
Linear Algebra and its Applications 402 (2005) 193–198
www.elsevier.com/locate/laa

Automorphisms of Hilbert space effect algebras�

Sang Og Kim
Department of Mathematics, Hallym University, Chuncheon 200-702, Korea

Received 13 July 2004; accepted 27 December 2004
Available online 29 January 2005

Submitted by C.-K. Li

Abstract

We consider bijections of the Hilbert space effect algebra that preserve the algebraic struc-
tures in one direction and have some other properties. It is shown that if φ : E(H) → E(H)

is conditionally multiplicative and conditionally additive, then φ is implemented by a unitary
or antiunitary operator on H. We also show that 2-local ortho-order automorphisms on E(H)

are of the same form if dimH � 3.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

LetH be a complex Hilbert space. Denote byB(H) the algebra of bounded linear
operators on H. The operator interval E(H) of all positive operators in B(H) which
are bounded by the identity I is called the Hilbert space effect algebra. Effect algebras
play an important role in the mathematical foundations of quantum mechanics.

The effect algebra E(H) can be equipped with several algebraic operations. For
example, one can define a partial addition on it. Namely, if A, B ∈ E(H) and A +
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B ∈ E(H), then one can set A ⊕ B = A + B. Moreover one can define natural
partial ordering � which comes from the usual ordering on the set of self-adjoint
operators on H and one can also define the operation of so-called orthocomplemen-
tation by ⊥: A �→ I − A. Finally, as for the multiplicative operation on E(H), note
that in general A, B ∈ E(H) does not imply that AB ∈ E(H). However we have
ABA ∈ E(H). This multiplication is sometimes called Jordan triple product. Also,
if A and B commute, then AB ∈ E(H).

Because of the importance of effect algebra, it is a natural problem to study
the isomorphisms of the mentioned structures. In a series of papers [5–7,9,10], the
authors studied these isomorphisms. In fact, they studied bijections φ : E(H) →
E(H) that preserve the algebraic structures in both directions and obtained many
significant and interesting results.

In this note we consider such bijections that preserve the algebraic structures in
one direction and have some other properties. Especially we consider conditions for
the bijections to be implemented by unitary or antiunitary operators.

Let us fix some notations and terminologies. Let P(H) denote the set of all pro-
jections on H. A map φ is said to be orthoadditive on P(H) if for every pair of
orthogonal projections P, Q we have φ(P + Q) = φ(P ) + φ(Q). By an antiunitary
operator we mean a norm preserving conjugate-linear bijection of the underlying
Hilbert space H. For x, y ∈ H we denote by x ⊗ y the operator defined by (x ⊗
y)(z) = 〈z, y〉x(z ∈ H).

2. Results

Our first theorem is proved by borrowing the idea of [10, Theorem 2].

Theorem 1. Suppose that H is a separable Hilbert space with dimH � 3. Let
φ : E(H) → E(H) be a bijective map satisfying

[AB = BA] ⇒ [φ(AB) = φ(A)φ(B) = φ(B)φ(A)],
and

[AB = BA and A + B ∈ E(H)] ⇒ [φ(A + B) = φ(A) + φ(B)],
for A, B ∈ E(H). Then there exists an either unitary or antiunitary operator U on
H such that φ(A) = UAU∗(A ∈ E(H)).

Proof. Note that φ maps projections to projections, preserves the order on the set
of projections and it is orthoadditive on P(H). By [2], the restriction φ|P(H) of φ

to P(H) can be extended to a bounded linear operator φ̃ : B(H) → B(H). By
a standard argument, it follows that φ̃ is a Jordan ∗-homomorphism. First assume
that H is separable and infinite dimensional. Let x ∈ H be with ‖x‖ = 1. As φ is
surjective, there is an element A ∈ E(H) such that φ(A) = x ⊗ x. By the condi-
tional multiplicativity, we have φ(A2) = φ(A)2 = x ⊗ x = φ(A). As φ is injective,
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A is a projection. Hence the image of φ̃ contains a rank one projection. Similarly,
the identity I is contained in the range of φ̃. Since the range of φ̃ contains a rank-
one operator and an operator with dense range, it follows that φ̃ is bijective by [7,
Theorem 1]. Secondly assume that dimH = n is finite. Since Mn is a simple ring, it
is simple as a Jordan ring. So, ker φ̃ = {0}. Hence φ̃ is surjective. Since any Jordan
∗-automorphism on B(H) is an either ∗-automorphism or ∗-antiautomorphism, φ̃ is
an either ∗-automorphism or ∗-antiautomorphism. The structures of these maps are
well-known. In fact, they are of the forms

A �→ UAU∗, A �→ V A∗V ∗,
where U is a unitary and V is an antiunitary operator on H. So, φ is of the form

φ(P ) = UPU∗ (P ∈ P(H)),

where U is an either unitary or antiunitary operator on H. We may assume without
loss of generality that φ(P ) = P . For 0 � λ � 1, we have φ(λA) = φ(λI)φ(A) =
φ(A)φ(λI). So, φ(λI) commutes with every element of E(H) and hence there
exists a function f : [0, 1] → [0, 1] such that φ(λI) = f (λ)I . Note that f is multi-
plicative, injective and strictly increasing. Also, if λ, µ ∈ [0, 1] and 0 � λ + µ � 1,
then f (λ + µ) = f (λ) + f (µ). Since every strictly increasing function on R has at
most countable discontinuities, it follows that f has at least one point of continuity
in [0, 1]. From f (λ + µ) = f (λ) + f (µ), it is easy to show that f is continuous.
Hence f ([0, 1]) is an interval. As f (0) = 0 and f (1) = 1, we have that f is sur-
jective. It is well-known that any continuous bijection g : [0, 1] → [0, 1] which is
multiplicative is of the form g(λ) = λρ for some ρ > 0. As f is additive, we have
ρ = 1, so f (λ) = λ. Hence it follows that φ(λP ) = φ(λI)φ(P ) = f (λ)φ(P ) =
λP .

Let A ∈ E(H) and denote its spectral measure on the Borel sets of [0, 1] by EA.
Let 0 < λ1 < λ2 · · · < λn < 1 be arbitrary. Denote

P1 = EA([0, λ1]), P2 = EA((λ1, λ2]), . . . ,
Pn = EA((λn−1, λn]), Pn+1 = EA((λn, 1]).

Set

Aλ = 0P1 + λ1P2 + · · · + λnPn+1,

and

Aλ = λ1P1 + λ2P2 + · · · + λnPn + 1Pn+1.

By the Borel function calculus, it is easy to see that there are operators B, C ∈
E(H) such that AB = BA, AλC = CAλ and Aλ = AB, A = AλC. By the condi-
tional additivity, we have Aλ = φ(Aλ). Hence it follows that

Aλ = φ(Aλ) = φ(AB) = φ(A)φ(B) � φ(A).

Also,

φ(A) = φ(Aλ)φ(C) � φ(Aλ) = Aλ.
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As these inequalities hold for every division λ1, . . . , λn of [0, 1] appearing as above
and as Aλ, A

λ approximate A in the operator norm, we deduce that

A � φ(A) and φ(A) � A.

Consequently, we have φ(A) = A(A ∈ E(H)) and this completes the proof. �

In [8], the author studied bijective maps φ : E(H) → E(H) which preserve the
order and zero product in both directions, i.e., which satisfy

A � B ⇔ φ(A) � φ(B) (A, B ∈ E(H)),

and

AB = 0 ⇔ φ(A)φ(B) = 0 (A, B ∈ E(H)).

Theorem 2. Suppose that H is a separable Hilbert space with dimH � 3. Let
φ : E(H) → E(H) be a bijective map which preserves the order in both directions.
If

[AB = 0] ⇒ [φ(A)φ(B) = 0] (A, B ∈ E(H))

then there exists an either unitary or antiunitary operator U on H and a real number
ρ < 1 such that with the function fρ(x) = x

xρ+(1−ρ)
(x ∈ [0, 1]) we have

φ(A) = Ufρ(A)U∗ (A ∈ E(H)).

Here, fρ(A) denotes the image of the function fρ under the continuous function
calculus belonging to the operator A.

Proof. Recall that every bijection of the effect algebra of a Hilbert space which pre-
serves the order in both directions preserves the projections as well as their ranks in
both directions (see [4, Theorem 5.8]). Let P, Q ∈ P(H) be orthogonal projections.
As φ(P )φ(Q) = 0, φ(P ) + φ(Q) = φ(R) for some projection R. Then φ(P ) �
φ(R), φ(Q) � φ(R) and we have P + Q � R. Since φ is monotone it follows
that φ(P + Q) � φ(R). It is clear that φ(P ) + φ(Q) � φ(P + Q). Hence φ(P ) +
φ(Q) = φ(P + Q). Since φ is orthoadditive on P(H), there exists an either unitary
or antiunitary operator V on H such that φ(P ) = V PV ∗(P ∈ P(H)), as in the first
part of the proof of Theorem 1. In particular, two projections are orthogonal if and
only if their images are orthogonal. We assert that for A, B ∈ E(H), φ(A)φ(B) = 0
implies AB = 0. Let R be the range projection of A (i.e., the projection onto the
closure of the range of A). Then R is the infimum of the set of all projections which
are greater than or equal to A. Since φ preserves the order in both directions, it
follows that φ(R) is the range projection of φ(A). Note that for any A, B ∈ E(H),
we have AB = 0 if and only if the range projections are orthogonal. From these facts,
we have that φ(A)φ(B) = 0 implies AB = 0. Hence φ is a bijection preserving
order and zero product in both directions. The conclusion follows from [8, Theorem
1]. �



S.O. Kim / Linear Algebra and its Applications 402 (2005) 193–198 197

A map φ : E(H) → E(H) is called a 2-local ortho-order automorphism if for
every A, B ∈ E(H) there is an ortho-order automorphism φA,B of E(H) (that is,
an automorphism of E(H) with respect to the relations � and ⊥) for which φ(A) =
φA,B(A) and φ(B) = φA,B(B). The notion of 2-locality was introduced by Šemrl
[11] who obtained the first results on 2-local automorphisms and 2-local derivations
on B(H). In [1, Theorem 3], the authors showed that every local automorphism of
E(H) is an automorphism for separable infinite dimensional Hilbert space H. In
the following theorem, we show that this holds true for finite dimensional cases, too.
In [5, Proposition], the author obtained the general form of 2-local automorphisms
of the orthomodular poset P(H) for separable infinite dimensional H.

Theorem 3. Suppose that H is a separable Hilbert space with dimH � 3. Let φ :
E(H) → E(H) be a 2-local ortho-order automorphism. Then there exists an either
unitary or antiunitary operator V on H such that φ(A) = V AV ∗(A ∈ E(H)).

Proof. Let A, B ∈ E(H). Then by [3], there is an either unitary or antiunitary oper-
ator U , depending on A and B, such that φ(A) = UAU∗ and φ(B) = UBU∗. Hence
the restriction φ|P(H) : P(H) → P(H) of φ to the set of projections is a 2-local
ortho-order automorphism. First assume that dimH = ∞. By [5], there exists an
either unitary or antiunitary operator V onH such that φ(P ) = V PV ∗(P ∈ P(H)).
Secondly assume that dimH = n < ∞. From the 2-local property of φ, it follows that
τ(φ(A)φ(B)∗) = τ(AB∗) for every A, B ∈ E(H), where τ is the trace functional of
Mn. Hence if A, B, C, A + B ∈ E(H), then by the linearity of τ we have

τ [(φ(A + B) − φ(A) − φ(B))φ(C)∗] = 0,

and hence

τ [(φ(A + B) − φ(A) − φ(B))(φ(A + B) − φ(A) − φ(B))∗] = 0,

from which it follows that φ is partially additive. In particular, if P and Q are orthogo-
nal projections, we have φ(P + Q) = φ(P ) + φ(Q). So, the restriction φ|P(H) :
P(H) → P(H) of φ toP(H) extends to a continuous linear map φ̃ : Mn → Mn by
[2]. As in the proof of Theorem 1, φ̃ is an either ∗-automorphism or ∗-antiautomor-
phism. Hence as in the infinite dimensional case, there exists an either unitary or an-
tiunitary operator V onH such that φ(P ) = V PV ∗(P ∈ P(H)). Let x ∈ H be with
‖x‖ = 1,A ∈ E(H) andU be an either unitary or antiunitary operator that corresponds
to the projection x ⊗ x and to the operator A by the 2-locality of φ. We then have

〈Ax, x〉Ux ⊗ Ux=U(x ⊗ x)U∗UAU∗U(x ⊗ x)U∗

=φ(x ⊗ x)φ(A)φ(x ⊗ x)

=V (x ⊗ x)V ∗φ(A)V (x ⊗ x)V ∗

=〈φ(A)V x, V x〉V x ⊗ V x

=〈V ∗φ(A)V x, x〉V x ⊗ V x,

from which it follows that φ(A) = V AV ∗(A ∈ E(H)), completing the proof. �
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