ω1. The expansion in form (14) consists of power series on the interval (a, 0)

and two-term short-wave (WKB) approximation [15] on (0, b) since Eq. (2) contains a small parameter near the highest
derivative. Substituting these expressions into equation and boundary condition (1) gives

(kv′0)
′
+ ω2rv0 = 0, v0(a) = 0, (15)

(kv′1)
′
+ ω2rv1 = −2ωω1rv0, v1(a) = 0, (16)

(kv′2)
′
+ ω2rv2 = −ω21rv0 − 2ωω1rv1, v2(a) = 0. (17)

Next, we substitute Y (ε, x) into (2):
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εγ 2ε

(
−~S ′2 + ρ

)
Y (ε, ·)+ εγε

(
2~S ′c ′0 + (~S

′)′c0
)
cos γεS + εω

(
2~S ′c ′1 + (~S

′)′c1
)
cos γεS

− ε
(
2ω~S ′c ′2 + ω(~S

′)′c2 − (~c ′0)
′

)
cos γεS = O(ε2). (18)

Equating the expressions in the large parentheses to zeroweminimize the discrepancy in (18). The eikonal equation~S ′
2
= ρ

has a solution

S(x) =
∫ b

x
~−1/2(τ )ρ1/2(τ )dτ , x ∈ (0, b).

Consequently, the transport equation 2~S ′c ′ + (~S ′)′c = 0 admits a solution c(x) = ~−1/4(x)ρ−1/4(x) up to a constant
multiplier. Therefore c0(x) = β0c(x) and c1(x) = β1c(x). Introducing h as a unique solution of the problem

2~S ′h′ + (~S ′)′h = (~c ′)′ for x < b, h(b) = 0,

we set c2(x) = β0ω−1h(x) providing the boundary condition Y (ε, b) = 0 is satisfied. By construction Y (ε, ·) formally solves
Eq. (1) up to the terms of order ε3 and Eq. (2) up to the terms of order ε2.
We now apply interface conditions (3) in order to define parameters ω, ω1, β0 and β1. Before that, regularizing the ε-

dependence of Y (ε,+0)we apply the restriction(ω
ε
+ ω1

)
S(0) = δ + π l, δ ∈ (−π/2, π/2], l ∈ Z. (19)

Satisfying the interface conditions up to the terms of order ε2, we set{
v0(0) = (−1)lβ0c(0) sin δ
k(0)v′0(0) = (−1)

lβ0ωS ′(0)~(0)c(0) cos δ,
(20){

v1(0) = (−1)l(β1c(0) sin δ + g1)
k(0)v′1(0) = (−1)

l(β1ωS ′(0)~(0)c(0) cos δ + β0~(0)g2),
(21)

where g1 = β0ω−1h(0) cos δ, g2 = ω1S ′(0)c(0) cos δ + (c ′(0)− S ′(0)h(0)) sin δ.
Combining (15) and (20) we obtain that v0 is a solution to the problem

(kv′)′ + ω2rv = 0 in (a, 0),
v(a) = 0, k(0)v′(0) sin δ − ω~(0)S ′(0)v(0) cos δ = 0. (22)

Proposition 3. For every ω > 0 there exists a unique δ(ω) ∈ (−π/2, π/2] such that problem (22) has a nontrivial solution v.
Proof. If ω2 is an eigenvalue of the problem (kv′)′ + ω2rv = 0, v(a) = 0, v(0) = 0, we put δ(ω) = 0. Otherwise we
consider the eigenvalue problem

(kv′)′ + ω2rv = 0 in (a, 0), v(a) = 0, k(0)v′(0)+ µv(0) = 0 (23)

with respect to the spectral parameter µ. For each ω under consideration the problem has a unique eigenvalue µ(ω),
which is due to the fact that the spectral parameter is missed in equation. Therefore δ(ω) can be found as a unique root
in (−π/2, π/2] of the equation

ω~(0)|S ′(0)|cotan δ = µ(ω). (24)

Recall that S ′(0) < 0. �

Fixing an arbitrary ω > 0 we also fix v0 = v(ω, x) being corresponding eigenfunction of nonlinear pencil (22) with
δ = δ(ω) defined by Proposition 3. Let additionally v0 be unity normalized in L2r (a, 0). Consequently, (20) provides

β0 =


(−1)lv0(0)
c(0) sin δ(ω)

if δ(ω) 6= 0,

(−1)lk(0)v′0(0)
ω~(0)S ′(0)c(0)

if δ(ω) = 0.

We conclude from condition (22) that the function β0(ω) is continuous at every point ω∗ for which δ(ω∗) = 0. From (21)
and (24) we obtain

(kv′1)
′
+ ω2rv1 = −2ωω1rv0 in (a, 0),

v1(a) = 0, k(0)v′1(0)+ µ(ω)v1(0) = ~(0)f ,
(25)

where f = g2 sin δ(ω)−ωS ′(0)g1 cos δ(ω) and δ(ω) 6= 0. The problem admits a solution if and only if v0(0)~(0)f = −2ωω1,
sinceµ(ω) is an eigenvalue of (23). This solvability condition can be derived multiplying the equation by v0 and integrating
twice by parts. It may be written in the form
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ω1 =

(
h(0)S ′(0)− c ′(0) sin2 δ(ω)

)
v2(ω, 0)

(2ω + ~(0)S ′(0) cos δ(ω)) c(0) sin δ(ω)
if δ(ω) 6= 0.

Thus we get ω1 as a function of ω. Additionally, we obtain

ω1 = −k(0)v′0(0)c2(0)(2ω)
−1 if δ(ω) = 0.

We now can find v1, which is ambiguously determined. Subordinating it to the condition
∫ 0
a rv0v1dx = 0 we fix it uniquely.

Then β1 is given by (21). We fix an arbitrary v2 being solution of (17).
Let us return to condition (19). Now it may be considered as the countable set of equations for ω:(ω

ε
+ ω1(ω)

)
S(0)− δ(ω) = π l, l ∈ Z. (26)

Since ω1(ω) can have a vertical asymptote in the interval I = [0, 12~(0)|S
′(0)|), Eq. (26) can have roots in I . More subtle

analysis shows that for each l there always exists a unique root of (26) in the set [ 12~(0)|S
′(0)|,∞) because ω1(ω)→ 0 as

ω→+∞ and quantity δ(ω) is bounded. We consider the roots that increase along with l.

Definition 4. We say that ω(l) is an admissible limit frequency for given ε > 0 and l ∈ Z if it is the largest root of (26).

Let us establish connection between the exact eigenfrequencies
√
λεl and admissible limit frequencies ω(l) in the case

of constant coefficients. Indeed, for k = ~ = r = % = 1 we have
√
λεn =

√
επn(b − εa)−1, n ∈ N. Counting the

admissible frequencies in this case we note that S(x) = b − x and v0(x) = C0 sinω(x − a) providing, via the proof of
Proposition 3, δ(ω) = 0 if ω = πna−1 for natural n and cotan δ(ω) = ω−1µ(ω) for all other ω. Moreover, (23) yields
µ(ω) = −v′0(0)v0(0)

−1
= ωcotan (ωa) gaining δ(ω) = arctan(tan(ωa)) ∈ (−π/2, π/2) or δ = π/2. Observe that

c0(x) = β0, h(x) = 0 and c2(x) = 0 providing ω1 = 0. Then (26) becomes ωbε−1 = arctan(tan(ωa)) + π l. Therefore,
ωbε−1 ∈ (−π/2 + π l, π/2 + π l] and tan(ωbε−1) = tan(ωa) providing ω = επk(l)(b − εa)−1 for k(l) ∈ N ∩ K εl with
K εl = (zε(l − 1/2), zε(l + 1/2)], where zε = (1 + εa(b − εa)−1)−1. Since zε > 1 and therefore the length |K εl | is also
larger then 1, we have at least one natural k(l) ∈ K εl . Picking up the maximal value k

max
l (ε) ∈ K εl ∩ Nwe fix the admissible

frequency ω(l) = επkmaxl (ε)(b− εa)−1. Note that kmaxl (ε) = l for the range of numbers l < b+εa
2ε|a| . Therefore,

√
λεl =

ω(l)
√
ε
for

l < b+εa
2ε|a| .
Having exact correspondence for the range of eigenfrequencies and admissible frequencies in the case of constant coef-

ficients, in general case we further use the set of admissible frequencies as the first approximation for the eigenfrequencies.
LetΦε denote the set of all admissible limit frequencies. The subsetΦε ofR+ is thick enough, the distance between neighbor-
ing roots is comparable with ε. In some sense (26) could be regarded as a kind of WKB quantization condition. The positive
spectral ray ω > 0 is covered by the ε-net Φε , for each point of which we can construct the asymptotics (14). For each
admissible frequency ω ∈ Φε we will denote by Yω(ε, x) the corresponding asymptotic solution (14).

4. Justification of high frequency approximations

The function Yω(ε, x) can be used to construct a quasimode of the operatorAε . Clearly, Yω ∈ L, but Yω 6∈ D(Aε) because
of discontinuity at x = 0. Let us introduce functions ζ0, ζ1 ∈ C2(a, 0) such that ζ0(a) = 0, ζ0(0) = 1, ζ ′0(0) = 0 and
ζ1(a) = 0, ζ1(0) = 0, ζ ′1(0) = 1. Both functions are extended by zero into (0, b). Introducing

τ0(ε) = (Yω(ε,+0)− Yω(ε,−0)) ε−2, τ1(ε) =
(
εY ′ω(ε,+0)− Y

′

ω(ε,−0)
)
ε−2,

which are bounded in ε by construction, we obtain that the function

Ỹω(ε, ·) = Yω(ε, ·)+ ε2(τ0(ε)ζ0 + τ1(ε)ζ1)

belongs toD(Aε). Setting Υω(ε, ·) = ‖Ỹω‖−1L · Ỹω(ε, ·)we prove the following estimate ‖(Aε − εγ
2
ε I)Υω(ε, ·)‖L ≤ Cε

2 by
recalling ε−1(ω + εω1)2 = εγ 2ε .

Proposition 5. The pair (εγ 2ε ,Υω(ε, ·)) is a quasimode of Aε with accuracy to O(ε2) for every admissible frequency ω ∈ Φε .

Proposition 6. For the range of numbers n ≤ θεσ−1/2 with arbitrary θ > 0 and 0 < σ < 1/2, the eigenvalues satisfy the
estimate |λεn − εµn| ≤ K∗ε

1+2σ .

Proof. In order to improve (11) we calibrate (12). Eigenfrequencies ηn = µ
1/2
n and normalized eigenfunctions un of problem

(6) can be represented as [15]

ηn =
πn
S(0)
+
πS(0)
n
+ O

(
1
n3

)
as n→+∞, (27)

un =
√
2/S(0)(~ρ)−1/4(sin ηnS)(1+ O(η−1n )) on (0, b), (28)
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where (28) is uniform on [0, b] and admits differentiation in x. Then we have the approximation of the right-hand side in
(8) and (9)

vn(−0) = ηnβ1β2(1+ O(η−1n )), νn = −η
2
nβ
2
1β2(1+ O(η

−1
n )), n→∞, (29)

with β1 =
√
2/S(0)(~ρ)−1/4(0) and β2 =

∫ 0
a k(t)

−1dt . Since there exists the fundamental set of solutions corresponding
(8) in the form [15]

yn = (1+ O(η−1n ))(~ρ)
−1/4 sin ηnS and gn = (1+ O(η−1n ))(~ρ)

−1/4 cos ηnS,

wn admits representationwn = pn(x)yn(x)+ qn(x)gn(x) for certain functions pn and qn. Exploring this structure of solution
in problem (8) and (9) we obtain

wn(x) = (1+ O(η−1n ))ηnK(~ρ)
−1/4(x) cos ηnS(x), n→∞, (30)

with constant K = β1β2(~ρ)1/4(0)S(0)−1. Then (30) and (27) provide

‖wn‖L2ρ (0,b) ≤ K1n, |w′n(+0)| ≤ K2n. (31)

Finally, counting (27)–(31) in (12) we obtain

‖AεŨεn −Λ
ε
nŨ

ε
n‖
2
L ≤ K3|τ

ε
n |ε

2n2
√
1+ ε6n6 ≤ K4ε1+2σ , (32)

for n ≤ θεσ−1/2 and |τ εn | ≤ 1− K5ε
σ+1/2, which follows from (13). Then the application of Lemma 1 finishes the proof. �

Theorem 7. Let θ ≥ 1, 0 < σ < 1/2, 0 < γ < 1/2− σ . If ω = ω(n) is an admissible limit frequency from the number range
n ∈ [θ−1ε−γ , θεσ−1/2] and δ(ω) 6= π/2 then the eigenvalue λεn and eigenfunction yε,n satisfy the estimates

|λεn − ε
−1(ω + εω1(ω))

2
| ≤ α1ε

2, ‖yε,n − Υω(ε, ·)‖L2(a,b) ≤ α2ε
1+γ ,

with positive constants α1, α2 being independent of ε.

Proof. Let ωεn =
√
λεn. Proposition 6 and (27) for the given number range yield

ωεn = ε
1/2π

(
n
S(0)
+
S(0)
n

)
+ O

(
ε
1
2+2σ+γ

)
and λεn =

επ2n2

S2(0)
+ O(ε). (33)

We nowestimate the distance between neighboring eigenvalues ofAε . From (33)we haveλεn+1−λ
ε
n = επ

2(2n+1)S−2(0)+
O(ε). If n ≥ θ−1ε−γ then

|λεn+1 − λ
ε
n| ≥ 2π

2S−2(0)nε + O(ε) ≥ θ0ε1−γ , (34)

with a constant θ0 being positive and independent of n. By the similar argument,

|ωεn+1 − ω
ε
n| ≥
√
ε

(
π

S(0)
− c

(
n−2 + ε2σ+γ

))
≥
√
ε

(
π

S(0)
− θ1ε

γ

)
. (35)

Let for a certain number l the admissible frequency ω∗ = ω(l) minimize the difference |
√
εωεn − (ω∗ + εω1(ω∗))|, which

equals |επ(n− l− δ
π
)+O(ε1+γ )| by (26) and (33). Note that if |δ| < π

2 the latter is minimized only for l = n (for sufficiently
small ε) and then we have∣∣√εωεn − (ω∗ + εω1(ω∗))∣∣ ≤ |δ(ω∗)|S−1(0)ε + θ2ε1+γ . (36)

Suppose that frequency ωεn+1 (the same for ω
ε
n−1) also satisfies the last inequality. Then we obtain the estimate

|ωεn+1 − ω
ε
n| ≤ 2|δ(ω)|S

−1(0)
√
ε + 2θ2ε1+γ

that contradicts (35) for ε < ε0 because 2|δ(ω)| < π . The number ε0 can be found from the equation S(0)εγ (2θ2ε1/2+θ1) =
π − 2|δ(ω)|. Hence, ωεn is a unique eigenfrequency that satisfies (36) with ω(n) being the root of (26).
In view of Lemma 1 and Proposition 5, we can improve inequality (36) to |λεn − ε

−1(ω + εω1(ω))
2
| ≤ α1ε

2. Repeated
application of Lemma 1 enables us to write ‖uε,n − Υω(ε, ·)‖L ≤ α2ε

1+γ , because the spectral gap is of order ε1−γ due
to (34). �

Note that the case δ = π/2 is not a typical situation. Indeed, in this case the admissible frequency ω coincides with the
eigenfrequency of problem (22) with Neumann condition v′(0) = 0. In this case we cannot establish the vicinity of ω that
would contain one and only one eigenfrequency

√
λεn. The arguments of the last proof show only that there exist not more
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Fig. 1. A comparison of the low and high frequency approximations (black plots) with the eigenfunctions (grey plots) for uε,5 , uε,10 and uε,15 (from top
to bottom).

then two eigenfrequencies satisfying (36). Ifωεn andω
ε
n+1 satisfy (36) then Υω(ε, ·) is not yet a good approximation to any of

uε,n or uε,n+1. The situation could be improved by the next terms of asymptotics but that is beyond the scope of this paper.
Numerical example. Let us consider the coefficients k = 1 and r = 1 + x2 on the interval (−1, 0), ~ = 1 and ρ = 1 + x
on (0, 1). For the value of small parameter ε = 0.05, in Fig. 1 we have plotted the eigenfunctions of (1)–(3) and the leading
terms of the low and high frequency approximations given by (4) and (14). Let us emphasize that the purpose of high
frequency approach is in a good approximation of eigenfunctions. In the example only the first few eigenfunctions could be
well approximated by the low frequency approach. Already uε,5 is quite far away from its low frequency limit (see Fig. 1),
and that cannot be improved by the next terms of low frequency asymptotics, because the absolute error is large enough.
Note that the eigenvalue λε5 is still far from zero and thus

√
λε5 cannot be treated as a low frequency. In the right-hand side

plots we observe that the high frequency approximations work well for the range of numbers between 5 and 15.We have to
mention that the proof of Theorem 7 is done by asymptotic methods, so it would be challenge to tell in particular examples
the exact range of numbers n, for which high frequency approximations are valid in the case of fixed ε.
We refer to the values of

√
λεn that are calculatedwith high accuracy as to ‘‘exact’’. The numerical values under discussion

are represented in the Table

n 5 10 15

Exact
√
λεn 2.76675 5.52678 8.27450

Low freq.
approximation

√
εµn

2.88055 5.76252 8.64418

ω 0.6270 1.260 1.860
ω1 −0.22224 −0.53779 −0.02669
δ −0.63509 −1.3217 −0.03770
High freq.
approximation
ω
√
ε
+
√
εω1

2.75433 5.51464 8.3122

As for numerical example we present the low and high frequency approximations to eigenfunctions by the leading terms
of the expansions only. Thus the low frequency approximations

√
εµn to eigenfrequencies

√
λεn are given in the Table and

are accomplished by visualization of eigenfunctions un of problem (6) in the left columns of Fig. 1 (un is extended by zero to
(−1,0)). In order to find the admissible frequency ω we need also δ and ω1. In the vicinity of expected ω we create network
over ω and for each of this ω we find δ(ω) satisfying (22) (up to 10−7) and then find ω1(ω) such that (25) has a solution.
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Finally, we find the admissible frequency ω = ω(n) giving the best approach to (26) over tabulated ω. The high frequency
approximations to the eigenfunctions we depict from uε,l ∼ v(ω, x) for x ∈ (−1, 0) and uε,l ∼ c0(x) sin(ωε + ω1)S(x) for
x ∈ (0, 1)with v(ω, x) from (22), c0(x) = v(ω,0)

sin δ(ω) 4
√
1+x
and S(x) = 2

3 (2
√
2−

√
(1+ x)3). All depicted eigenfunctions uε,n are

normalized in L2(−1, 1).
Note that the method that is applied for the approximations in one-dimensional case is also applicable in a multi-

dimensional situation. Nevertheless, the justification of it requires another technique, which is beyond the scope of this
paper.
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