Applied Mathematics Letters

Exact Solution of Variable Coefficient Mixed Hyperbolic Partial Differential Problems

M. J. Rodriguez-Alvarez, G. Rubio and L. Jódar
Instituto de Matemática Multidisciplinar Universidad Politécnica de Valencia, Spain <mjrodri><grubio><ljodar>@mat.upv.es
A. E. Posso
Departamento de Matemáticas
Universidad Tecnológica de Pereira, Colombia
possoa@andromeda.utp.edu.co

(Received April 2002; accepted May 2002)

Abstract

This paper is concerned with the construction of exact series solution of mixed variable coefficient hyperbolic problems. ©C 2003 Elsevier Science Ltd. All rights reserved.

Keywords-Hyperbolic mixed problem, Exact solution.

1. INTRODUCTION

In recent papers [1,2], exact series solutions of certain hyperbolic mixed problems have been given using separation of variables technique. Here we consider a variable coefficient mixed hyperbolic system of the form

$$
\begin{align*}
U_{x x}(x, t)-q(x) U(x, t)=\frac{1}{r(t)} U_{t t}(x, t), & 0<x<p, \quad t>0 \tag{1.1}\\
a_{1} U(0, t)+b_{1} U_{x}(0, t)=0, & t>0 \tag{1.2}\\
a_{2} U(p, t)+b_{2} U_{x}(p, t)=0, & t>0 \tag{1.3}\\
U(x, 0)=f(x), \quad U_{t}(x, 0)=g(x), & 0 \leq x \leq p \tag{1.4}
\end{align*}
$$

where $q(x)$ is real, $r(t)>0$ and

$$
\begin{equation*}
\left|a_{1}\right|+\left|b_{1}\right|>0, \quad\left|a_{2}\right|+\left|b_{2}\right|>0 \tag{1.5}
\end{equation*}
$$

Conditions on the coefficients and data functions are given in Section 2 in order to guarantee an exact series solution of problem (1.1)-(1.5).

[^0]
2. EXACT SERIES SOLUTION

Following the ideas developed in [2], we propose a candidate series solution of problem (1.1)(1.4) of the form

$$
\begin{equation*}
U(x, t)=\sum_{n \geq 1}\left\{a_{n} z_{n}(t)+b_{n} \omega_{n}(t)\right\} \varphi_{n}(x), \tag{2.1}
\end{equation*}
$$

where $\left\{\varphi_{n}(x)\right\}$ is the eigenfunction system of the Sturm-Liouville problem

$$
\begin{align*}
\varphi^{\prime \prime}(x)+(\lambda-q(x)) \varphi(x) & =0, \quad 0<x<p \\
a_{1} \varphi(0)+b_{1} \varphi^{\prime}(0) & =0 \tag{2.2}\\
a_{2} \varphi(p)+b_{2} \varphi^{\prime}(p) & =0
\end{align*}
$$

and if λ_{n} is the $n^{\text {th }}$ eigenvalue of (2.2), then the pair $\left\{z_{n}, \omega_{n}\right\}$ are the solutions of

$$
\begin{equation*}
Y_{n}^{\prime \prime}(t)+\lambda_{n} r(t) Y_{n}(t)=0, \quad t>0 \tag{2.3}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
z_{n}(0)=1, \quad z_{n}^{\prime}(0)=1 ; \quad \omega_{n}(0)=0, \quad \omega_{n}^{\prime}(0)=1 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{\int_{0}^{p} f(x) \varphi_{n}(x) d x}{\int_{0}^{p}\left(\varphi_{n}(x)\right)^{2} d x}, \quad b_{n}=\frac{\int_{0}^{p} g(x) \varphi_{n}(x) d x}{\int_{0}^{p}\left(\varphi_{n}(x)\right)^{2} d x}, \quad n \geq 1 \tag{2.5}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
q_{1}=\min \{q(x) ; 0 \leq x \leq p\}, \quad q_{2}=\max \{q(x) ; 0 \leq x \leq p\} \tag{2.6}
\end{equation*}
$$

By $\left[1 ; 3\right.$, p. 264], the $n^{\text {th }}$ eigenvalue of problem (2.2) satisfies

$$
\begin{equation*}
\frac{n^{2} \pi^{2}}{p^{2}}+q_{1} \leq \lambda_{n} \leq \frac{(n+1)^{2} \pi^{2}}{p^{2}}+q_{2}, \quad n \geq 1 \tag{2.7}
\end{equation*}
$$

If $r(t)$ is continuously differentiable in $0 \leq t \leq T$ and

$$
\begin{align*}
M(T) & =\max \{r(t) ; 0 \leq t \leq T\} \\
M^{\prime}(T) & =\max \left\{r^{\prime}(t) ; 0 \leq t \leq T\right\} \tag{2.8}\\
m(T) & =\min \{r(t) ; 0 \leq t \leq T\}
\end{align*}
$$

taking n_{0} large enough so that $\lambda_{n}>0$ for $n \geq n_{0}$, then by Theorem 4 of [4] it follows that

$$
\begin{array}{ll}
\left|z_{n}(t)\right| \leq L, & \left|z_{n}^{\prime}(t)\right| \leq L \sqrt{\lambda_{n} M(T)}, \\
\left|\omega_{n}(t)\right| \leq \frac{L}{\sqrt{\lambda_{n} r(0)}}, & \left|\omega_{n}^{\prime}(t)\right| \leq L \sqrt{\frac{M(T)}{r(0)}}, \tag{2.9}
\end{array} n \geq t \leq n_{0}
$$

where

$$
\begin{equation*}
L=\sqrt{\frac{r(0)}{m(T)}} \exp \left(\frac{T M^{\prime}(T)}{2 m(T)}\right) \tag{2.10}
\end{equation*}
$$

Note that by (2.3), (2.7), and (2.9) for $n \geq n_{0}$ one gets

$$
\begin{array}{ll}
\left|z_{n}^{\prime \prime}(t)\right| \leq L M(t)\left[\left(\frac{(n+1) \pi}{p}\right)^{2}+q_{2}\right], & 0 \leq t \leq T \tag{2.11}\\
\left|\omega_{n}^{\prime \prime}(t)\right| \leq \frac{L M(T)}{\sqrt{r(0)}}\left[\left(\frac{(n+1) \pi}{p}\right)^{2}+q_{2}\right]^{1 / 2}, & 0 \leq t \leq T
\end{array}
$$

By (2.2) and (2.7) we have

$$
\begin{equation*}
\left|\varphi_{n}^{\prime \prime}(x)\right| \leq\left[\frac{(n+1) \pi}{p}\right]^{2}\left|\varphi_{n}(x)\right|, \quad 0 \leq x \leq p \tag{2.12}
\end{equation*}
$$

Now we are concerned in bounding the eigenfunctions $\varphi_{n}(x)$ as well as the Sturm-Liouville coefficients a_{n}, b_{n}, defined by (2.5). In order to prove that (2.1) gives a rigorous solution of problem (1.1)-(1.4), it is sufficient to show that series (2.1) as well as

$$
\begin{align*}
& \sum_{n \geq 1}\left\{a_{n} z_{n}(t)+b_{n} \omega_{n}(t)\right\} \varphi_{n}^{\prime \prime}(x) \tag{2.13}\\
& \sum_{n \geq 1}\left\{a_{n} z_{n}^{\prime \prime}(t)+b_{n} \omega_{n}(t)\right\} \varphi_{n}(x) \tag{2.14}
\end{align*}
$$

are locally uniformly convergent in a rectangle $[0, p] \times\left[t_{0}-\delta, t_{0}+\delta\right]=R\left(t_{0}, \delta\right)$ for $0<\delta<t_{0}<$ $t_{0}+\delta \leq T$. All these series will be uniformly convergent in $R\left(t_{0}, \delta\right)$ if the series $\sum_{n \geq 1}\left\{n^{2}\left|a_{n}\right|+\right.$ $\left.n\left|b_{n}\right|\right\} n^{2}\left|\varphi_{n}(x)\right|$ is uniformly convergent for $0 \leq x \leq p$. Thus, we are interested in conditions which guarantee the uniform convergence of series

$$
\begin{equation*}
\sum_{n \geq 1} n^{4}\left|a_{n}\left\|\varphi_{n}(x)\left|, \quad \sum_{n \geq 1} n^{3}\right| b_{n}\right\| \varphi_{n}(x)\right|, \quad 0 \leq x \leq p \tag{2.15}
\end{equation*}
$$

Let us suppose that

$$
\begin{equation*}
q(x) \text { is a function of bounded variation in } 0 \leq x \leq p \tag{2.16}
\end{equation*}
$$

let us denote by $V_{q}(0, p)$ the total variation of $q(x)$ in $[0, p]$ and take n_{1} large enough so that

$$
\begin{equation*}
\lambda_{n}>q_{2}, \quad \text { for all } n \geq n_{1} \tag{2.17}
\end{equation*}
$$

By applying Prufer transformation [3,5] to problem (2.2) and using Theorem 4.1 of [4], it follows that

$$
\begin{align*}
& \left|\varphi_{n}(x)\right| \leq C_{q} M_{q}, \\
& C_{q}=\sqrt{1+\frac{1}{\lambda_{n}-q(0)}}, \quad M_{q}=\exp \left(\frac{V_{q}(0, p)}{2\left[(n \pi / p)^{2}-V_{q}(0, p)\right]}\right), \quad n \geq n_{1} . \tag{2.18}\\
& \left|\varphi_{n}^{\prime}(x)\right| \leq C_{q} M_{q} \sqrt{\lambda_{n}-q(p)}, \quad 0 \leq x \leq p,
\end{align*}
$$

Note that by (2.18) the series appearing in (2.15) is uniformly convergent in $0 \leq x \leq p$ if coefficients a_{n}, b_{n} satisfy

$$
\begin{equation*}
\left|a_{n}\right|=O\left(n^{-6}\right), \quad\left|b_{n}\right|=O\left(n^{-5}\right) \mid, \quad n \rightarrow \infty \tag{2.19}
\end{equation*}
$$

By Theorem 5 of [5, p. 273], and the proof of Theorem 4 of [2], condition (2.19) holds true if function $f(x)$ and $g(x)$ satisfy the following conditions:

$$
\begin{align*}
a_{1} f(0)+b_{1} f^{\prime}(0)=0, & a_{2} f(p)+b_{2} f^{\prime}(p)=0 \tag{2.20}\\
a_{1} g(0)+b_{1} g^{\prime}(0)=0, & a_{2} g(p)+b_{2} g^{\prime}(p)=0
\end{align*}
$$

$f(x)$ is six times differentiable, $f^{(6)}(x)$ is piecewise continuous and has a bounded variation in $[0, p]$ with $f^{(2 i)}(0)=f^{(2 i)}(p)=0$, for $i=1,2,3$.
$g(x)$ is five times differentiable, $g^{(5)}(x)$ is piecewise continuous and has a bounded variation in $[0, p]$ with $g^{(2 i)}(0)=g^{(2 i)}(p)=0$, for $i=1,2$.
Summarizing, the following result has been established.
Theorem 1. Consider real valued functions $f(x), g(x), q(x)$, and $r(t)$ where $r(t)$ is continuous and positive, $q(x)$ satisfies (2.16) and $f(x), g(x)$ satisfy conditions (2.20)-(2.22). If $\left\{z_{n}, \omega_{n}\right\}$ are solutions of (2.3) satisfying (2.4) and a_{n}, b_{n} are defined by (2.5), then $U(x, t)$ given by (2.1) is a solution of problem (1.1)-(1.5).

REFERENCES

1. L. Jódar and M.D. Roselló, Mixed problems for separate variable coefficient wave equation. The non-Dirichlet case. Continuous numerical solutions with a priori error bounds, Mathl. Comput. Modelling 30 (9/10), 1-22, (1999).
2. P. Almenar and L. Jódar, Mixed problems for separated variable coefficient wave equations. Analyticnumerical solutions with a priori error bounds, J. Comput. Applied Math. 134, 301-323, (2001).
3. H. Sagan, Boundary and Eigenvalues Problems in Mathematical Physics, Dover, New York, (1989).
4. L. Jódar and A.E. Posso, Analytic numerical approximation with a priori error bound for the wave equation with time dependent coefficient, Mathl. Comput. Modelling 29 (6), 1-14, (1999).
5. G. Birkhoff and G.C. Rota, Ordinary Differential Equations, Third Edition, John-Wiley, New York, (1978).

[^0]: This paper has been supported by the Spanish A.E.C.I., the C.I.C.Y.T. Grant DPI2001-2703-C02-02, and D.G.I.C. Y.T. Grant BFM 2000-C04-04.

 0893-9659/03/\$ - see front matter (C) 2003 Elsevier Science Ltd. All rights reserved. Typeset by $\mathcal{A}_{\mathcal{M} \mathcal{S}}$-TEX PII: S0893-9659(02)00197-0

