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1. I N T R O D U C T I O N  

In recent papers [1,2], exact series solutions of certain hyperbolic mixed problems have been given 

using separation of variables technique. Here we consider a variable coefficient mixed hyperbolic 

system of the form 

1 
Uxx(x , t ) -q(x)U(z , t )=-~Vt t (x , t ) ,  0 < x < p ,  t > 0 ,  (1.1) 

alV(O,t)+blUx(O,t)=O, t > 0 ,  (1.2) 

a2V(p,t) + b2Ux(p,t) = O, t > O, (1.3) 

U(x,O)=f(x), Ut(x,O)=g(x), 0 < x < p ,  (1.4) 

where q(x) is real, r(t) >0 and 

lall+]bll > 0 ,  [a21+lb21>0.  (1.5) 

Condit ions on the coefficients and data  functions are given in Section 2 in order to guarantee 

an exact series solution of problem (1.1)-(1.5). 
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2. E X A C T  SERIES S O L U T I O N  

Following the ideas developed in [2], we propose a candidate series solution of problem (1.1)- 
(1.4) of the form 

U(x, t) = E(anzn( t )  + bnwn(t))~on(x), (2.1) 
n>l 

where {~,~(x)} is the eigenfunction system of the Sturm-Liouville problem 

~ " ( x )  + (A - q ( x ) ) ~ ( ~ )  = 0, 0 < • < p, 

al~v(0) + bl~'(0) = 0, (2.2) 

a2~(p)  q- b2~flt(P) : 0, 

and if An is the n th eigenvalue of (2.2), then the pair {z,~,wn} are the solutions of 

Y"(t) + A.r( t )Vn(t )  = 0, t > 0, (2.3) 

satisfying 

and 

Let us denote 

zn(0) = 1, z~(0) = 1; wn(0) = 0, w~(0) = 1; (2.4) 

f~ f(x)~n(x) dx f~ g(x)~n(x) dx 
an = f~ (~n (x ) )2dx  ' b,~ = fop(~n(x)) 2dx ' n > 1. (2.5) 

ql = min{q(x); 0 < x < p}, q2 = max{q(x); 0 < x < p}. (2.6) 

By [1; 3, p. 264], the n th eigenvalue of problem (2.2) satisfies 

n27r 2 (rt q- 1)27r 2 
p2 A-ql _< An ~_ p2 + q2, 

If r(t) is continuously differentiable in 0 < t < T and 

M(T) = max{r(t) ;  0 < t < T}, 

M'(T) = max {r '(t);  0 < t < T } ,  

m(T) = min{r(t);  0 < t < T}, 

n > 1. (2.7) 

(2.s)  

taking no large enough so tha t  An > 0 for n > no, 

Iz,~(t)l < L, 

where 

L 
I~o,~ (t)l _< 

Iz ' ( t ) l  _< 

Iw~(t)l < 

then by Theorem 4 of [4] it follows that  

L ~ ,  0 < t < T, 

(2.9) 
L , n >_ no, 

V m----~ exp ~, ~ ] "  

Note tha t  by (2.3), (2.7), and (2.9) for n > no one gets 

Iz~(t) ,<LM(t) (n ~ l ) T r )  2 ] -- -kq2 , 
\ 

LM(T) [((n~1)~)2+ I I/2 
l~"(t)l < vr ~ 

0 < t < T ,  

0 < t < T .  

(2.1o) 

(2.11) 
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By (2.2) and (2.7) we have 

- I ~ n ( x ) ] ,  0 < x < p.  (2 .12 )  

Now we are concerned in bounding the eigenfunctions ~,~(x) as well as the Sturm-Liouville 
coefficients a~, bn, defined by (2.5). In order to prove tha t  (2.1) gives a rigorous solution of 
problem (1.1)-(1.4), it is sufficient to show tha t  series (2.1) as well as 

E {a~z,(t) + bnwn(t) }~(x ) ,  (2.13) 
n>_l 

E {anz~(t) + b,~wn(t)} ~on(x), (2.14) 
n > l  

are locally uniformly convergent in a rectangle [0, p] x [to - 5, to + 5] = R(to, 5) for 0 < 5 < to < 
to + 5 _< T. All these series will be uniformly convergent in R(to, 5) if the series ~>l{n2lanl  + 
nlb~l}n21~vn(x)l is uniformly convergent for 0 _< x _< p. Thus, we are interested in conditions 
which guarantee the uniform convergence of series 

~_n4lanl@n(x)h ~-~n31b=ll~o~(x)l, 0 < z < p .  (2.15) 
n_>l n > l  

Let us suppose tha t  

q(x) is a function of bounded variation in 0 < x < p, (2.16) 

let us denote by Vq(O,p) the total  variation of q(x) in [0,p] and take nl  large enough so tha t  

An > q2, for all n > nl .  (2.17) 

By applying Prufer  t ransformat ion [3,5] to problem (2.2) and using Theorem 4.1 of [4], it follows 
tha t  

I ~ ( x ) l  _< CqMq, I~'n(x)l < CqMa~/An - q(p), 0 < x < p, 

i 1 ) Cq = 1 + An - q(0) M a = exp ( Vq(0_p) ' ~k2 [(nTr/ /p)  2 --  Vq(O,p)]  ' n ~_ n 1. 

¢12.18) 

Note tha t  by (2.18) the series appearing in (2.15) is uniformly convergent in 0 _< x < p if 
coefficients an, bn satisfy 

lan[ = 0 ( n - S ) ,  Ibn] = 0 (n -5)  l, n --~ ~ .  (2.19) 

By Theorem 5 of [5, p. 273], and the proof of Theorem 4 of [2], condition (2.19) holds true if 
function f(x) and g(x) satisfy the following conditions: 

elf(O) + b l f ' (0 )  = 0, a2f(p) + b2f'(p) = 0, 
(2.20) 

alg(O) + blg'(O) = O, a2g(p) + b2g'(p) = 0, 

f(x) is six times differentiable, f(6)(x) is piecewise continuous and has (2.21) 
a bounded variation in [0,p] with f(2~)(0) = f(20(p)  = 0, for i = 1, 2, 3. 

g(x) is five t imes differentiable, g(5)(x) is piecewise continuous and has (2.22) 
a bounded variat ion in [0,p] with g(2~)(0) = g(2i)(p) = 0, for i = 1, 2. 

Summarizing,  the following result has been established. 

THEOREM 1. Consider real valued functions f(x), g(x), q(x), and r(t) where r(t) is continuous 
and positive, q(z) satisfies (2.16) and f(x), g(x) satisfy conditions (2.20)-(2.22). If {z~, w~} are 
solutions of (2.3) satisfying (2.4) and an, bn are defined by (2.5), then U(x, t) given by (2.1) is a 
solution of problem (1.1)-(1.5). 
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