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Abstract 

Bavinck, H., G. Hooghiemstra and E. De Waard, An application of Gegenbauer polynomials in queueing 
theory, Journal of Computational and Applied Mathematics 49 (1993) l-10. 

The symmetric coupled processor model is a queueing system in which a server divides his service capacity 
between two independent streams of customers, unless one queue is empty, in which case the full capacity is 
granted to the other queue. Customers demand an exponentially distributed service time with mean p”’ and 
their arrivals are determined according to their stream by two independent Poisson processes each with rate A. 
The symmetric coupled processor model can be represented by a continuous time Markov process X(t) := 
(X,(t), X,(t)>, where X,(t) is the number of customers in the ith queue. Let p,,,(t):= Pr(X(t>=(m, n)}. If 
p = 2A /p < 1, the equilibrium probabilities exist and are given by p(m, n) = lim p Id” ??I,” (t). We prove that the 
equilibrium probability p(n, n) can be written as p(n, n) = (l- p)p2”Ey=oak(n)pk, where the coefficients 
a,(n) are computed explicitly. 

Keywords: Queueing theory; Gegenbauer polynomials; symmetric coupled processor 

1. Introduction 

In this paper a queueing system is studied where an exponential server divides his service 
capacity p between two queues - each formed from Poisson arrivals with rate A. The server 
attends both queues with equal rate, except when one of the queues is empty, in which case the 
server grants full capacity to the other queue. More specifically, if X(t) = (X,(t), X,(t)) 
denotes the number of customers in the two queues at time t, then X(t) is a continuous time 
Markov chain with state space N2 (where N = (0, 1, 2,. . .I> and generator G = (g, .,I, z, 
z’ E N2, given by (we only specify the entries of G which are not equal to 01, for z = (0: O), 

gz,*’ = 
-2A, 2’ =z, 
A, t’= (1,0) or z’= (0, l), 
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for 2 = Cm, O>, m 2 1, 

1 

-(2h +/_L), 2’=2, 

g,,,t = A, z’= (m + 1,0) or z’= (m, l), 

PCL, 2’ = (m - 1, O), 

for 2 = (0, n), 12 2 1, 

-(2A +/_L), z’=z, 

g,,,r = 

I 

A, z’= (0, IZ + 1) or z’= (1, n), 

PL, z’ = (0, ?z - l), 

for z = (m, n), m 2 1 and n 2 1, 

g=,z’ = 

1 

-(2A +/_&), z’=z, 

A, z’= (m, II + 1) or 2’= (m + 1, n), 

$7 2’ = (m - 1, n) or z’ = (m, it - 1). 

A fair number of papers has been written on the calculation of the stationary distribution ~(m, 
n> of the Markov chain X. We mention [2,3] where the model was studied as a Riemann-Hil- 
bert problem, [5] where the generating function techniques were used to study the problem, 
and finally [1,4] where a power series expansion was used for p(m, n) in the variable p = 2A/p. 
More specifically, the authors of [4] showed that for p in a neighbourhood of the origin, 

P(? n) =P”+V -P> 5 +(m, fi)Pk, (1) 
k=O 

where the coefficients a,(m, n) can be computed recursively. The main conjecture in [4] is that 

uniformly in k E N and (m, n) E N2. 
In this paper we calculate (in Section 2) explicit expressions for the coefficients a,(n) = 

ak(lt, n>, k 2 0, n 2 1, and establish the upper bound for 1 ak(m, n> ) on the diagonal IZ = m. 
Moreover, we obtain excellent error bounds when p(n, n) is approximated by the partial sums 

P2”(l -P> it a,(n)pk* 
k=O 

Finally, when ~(n, n>, n 2 1, is known, the other equilibrium probabilities can be calculated 
from the equilibrium equations. 

2. The main result 

Since X,(t) +X,(t) is the row length at time t of an M/M/l queue with traffic intensity p, 
it is immediate that p < 1 is a necessary and sufficient condition for ergodicity of the Markov 
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chain X(t). The equilibrium equations follow from p’G = 0 and are for p < 1 given by 

‘PP(O, 0) =p(O, 1) +p(L o>, 

2(1 +p)p(m, 0) =pp(m - 1,O) +p(m, 1) + 2p(m + 1, O), m > 1, 

’ 2(1 +p)p(O, n> =pp(O, n - 1) +p(1, n) + 2p(O, n + l), n > 1, 

2(1 +p)p(w n> =p(a(m - 1, n) +p(m, ?z - 1)) 

t +p(m + 1, n) +p(m, n + l), m, n > 1. 

(2) 

We define 

F(x, y) := 2 f p(n +r, n)xny’. 
r=O n=O 

(3) 

The stationary probability of 2n + r customers present in an M/M/l system with traffic 
intensity p is given by ~*~+~(l -p); this implies that ~(0, 0) = 1 -p and that p(n + r, n) < 

P 2n+r(l -p>. Hence F(x, y> exists and is analytic for (x, y> EA, where 

A := {(x, y) EC*: 1x1 <p-2, JyJ <p-l}. 

Let for (x, y) EA, 

/2(x, y) := 2(1 +p)xy - (1 +px)(x +y2). (4) 

Lemma 1. On the set D = {(x, y) ELI: h(x, y) = O} there holds 

(1 +px)(x -y2)F(x, 0) = 2(1 -p)x(y - 1) +2(x -y2)F(O, y). (5) 

Proof. The bivariate generating function F(x, y) is analytic on A and it follows from (2) that 

h(x, y)F(x, Y) = {(I+ P>XY -x(1 + P#‘(x, 0) + (x -Y*)W> Y) 

+(1 -P>X(Y - 1). (6) 

Hence the right-hand side of (6) is equal to 0 on D. The equality h(x, y ) = 0 is equivalent to 
(1 +p>xy = i<l +px)(x +y2) and insertion of this equality yields (5). 0 

Theorem 2. For p < 1 the equilibrium probability p(n, n), on having n customers in each queue, is 
given by 

p(n, 4 = (1 -P>P”(-~)~ 1+ ~~TWb)~(~) dgi, 
i 

n&l, 

where 

C,(#I) := - 1 + 
(- l)“(cos(n4) - cos{(n + l)+)) 

1 - cos 4 
7 

U(c)) := 
p cos 4 - 1 + ((1 +p)2 -p(l+ cos C$)‘>(l +p* - 2p cm &‘* 

P(1 + cm 4) 

Proof. Note from (3) that F(x, 0) = Cz=,p(n, n)x”. If we define 

qx) := (1+ Px)F(xY 0) 
l-p ’ 1x1 <p-2, 
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and put H(x) = CzCObnx”, then p(n, n) can be expressed in b,, 0 <k <n. So, our goal is to 
calculate the coefficients b,, k = 0, 1,. . . . For given y, I y ) <p-l, the equation h(x, y> = 0 
has two solutions x1 =x1(y) and x2 =x&y) given by 

i 

px,x, =y*, 

P(X, +x2) = 2y(l +p) -py* - 1. 

Hence, 

%(Y-1) 2 
H(x,)= (x1_y2) + l_pw3 Y>7 

2.4Y--1) 2 
fG2)= (x2_y2) + l_pw, J9, 

and consequently 

WI) - Wx2) = 

2P(Y - l&2 -4 

(1 -P-4(1 -PX*) * 

Elimination of y from the two equations given in (7) yields 

fel) - W2) = 

p(1 + Px,)(l+ PX*)(X* -x1) 2P(X2 -4 

(1 + p)(l -px,)(l - /3x,) - (1 - PXI)(l - P2) ’ 
(8) 

whenever 

4p(l +p)*xlx*= (1 +/IXl)2(l +px2)2, ]Xi( <p-*, i= 1,2. 

Note that for fixed 0 <x1 < 1, the solutions x2+ and x; of (9) satisfy 

(9) 

x: = p-le *i4, with cos C$ = 
2(1+ P)*xl 
(1 + PX,)” 

-lE(-1,l). 

Proceeding as in [5], we insert x; and x2 + into (8) and subtract the equations to obtain 

H(xl) -H(x,) = 
P(1 + px,)(x, -x;)[l +p(xi +x;> -p*x,x; - 2px,] 

(1 +p)(1 -px,)(l -p(x, +x2f) +P*x;x;) 

2p(x, -x2+) - 
1 - p( x; + x2+) + p*x,x; 

= (l+PxI) 2i(px, - cos 4) sin 4 2i sin 4 
+ 

(1 +p)(l -PxJ 1 - cos C#I 1 - cos C#J * (10) 

If we substitute H(X) = C;=Obnxn, using that x: =~-‘e*‘~ and the fact that 

lT sin(@) sin(m4) d+ = $rS,,,, 
0 

we obtain 

_=_ (1 +px,)(px, - cos 4) + 1 sin 4 sin@@ do It, 1 

(1+ P)(l - Px,) l-cos4 ’ ” 
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where in view of (91, 

px,=a-1-{w, a:= 
(1+ PJ2 

p(l + cos 4) * 

From the definition H(x) = (1 + px)F(x, O)/(l - p> we obtain 

b, = (1 -p)_lp(O, 0) = 1, 

b,, = (1 - P)-‘(14 n, rz) +pp(n - 1, fl- l)), y1> 1, 

and so, by induction, 

p(n, IZ) = (1 -p)p”(-1)’ 1 + 2 (-@p-%, n> 1. 
k=l 

This proves Theorem 2. 0 

Next we formulate and prove the main result of the paper. 

Theorem 3. For p < 1, the equilibrium probability p(n, n), n 2 1, can be written as 
m 

p(% n> = (l -p)p*” c ak(n)pk? 
k=O 

where 

k>O, 
(-l)“n(n + 1) 

a2k(lt) = (2k + n)(2k + n + 1) 

(- l)“n(n + 1) 

a2k+1(12)= (2k+n+1)(2k+n+2) k 
( -i)(k+n\l), k>O. 

Proof. The Gegenbauer polynomials CL(x) are defined by 

(1 +p*- 2pX)-* = 2 C,h(x)pk. 
k=O 

We rewrite U(4), given in Theorem 2, to 

u(~) = (1 + P2 - 2P cos 4) I’* + p cos f$ - 1 + p(l - cos24)(1 + p* - 2p cos 4)-l’* 

P(1 + cos 4) 

Since (1 + p* - 2p cos 411/* = 1 -p cos 4 + O(p*>, as p + 0 we can write 

(1 + p* - 2p cos C$)l’* +p cos f$ - 1 = E c,“*(Cos @pk. (11) 
k=2 

Differentiating (11) twice with respect to p, we obtain 

(1 +p*-2p cos 4) -3’2(1 - cos”+) = 2 k(k - l)C,“*(cos +)pk-*. 
k=2 
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Hence we find 

and consequently for U(4), 

Therefore, 

C,3L2,(cos 4) 
k(k + 1) 

+ c:‘*(cos 4) 

=- ; iT( - 1 + cos $I + (- l)“(cos(n$) - cos((n + l)$})) d$ 

1 
+- / 

T 
- ( 1 

C,3/_2,(cos 4) 
- cos 4) g pk 

T 0 k=l k(k + 1) 

Hence, 

+ ; iT( - l)“(cos(n+) - cos((12 + 1)4}) 

C,“/_‘,(cos 4) 

k(k + 1) 

where 

S,(4) = ( - 1)” k~lPk~~(cos(N - cosb + 1M)) 

! 

c,“i*,(cos 4) 
X 

k(k + 1) 
+ C:‘2(cos 4) d+. 

1 

In order to compute S,(4) - S,(4), we use (cf. [6, (4.9.19) and (4.7.23111, 

c&(cos 4) = 2 t ik +; - ’ ) ( 2n 2; T ^k - ‘) cos[(2n - 2k)4} - (PZ +; - ’ )*, 
k=O 

(12) 

c;,Z+,(cos 4) = 2 2 ( k+h-1 2n-k+h 

k=O 
k )( zn _ k + 1) cos{(2n - 2k + ‘bh (13) 
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and the fact that 

ccos(nx)cos(mx)dr= ;;, 

1 

:z:‘iO, 

rr, n=m=O. 

This yields 

; [(cos(““) - co+ + l)+j)C;k(cos 4) d4 

0, 2k<n, 

i 
k-m+h-1 

= k-m I( 
2k>n=2m 

, 9 

and 

I 
0, 2k+l<n, 
_ k-m+A-1 

i I( 
k+m+A 

k-m 1 k+m+l ’ 
2k+l>n=2m, = 

i 
k-m+h-1 k+m+h 

k-m I( 1 k+m+l ’ 
2k+l>n=2m+l. 

A straightforward calculation yields in the case it = 2m, 

b(2m; 2k) := $LT(cos(2md) - cos{(2m + l)$}) 
C,“l’1(cos 4) 
2k(2k + 1) 

=- 1 (k-m-i)(k;y;~)+(k;~;‘iik:+mm’i 

2k(2k+l) k-m-l 

I 
T(k-m+$)T(k+m+$) 2m(2m+l) 

= T(k-m+l)T(k+m+l)r 2k(2k+l) ’ 
k>m, 

0, k<m, 

b(2m; 2k + 1) := dkT(cos(2m4) - cos((2m + 1)4}) 

c;k/*(cos qb) 
(2k + 1)(2k + 2) + c:h(cos 4) 

= I 
T(k+m+i)T(k-m+i) 2m(2m + 1) 

- 
T(k-m+l)T(k+m+2)n (2k+1)(2k+2)’ 

k>m, 

0, k<m. 
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From these formulas it is immediate that S,(4) = 0, and that a factor p” can be put in front of 
the series S,(4). By using r(z)r(z + i) = 21P2’6T(2t) and (“$1 = (- 1>‘22’(-f), we get 

and 

a2j(2m) = b(2m; 2j + 2~) = 
(J’](i+I”] (2j+:Zj~~1~Lz+l)’ (14) 

and similarly 

b(2m; 2k + 1) = - 
(,-l)( &!+l) (2?:;;;::)2) 

and 

u,~+,(~wz) = b(2m; 2j + 1 + 2~2) 

=[ J’][j+irli+l] (2j+ZIZY(~~2~-k)2m+Z) 

In the case y1 = 2m - 1 we get 

b(2m - 1; 2k) := ;7cos{(2m - 1)4} - cos(2m4)) 

’ 

c,“,/’ 1( cos 4) 
2k(2k+ 1) 

= _2-4k 2k-2m ( k-m )i2::;m)‘;l,i:;,::. 

b(2m - 1; 2k + 1) := ;7cos{(2m - l)+) - cos(2m4)) 

( C,“,/“(cos 4) 
x (2k + 1)(2k + 2) + c:k(cos 4) d+ I 

2m(2m - 1) 

(2k + 1)(2k + 2) ’ 

Hence, 

a2j(2m - 1) = 6(2 m - 1; 2j + 2m - 1) 

(15) 
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a,;+,(2m - 1) = b(2 m-1;2j+2m)= - 
[ ,‘i[jL!m) (,i+EZi;‘,“:Y:),.l)- 

(17) 
Combination of (14)-(17) gives the desired result. EI 

3. Error estimates 

It follows from Theorem 3 that the equilibrium probability p(n, n> can be approximated by 

P,,,(M) := (1 -P)P2” E %kW, MEN. 
k=O 

To estimate the difference d,(M) = 1 p(n, n) -p,,,(M) I we need the following lemma. 

Lemma 4. For each II 2 1, the sequence <a,<n>>~,, is of alternating sign and its absolute value is 
strictly decreasing. 

Proof. It is immediate from the explicit form in Theorem 3 that a2,,&n) and a,,+,(n) have 
opposite signs. Further, 

bZkh>I = 

(2k + n + 2)(2k + 2n + 2) 
(2k +nj(2k + 2n + 1) b2k+dn)1 >b2k+dn)l 

and 

la 
(2k + 2)(2k + n + 3) 

2k+dn) 1 = (2k + qc2k + n + 1> 1 a2k+2(n) t ’ 1 a2k+2(n) 1. 

Corollary 5. For k E N and n E N we have 

bk@)l G ‘* 

Proof. 

Table 1 
Computation of P~,~, P~,~, p3,3 and p4,4 for increasing values of P 

P Pl,l 

0.1 0.4390.10-2 [3] (3) 
0.3 0.2929.10P’ [5] (5) 
0.5 0.5546.10P1 [7] {6) 
0.7 0.6229.10-’ [13] {ll} 
0.9 0.3277.10-l [16] (14) 

P2.2 

0.3238.10-4 [3] {3} 
0.1880~10-~ [51{4} 
0.9557.10-’ [lo] (8} 
0.2028.10-’ [13] (11) 
0.1693.10-’ [24] (20) 

P3a 

0.2669.1O-‘j [3] {3} 
0.1364.10P3 [5] (5) 
0.1880.10-2 [lo] (91 
0.7605.10-’ [15] (13} 
0.1015.10-’ [32] (25) 

P4,4 

0.2318. lo-’ [S] {3} 
0.1049.10-4 [51{5) 
0.3946.10-3 [9] {8} 
0.3062.10-2 [14] (12) 
0.6564. lo- 2 [34] (30) 
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Theorem 6. The difference d,(M) = 1 p(n, n> -p,,,(M) 1 is at most 

d,(M) G (1 - P)P2”+M+11 %4+1(4 I. (18) 

Proof. The proof of Theorem 6 follows immediately from Theorem 3 and Lemma 4. 17 

In Table 1 we present the equilibrium probabilities p(n, n> with four correct significant 
digits. The number in brackets denotes the theoretical value of A4 necessary to obtain the 
prescribed accuracy. The number in braces denotes the minimum M to attain the four correct 
digits in practice. 

Starting from the probabilities p(n, n>, 12 = 1,. . . , K + 1, other equilibrium probabilities can 
be obtained from the equilibrium equations (2) as follows. First, we obtain p(n + 1, n) for 
n=l , . . . , K - 1 from the recursive equation 

P(fi + 1, n) = (1 +P)P(% n> -PP(& n - 1) 

and the initial value ~(1, 0) = $(l - p). Next we calculate for r = 2,. . . ,2K, the probabilities 
p(n + r, n), for IZ = 1,. . . , K - [+( Y + l)], from the recursion 

&z + Y, n) = 2(1 +p)p(n + r - 1, n) -p(p(n + r - 2, n) +p(n + r - 1, y1- 1)) 

-J+z + r - 1, It + l), 

with initial value 

p(r, 0) = (1 ++(r - 1, 0) - $p(r - 2, 0) - &J(r - 1, 1). 

In order to check the accuracy of the above procedure on can use that for m is even, 

p($z, 3m) +2 F P(j, m -j> =p”(l -P>, 
j=m/2+ 1 

while for m odd, 

2 E P(j, m -j) =p”(l 7). 
j=(m+1)/2 
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