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Abstract

We consider the ground state of an atom in the framework of non-relativistic qed. We show that the
ground state as well as the ground state energy are analytic functions of the coupling constant which couples
to the vector potential, under the assumption that the atomic Hamiltonian has a non-degenerate ground
state. Moreover, we show that the corresponding expansion coefficients are precisely the coefficients of the
associated Raleigh–Schrödinger series. As a corollary we obtain that in a scaling limit where the ultraviolet
cutoff is of the order of the Rydberg energy the ground state and the ground state energy have convergent
power series expansions in the fine structure constant α, with α dependent coefficients which are finite for
α � 0.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Non-relativistic quantum electrodynamics (qed) is a mathematically rigorous theory describ-
ing low energy phenomena of matter interacting with quantized radiation. This theory allows
a mathematically rigorous treatment of various physical aspects, see for example [23] and refer-
ences therein.
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In this paper we investigate expansions of the ground state and the ground state energy of an
atom as functions of the coupling constant, g, which couples to the vector potential of the quan-
tized electromagnetic field. Such an expansion carries the physical structure originating from
the interactions of bound electrons with photons. (The most general proof of the existence of a
ground state for these minimally coupled theories can be found in [11].) These interactions lead
to radiative corrections and were shown [8] to contribute to the Lamb shift [20]. The main result
of this paper, Theorem 2.1, shows that the ground state as well as the ground state energy of the
atom are analytic functions of the coupling constant g. We do not impose any infrared regular-
ization (as was needed in [10]). We assume that the electrons of the atom are spin-less and that
the atomic Hamiltonian has a unique ground state. Moreover, we show that the corresponding
expansion coefficients can be calculated using Raleigh–Schrödinger perturbation theory. To see
this we introduce an infrared cutoff σ � 0 and show that the ground state as well as the ground
state energy are continuous as a function of σ . This permits the calculation of radiative correc-
tions to the ground state as well as the ground state energy to any order in the coupling constant.
To obtain contributions of processes involving n photons, one needs to expand at least to the or-
der n in the coupling constant g. The main theorem of this paper can be used to justify a rigorous
investigation of ground states as well as ground state energies by means of analytic perturbation
theory.

As a corollary of the main result we obtain a convergent expansion in the fine structure con-
stant α, as α tends to zero, in a scaling limit where the ultraviolet cutoff is of the order of the
Rydberg energy. To this end we introduce a parameter, β , which originates from the coupling to
the electrostatic potential, show that all estimates are uniform in β , and set g = α3/2 and β = α.
As a result, Corollary 2.3, we obtain that the ground state and the ground state energy have con-
vergent power series expansions in the fine structure constant α, with α dependent coefficients
which are finite for α � 0. These coefficients can be calculated by means of Raleigh–Schrödinger
perturbation theory. The expansion of the ground state is in powers of α3/2 and the expansion of
the ground state energy is in powers of α3. This result improves the main theorem stated in [2,4]
where it was shown that there exists an asymptotic expansion in α involving coefficients which
depend on α and have at most mild singularities. We want to note that in different scaling limits
of the ultraviolet cutoff expansions in the first few orders in α were obtained in [7,13,12], which
involve logarithmic terms. The relation between the different scaling limits is outlined at the end
of Section 2. The scaling limit which we consider in this paper (where the ultraviolet cutoff is of
the order of the Rydberg energy) is typically used to study the properties of atoms, cf. [2–4,18,6].
In [18,6] estimates on lifetimes of metastable states were proven, which, in leading order, agree
with experiment.

Let us now address the proof of the main results. It is well known that the ground state en-
ergy is embedded in the continuous spectrum. In such a situation regular perturbation theory is
typically not applicable and other methods have to be employed. To prove the existence result as
well as the analyticity result we use a variant of the operator theoretic renormalization analysis
as introduced in [5] and further developed in [1]. The main idea of the proof is that by rotation
invariance one can infer that in the renormalization analysis terms which are linear in creation
and annihilation operators do not occur. In that case it follows that the renormalization transfor-
mation is a contraction even without infrared regularization. A similar idea was used to prove the
existence and the analyticity of the ground state and the ground state energy in the spin-boson
model [15]. In the proof we will use results which were obtained in [15]. We note that related
ideas were also used in [10]. Furthermore, we think that the method of combining the renormal-
ization transformation with rotation invariance, as used in this paper, might be applicable to other
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spectral problems of atoms in the framework of non-relativistic qed. We note that contraction of
the renormalization transformation can also be shown using a generalized Pauli–Fierz transfor-
mation [22]. As opposed to the latter reference and all other treatments we are aware of, we do
not use (or need) gauge invariance of the Hamiltonian. Thus for example the quadratic term in
the vector potential could be dropped and our results would remain the same.

2. Model and statement of results

Let (h, 〈·, ·〉h) be a Hilbert space. We introduce the direct sum of the n-fold tensor product
of h and set

F (h) :=
∞⊕

n=0

F (n)(h), F (n)(h) = h⊗n

,

where we have set h⊗0 := C. We introduce the vacuum vector Ω := (1,0,0, . . .) ∈ F (h). The
space F (h) is an inner product space where the inner product is induced from the inner product
in h. That is, on vectors η1 ⊗ · · · ⊗ ηn,ϕ1 ⊗ · · · ⊗ ϕn ∈ F (n)(h) we have

〈η1 ⊗ · · · ⊗ ηn,ϕ1 ⊗ · · · ⊗ ϕn〉 :=
n∏

i=1

〈ηi, ϕi〉h.

This definition extends to all of F (h) by bilinearity and continuity. We introduce the bosonic
Fock space

Fs(h) :=
∞⊕

n=0

F (n)
s (h), F (n)

s (h) := SnF (n)(h),

where Sn denotes the orthogonal projection onto the subspace of totally symmetric tensors in
F (n)(h). For h ∈ h we introduce the so-called creation operator a∗(h) in Fs(h) which is defined
on vectors η ∈ F (n)

s (h) by

a∗(h)η := √
n + 1Sn+1(h ⊗ η). (2.1)

The operator a∗(h) extends by linearity to a densely defined linear operator on Fs(h). One can
show that a∗(h) is closable, cf. [21], and we denote its closure by the same symbol. We introduce
the annihilation operator by a(h) := (a∗(h))∗. For a closed operator A ∈ h with domain D(A) we
introduce the operator Γ (A) and dΓ (A) in F (h) defined on vectors η = η1 ⊗· · ·⊗ηn ∈ F (n)(h),
with ηi ∈ D(A), by

Γ (A)η := Aη1 ⊗ · · · ⊗ Aηn

and

dΓ (A)η :=
n∑

η1 ⊗ · · · ⊗ ηi−1 ⊗ Aηi ⊗ ηi+1 ⊗ · · · ⊗ ηn
i=1
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and extended by linearity to a densely defined linear operator on F (h). One can show that dΓ (A)

and Γ (A) are closable, cf. [21], and we denote their closure by the same symbol. The operators
Γ (A) and dΓ (A) leave the subspace Fs(h) invariant, that is, their restriction to Fs(h) is densely
defined, closed, and has range contained in Fs(h). To define qed, we fix

h := L2(
R

3 × Z2
)

and set F := Fs(h). We denote the norm of h by ‖ · ‖h. We define the operator of the free field
energy by

Hf := dΓ (Mω),

where ω(k,λ) := ω(k) := |k| and Mϕ denotes the operator of multiplication with the function ϕ.
For f ∈ h we write

a∗(f ) =
∑

λ=1,2

∫
dk f (k,λ)a∗(k, λ), a(f ) =

∑
λ=1,2

∫
dk f (k,λ)a∗(k, λ),

where a(k,λ) and a∗(k, λ) are operator-valued distributions. They satisfy the following commu-
tation relations, which are to be understood in the sense of distributions,

[
a(k,λ), a∗(k′, λ′)]= δλλ′δ

(
k − k′), [

a#(k, λ), a#(k′, λ′)]= 0,

where a# stands for a or a∗. For λ = 1,2 we introduce the so-called polarization vectors

ε(·, λ) :S2 := {
k ∈ R

3
∣∣ |k| = 1

}→ R
3

to be measurable maps such that for each k ∈ S2 the vectors ε(k,1), ε(k,2), k form an orthonor-
mal basis of R

3. We extend ε(·, λ) to R
3 \ {0} by setting ε(k,λ) := ε(k/|k|, λ) for all nonzero k.

For x ∈ R
3 we define the field operator

Aσ (x) :=
∑

λ=1,2

∫
dk κσ,Λ(k)√

16π3|k|
[
e−ik·xε(k,λ)a∗(k, λ) + eik·xε(k,λ)a(k,λ)

]
, (2.2)

where the function κσ,Λ serves as a cutoff, which satisfies κσ,Λ(k) = 1 if σ � |k| � Λ and which
is zero otherwise. Λ > 0 is an ultraviolet cutoff, which we assume to be fixed, and σ � 0 an
infrared cutoff. Next we introduce the atomic Hilbert space, which describes the configuration of
N electrons, by

Hat := {
ψ ∈ L2(

R
3N
) ∣∣ψ(xπ(1), . . . , xπ(N)) = sgn(π)ψ(x1, . . . , xN), π ∈ SN

}
,

where SN denotes the group of permutations of N elements, sgn denotes the signum of the per-
mutation, and xj ∈ R

3 denotes the coordinate of the j -th electron. We will consider the following
operator in H := Hat ⊗ F ,
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Hg,β,σ := :
N∑

j=1

(
pj + gAσ (βxj )

)2: + V + Hf , (2.3)

where pj = −i∂xj
, V = V (x1, . . . , xN) denotes the potential, and :(·): stands for the Wick prod-

uct. The coupling constant g ∈ C is of interest for the main result, Theorem 2.1. The parameter
β ∈ R will be used in Corollary 2.3. We will make the following assumptions on the potential V ,
which are related to the atomic Hamiltonian

Hat := −� + V,

which acts in Hat. We introduced the Laplacian −� :=∑N
j=1 p2

j .

Hypothesis (H). The potential V satisfies the following properties:

(i) V is invariant under rotations and permutations, that is

V (x1, . . . , xN) = V
(
R−1x1, . . . ,R

−1xN

)
, ∀R ∈ SO(3),

V (x1, . . . , xN) = V (xπ(1), . . . , xπ(N)), ∀π ∈ SN.

(ii) V is infinitesimally operator bounded with respect to −�.
(iii) Eat := infσ(Hat) is a non-degenerate isolated eigenvalue of Hat.

Note that for the hydrogen, N = 1, the potential V (x1) = −|x1|−1 satisfies Hypothesis (H).
Moreover (ii) of Hypothesis (H) implies that Hg,β,σ is a self-adjoint operator with domain
D(−� + Hf ) and that Hg,β,σ is essentially self adjoint on any operator core for −� + Hf ,
see for example [19,14]. For a precise definition of the operator in (2.3), see Appendix A. We
will use the notation Dr(w) := {z ∈ C | |z−w| < r} and Dr := Dr(0). Let us now state the main
result of the paper.

Theorem 2.1. Assume Hypothesis (H). Then there exists a positive constant g0 such that for all
g ∈ Dg0 , β ∈ R, and σ � 0 the operator Hg,β,σ has an eigenvalue Eβ,σ (g) with eigenvector
ψβ,σ (g) and eigen-projection Pβ,σ (g) satisfying the following properties.

(i) For g ∈ R ∩ Dg0 , Eβ,σ (g) = infσ(Hg,β,σ ).
(ii) g �→ Eβ,σ (g) and g �→ ψβ,σ (g) are analytic on Dg0 .

(iii) g �→ Pβ,σ (g) is analytic on Dg0 and Pβ,σ (g)∗ = Pβ,σ (g).

The functions Eβ,σ (g), ψβ,σ (g), and Pβ,σ (g) are bounded in (g,β,σ ) ∈ Dg0 × R × [0,∞) and
depend continuously on σ � 0.

The infrared cutoff σ will be used in Section 3 to relate the expansion coefficients to analytic
perturbation theory. It is also true that the eigenvalue Eβ,σ (g) is non-degenerate for g ∈ R ∩ Dg0

(see for example [23,16]). Note that [16] does not assume minimal coupling. We want to empha-
size that the proof of Theorem 2.1 and the non-degeneracy result do not use any form of gauge
invariance. In particular the conclusions hold if the terms quadratic in Aσ are dropped from the
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Hamiltonian. Using Theorem 2.1 and Cauchy’s formula one can show the following corollary,
see Section 9.

Corollary 2.2. Assume Hypothesis (H). And let g0, Eβ,σ (g), ψβ,σ (g) and Pβ,σ (g) be given as
in Theorem 2.1. Then on Dg0 we have the convergent power series expansions

ψβ,σ (g) =
∞∑

n=0

ψ
(n)
β,σ gn, Pβ,σ (g) =

∞∑
n=0

P
(n)
β,σ gn, Eβ,σ (g) =

∞∑
n=0

E
(2n)
β,σ g2n, (2.4)

where the coefficients satisfy the following properties: ψ
(n)
β,σ , E(n)

β,σ , and P
(n)
β,σ depend continuously

on σ � 0, and there exist finite constants C0,R such that for all n ∈ N0 and (β,σ ) ∈ R × [0,∞)

we have ‖ψ(n)
β,σ ‖ � C0R

n, |E(2n)
β,σ | � C0R

2n, and ‖P (n)
β,σ ‖ � C0R

n.

If we set β = α � 0, g = α3/2, and σ = 0, then we immediately obtain the following corollary.
It states that the ground state and the ground state energy of an atom in qed, in the scaling limit
where the ultraviolet cutoff is of the order of the Rydberg energy, admit convergent expansions
in the fine structure constant with uniformly bounded coefficients.

Corollary 2.3. Assume Hypothesis (H). There exist a positive α0 and finite constants C0,R such
that for 0 � α � α0 the operator Hα3/2,α,0 has a ground state ψ(α1/2) with ground state energy
E(α) such that we have the convergent expansions

ψ
(
α1/2)=

∞∑
n=0

ψ(n)
α α3n/2, E(α) =

∞∑
n=0

E(2n)
α α3n,

and for all n ∈ N0 and α � 0 we have ‖ψ(n)
α ‖ � C0R

n and |E(2n)
α | � C0R

2n.

Corollary 2.3 improves the main theorem stated in [4]. It provides a convergent expansion
and furthermore shows that the expansion coefficients are finite. Moreover, we show in the next
section, that the expansion coefficients ψ

(n)
α and E

(2n)
α can be calculated using regular analytic

perturbation theory. This yields a straightforward algorithm for calculating the ground state and
the ground state energy to arbitrary precision in α. We want to point out that the authors in [4]
note that they could alternatively work with an ultraviolet cutoff of the order of the rest energy
of an electron, which, in the units used in this paper, corresponds to choosing Λ(α) = O(α−2).
The methods used in the proof of Theorem 2.1 could also incorporate a certain α dependence of
the cutoff. This would lead to weaker conclusions, which are not only technical.

Let us remark on the form of the Hamiltonian in (2.3), in particular the source of the argument
βxj of Aσ and the dependence of Λ on α. For simplicity we set σ = 0 in what follows to focus
on the ultraviolet cutoff Λ. Thus for only the rest of this section we use the notation AΛ(x) for
the operator (2.2) with σ = 0. Consider the Hamiltonian which results from the usual atomic
Hamiltonian by “minimal substitution” and the addition of the field energy,

H =
N∑(

pj + √
αAΛ(xj )

)2 + αV + Hf (2.5)

j=1
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where

V (x1, . . . , xN) = −
N∑

j=1

Z/|xj | +
∑

1�i<j�N

|xi − xj |−1. (2.6)

Here α = e2 where −e is the electronic charge. In order to alleviate the problem arising from
the fact that the ground state eigenvalue of Hat = −� + αV becomes less and less isolated from
the rest of the spectrum of Hat as α → 0, we perform a unitary scale transformation, U , with the
properties

UxjU
∗ = α−1xj , Uaλ(k)U∗ = α−3aλ

(
α−2k

)
, UΩ = Ω (2.7)

and obtain

UHU∗ = α2

(
N∑

j=1

(
pj + gAα−2Λ(βxj )

)2 + V + Hf

)
(2.8)

where β = α, and g = α3/2. Thus we see that up to a multiple of α2 (and a constant due to the
normal ordering) the operator UHU∗ is our Hamiltonian (2.3) with Λ replaced by α−2Λ. Thus
in (2.3) the ultraviolet cutoff is measured in Rydbergs (one Rydberg is α2/4 in our units). In our
formalism, the source of the logarithmic term logα−1 in [7] is an ultraviolet divergence.

3. Analytic perturbation theory

In order to relate the expansions given in Theorem 2.1 and Corollary 2.3 to ordinary analytic
perturbation theory, we introduce an infrared cutoff σ > 0. In that case, analytic perturbation
theory becomes applicable, and it is straightforward to show the following theorem. For com-
pleteness we provide a proof.

Theorem 3.1. Assume Hypothesis (H). For σ > 0 and β ∈ R, there is a positive g0 such that for
all g ∈ Dg0 , the operator Hg,β,σ has a non-degenerate eigenvalue Êβ,σ (g) with eigen-projection
P̂β,σ (g) such that the following holds.

(i) For g ∈ Dg0 ∩ R we have Êβ,σ (g) = infσ(Hg,β,σ ), and Êβ,σ (0) = Eat.
(ii) g �→ Êβ,σ (g) and g �→ P̂β,σ (g) are analytic functions on Dg0 .

(iii) P̂β,σ (g)∗ = P̂β,σ (g) for all g ∈ Dg0 .

On Dg0 we have convergent power series expansions

P̂β,σ (g) =
∞∑

n=0

P̂
(n)
β,σ gn, Êβ,σ (g) =

∞∑
n=0

Ê
(n)
β,σ gn. (3.1)

Proof. Fix σ > 0 and β ∈ R. We introduce the subspaces h
(+)
σ := L2({k ∈ R3 | |k| � σ } × Z2)

and h
(−)
σ := L2({k ∈ R

3 | |k| < σ } × Z2) of h, and we define the associated Fock spaces



3126 D. Hasler, I. Herbst / Journal of Functional Analysis 261 (2011) 3119–3154
F (±)
σ := Fs(h

(±)
σ ). By 1(±)

σ we denote the identity operator in F (±)
σ and by 1at the identity op-

erator in Hat. We consider the natural unitary isomorphism U : F (+)
σ ⊗ F (−)

σ → F , which is
uniquely characterized by

U
({h1 ⊗s · · · ⊗s hn} ⊗ {g1 ⊗s · · · ⊗s gm})= h1 ⊗s · · · ⊗s hn ⊗s g1 ⊗s · · · ⊗s gm,

for any h1, . . . , hn ∈ h
(+)
σ and g1, . . . , gm ∈ h

(−)
σ . We denote the trivial extension of U to Hat ⊗

F (+)
σ ⊗ F (−)

σ by the same symbol. We expand the Hamiltonian as follows. We write

Hg,β,σ = H0 + Tβ,σ (g),

with H0 := Hat + Hf and

Tβ,σ (g) := g

N∑
j=1

2pj · Aσ (βxj ) + g2:
N∑

j=1

Aσ (βxj )
2:.

By T
(+)
β,σ (g) we denote the unique operator in Hat ⊗ F (+)

σ such that Tβ,σ (g) = U(T
(+)
β,σ (g) ⊗

1(−)
σ )U∗. We have

U∗Hg,β,σ U = (
H

(+)
0,σ + T

(+)
β,σ (g)

)⊗ 1(−)
σ + 1at ⊗ 1(+)

σ ⊗ H
(−)
f,σ ,

where we introduced the following operators acting on the corresponding spaces

H
(+)
0,σ = Hat ⊗ 1(+)

σ + 1at ⊗ H
(+)
f,σ ,

H
(−)
f,σ = dΓ (Mχσ ω), H

(+)
f,σ = dΓ (M(1−χσ )ω),

where χσ (k) = 1 if |k| < σ and zero otherwise. Now observe that H
(−)
f,σ has only one eigenvalue.

That eigenvalue is 0, it is at the bottom of the spectrum, it is non-degenerate and its eigenvector,
Ω

(−)
σ , is the vacuum of F (−)

σ . This implies that Hg,β,σ and H
(+)
0,σ +T

(+)
β,σ (g) have the same eigen-

values and the corresponding eigen-spaces are in bijective correspondence. Next observe that
H

(+)
0,σ has at the bottom of its spectrum an isolated non-degenerate eigenvalue which equals Eat.

Moreover, g �→ H
(+)
0,σ + T

(+)
β,σ (g) is an analytic family, since the interaction term is bounded with

respect to H
(+)
0,σ . Now by analytic perturbation theory, it follows that there exists an ε > 0 such

that for g in a neighborhood of zero the following operator is well defined

P
(+)
β,σ (g) := − 1

2πi

∫
|z−Eat|=ε

(
H

(+)
0,σ + T

(+)
β,σ (g) − z

)−1
dz. (3.2)

Moreover, the operator P
(+)
β,σ (g) projects onto a one-dimensional space which is the eigen-space

of H
(+)
0,σ + T

(+)
β,σ (g) with eigenvalue Êβ,σ (g). Furthermore, P

(+)
β,σ (g) and Êβ,σ (g) depend ana-

lytically on g and Êβ,σ (0) = Eat. We conclude that Êβ,σ (g) is a non-degenerate eigenvalue of
Hg,β,σ with corresponding eigen-projection
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P̂β,σ (g) = U
(
P

(+)
β,σ (g) ⊗ P

Ω
(−)
σ

)
U∗, (3.3)

and properties (i)–(iii) of the theorem are satisfied. �
We want to emphasize that the g0 of Theorem 3.1 depends on σ and β and we have not

ruled out that g0 → 0 as σ ↓ 0. To control the behavior as σ ↓ 0 we will need Theorem 2.1.
The expansion coefficients of the eigenvalue or the associated eigen-projection obtained on the
one hand by renormalization, (2.4), and on the other hand using analytic perturbation theory are
equal. To this end, note that for σ > 0 and β ∈ R there exists by Theorems 2.1 and 3.1 a ball Dr

of nonzero radius r , such that the following holds. The eigenvalue Êβ,σ (g) is non-degenerate
for g ∈ Dr . Thus Êβ,σ (g) = Eβ,σ (g) on Dr and hence P̂β,σ (g) = Pβ,σ (g) on Dr . Thus the
following remark is an immediate consequence of Theorems 2.1 and 3.1.

Remark 3.2. For all β ∈ R and σ > 0 we have P
(n)
β,σ = P̂

(n)
β,σ and E

(n)
β,σ = Ê

(n)
β,σ . Moreover,

P̂
(n)
β,σ and Ê

(n)
β,σ have a limit as σ ↓ 0.

Finally we want to note that P̂
(n)
β,σ can be calculated, for example, by first expanding the

resolvent in Eq. (3.2) in powers of g and then using Eq. (3.3). This will then yield the coeffi-
cients Ê

(n)
β,σ , for example by expanding the right-hand side of the identity

Êβ,σ (g) = 〈ϕat ⊗ Ω,Hg,β,σ P̂β,σ (g)ϕat ⊗ Ω〉
〈ϕat ⊗ Ω, P̂β,σ (g)ϕat ⊗ Ω〉 ,

where ϕat denotes the ground state of Hat.

4. Outline of the proof

The main method used in the proof of Theorem 2.1 is operator theoretic renormalization [5,1]
and the fact that renormalization preserves analyticity [10,15]. The renormalization procedure
is an iterated application of the so-called smooth Feshbach map. The smooth Feshbach map is
reviewed in Appendix C and necessary properties of it are summarized. In this paper we will
use many results stated in a previous paper [15]. Their generalization from the Fock space over
L2(R3), as considered in [15], to a Fock space over L2(R3 × Z2) is straightforward. To be able
to show that the renormalization transformation is a suitable contraction we use that by rotation
invariance the renormalization procedure only involves kernels which do not contain any terms
which are linear in creation or annihilation operators. In Section 5 we define an SO(3) action on
the atomic Hilbert space and the Fock space, which leaves the Hamiltonian invariant. In Section 6
we introduce spaces which are needed to define the renormalization transformation. In Section 7
we show that after an initial Feshbach transformation the Feshbach map is in a suitable Banach
space. This allows us to use results of [15] which are collected in Section 8. In Section 9 we put
all the pieces together and prove Theorem 2.1. The proof is based on Theorems 7.1 and 8.6. In
Section 9, we also show Corollary 2.2.

We shall make repeated use of the so-called pull-through formula which is given in
Lemma A.1, in Appendix A. Moreover we will use the notation that R+ := [0,∞). Finally,
let us note that using an appropriate scaling we can assume without loss of generality that the
distance between the lowest eigenvalue of Hat and the rest of the spectrum is one, i.e.,
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Eat,1 − Eat = 1, (4.1)

where Eat,1 := inf(σ (Hat) \ {Eat}). Any Hamiltonian of the form (2.3) satisfying Hypothesis (H)
is up to a positive multiple unitarily equivalent to an operator satisfying (4.1) and again Hypothe-
sis (H), but with a rescaled potential and with different values for σ,Λ,β , and g. More explicitly,
with δ := Eat,1 − Eat we have

δ−1SHg,β,σ S∗ =
N∑

j=1

(
pj + g̃Aσ̃ ,Λ̃(β̃xj )

)2 + Vδ + Hf , (4.2)

where S is a unitary transformation which leaves the vacuum invariant and satisfies SxjS
∗ =

δ−1/2xj and Sa#(k)S∗ = δ−3/2a#(δ−1k). We used the notation Vδ := δ−1SV S∗, β̃ := δ1/2β ,
Λ̃ := δ−1Λ, σ̃ := δ−1σ , and g̃ = δ1/2g. From the definition of δ it follows immediately
from (4.2) that

∑N
j=1 p2

j + Vδ satisfies (4.1).

5. Symmetries

Let us introduce the following canonical representation of SO(3) on Hat and h. For R ∈ SO(3)

and ψ ∈ Hat we define

Uat(R)ψ(x1, . . . , xN) = ψ
(
R−1x1, . . . ,R

−1xN

)
.

To define an SO(3) representation on Fock space it is convenient to consider a different but equiv-
alent representation of the Hilbert space h. We introduce the Hilbert space h0 := L2(R3;C

3). We
consider the subspace of transversal vector fields

hT := {
f ∈ h0

∣∣ k · f (k) = 0
}
.

It is straightforward to verify that the map φ : h → hT defined by

(φf )(k) :=
∑

λ=1,2

f (k,λ)ε(k,λ)

establishes a unitary isomorphism with inverse(
φ−1h

)
(k, λ) = h(k) · ε(k,λ).

We define the action of SO(3) on hT by(
UT (R)h

)
(k) = Rh

(
R−1k

)
, ∀h ∈ hT , R ∈ SO(3).

The function R �→ φ−1 UT (R)φ defines a representation of SO(3) on h which we denote by Uh.
For R ∈ SO(3) and f ∈ h it is given by(

Uh(R)f
)
(k, λ) =

∑
˜ Dλ̃λ(R, k)f

(
R−1k, λ̃

)
, (5.1)
λ=1,2
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where Dλ̃λ(R, k) := ε(k,λ) · Rε(R−1k, λ̃). This yields a representation on Fock space which we
denote by UF . It is characterized by

UF (R)a#(f )UF (R)∗ = a#(Uh(R)f
)
, UF (R)Ω = Ω. (5.2)

We have

UF (R)a#(k, λ)UF (R)∗ =
∑

λ̃=1,2

Dλ̃λ(R,Rk)a#(Rk, λ̃). (5.3)

We denote the representation on Hat ⊗ F by U = Uat ⊗ UF . We have the following transformation
properties of the operators (xj )l and (pj )l , with j = 1, . . . ,N and l = 1,2,3,

U (R)(xj )l U (R)∗ =
3∑

m=1

Rml(xj )m = (
R−1xj

)
l
, (5.4)

U (R)(pj )l U (R)∗ =
3∑

m=1

Rml(pj )m = (
R−1pj

)
l
. (5.5)

Moreover, the transformation property of the l-th component of the field operator Aσ,l(xj ) is

U (R)Aσ,l(xj )U (R)∗ =
3∑

m=1

RmlAσ,m(xj ) = (
R−1A

)
l
(xj ). (5.6)

This can be seen as follows. For fixed x ∈ R
3 and l = 1,2,3 define the function

f(l,x)(k, λ) := κσ,Λ(k)√
16π3|k|ε(k,λ)le

−ik·x. (5.7)

Eq. (5.6) follows since by (5.1) we have Uh(R)f(l,x) = ∑3
m=1 Rmlf(m,Rx). We call a linear op-

erator A in the Hilbert space H rotation invariant if A = U (R)AU (R)∗ for all R ∈ SO(3) and
likewise for operators in F and Hat. From (5.4)–(5.6) it is evident to see that the Hamiltonian
Hg,β,σ defined in (2.3) is rotation invariant.

Lemma 5.1. Let f ∈ h. If a#(f ) is an operator which is invariant under rotations, then f = 0.

Proof. Invariance implies

a#(f ) = UF (R)a#(f )UF (R)∗ = a#(Uh(R)f
)

and therefore Uh(R)f = f . This implies that for f̂ := φf we have

f̂ (Rk) = Rf̂ (k). (5.8)
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Let Hl denote the space of spherical harmonics of angular momentum l. We note that
L2(R3;C

3) = ⊕∞
l=0 L2(R+) ⊗ Hl ⊗ C

3 where each summand is invariant under the represen-
tation of SO(3), f (·) �→ Rf (R−1·). It follows that f̂ = ⊕∞

l=0 f̂l where each f̂l is invariant. By
Fubini’s theorem there is a null set Λ1 ⊂ R

+ such that for a countable dense set C of R ∈ SO(3)

there is a null set Λ2(t) ⊂ S2 so that Rf̂l(t,R
−1e) = f̂l(t, e) for all t in the complement of Λ1,

R ∈ C , and e in the complement of Λ2(t). But since Hl is just the space of spherical harmonics
of angular momentum l, f̂l(t, e) is continuous in the variable e so we can take C = SO(3) and
Λ2(t) = ∅.

In particular if Re3 = e3, then f̂l(t, e3) = Rf̂l(t, e3). This implies that f̂l(t, e3) = cl(t)e3 for
some function cl on [0,∞) \ Λ1. Rotating e3 into an arbitrary e ∈ S2 and using the invariance
we find f̂l(t, e) = cl(t)e which in turn implies that f̂ (k) = c(|k|)k almost everywhere. But a
function of this type is an element of hT only if it is 0. �

To see in an explicit calculation what this might mean in our model, let Pat be the orthogonal
projection in Hat onto the ground state ϕat of Hat and consider the one particle creation and
annihilation terms in

(Pat ⊗ I )Hg,β,σ (Pat ⊗ I )

given by

2g

N∑
j=1

Pat ⊗ I
(
pj · Aσ (βxj )

)
Pat ⊗ I. (5.9)

The expression (5.9) is up to a multiple of 2g given by a sum of 2N terms of the form

(Pat ⊗ I )

∫
dk√

16π3|k| κσ,Λ(k)
〈
ϕat,pj · ελ(k)e−iβk·xj ϕat

〉
a∗
λ(k)(Pat ⊗ I )

and their adjoints. If we define

f (k) = 〈
ϕat,pj e

−iβk·xj ϕat
〉

=
∫

ϕ̂at(ξ1, . . . , ξN )ξj ϕ̂at(ξ1, . . . , ξj + βk, . . . , ξN) dξ1 · · ·dξN

then using the rotation invariance of ϕat we obtain

f (Rk) = Rf (k).

Using the continuity of f as in the proof of Lemma 5.1, gives f (k) = c(|k|)k and thus f (k) ·
ελ(k) = 0. This shows

2g

N∑
j=1

Pat ⊗ I
(
pj · Aσ (βxj )

)
Pat ⊗ I = 0.

Of course a more general result is true. See Lemma 6.7.
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6. Banach spaces of Hamiltonians

In this section we introduce Banach spaces of integral kernels, which parameterize certain
subspaces of the space of bounded operators on Fock space. These subspaces are suitable to
study an iterative application of the Feshbach map and to formulate the contraction property. We
mainly follow the exposition in [1]. However, we use a different class of Banach spaces.

The renormalization transformation will be defined on operators acting on the reduced Fock
space Hred := Pred F , where we introduced the notation Pred := χ[0,1](Hf ). We will investigate
bounded operators in B(Hred) of the form

H(w) :=
∑

m+n�0

Hm,n(w), (6.1)

with

Hm,n(w) := Hm,n(wm,n),

Hm,n(wm,n) := Pred

∫
Bm+n

1

dμ(K(m,n))

|K(m,n)|1/2
a∗(K(m)

)
wm,n

(
Hf ,K(m,n)

)
a
(
K̃(n)

)
Pred, m + n � 1,

H0,0(w0,0) := w0,0(Hf ), (6.2)

where wm,n ∈ L∞([0,1]×Bm
1 ×Bn

1) is an integral kernel for m+n � 1, w0,0 ∈ L∞([0,1]), and
w denotes the sequence of integral kernels (wm,n)m,n∈N

2
0
. We have used and will henceforth use

the following notation. We set K = (k, λ) ∈ R
3 × Z2, and write

X := X × Z2, B1 := {
x ∈ R

3
∣∣ |x| < 1

}
,

K(m) := (K1, . . . ,Km) ∈ (
R

3 × Z2
)m

, K̃(n) := (K̃1, . . . , K̃n) ∈ (
R

3 × Z2
)n

,

K(m,n) := (
K(m), K̃(n)

)
,∫

Xm+n

dK(m,n) :=
∫

Xm+n

∑
(λ1,...,λm,̃λ1,...,̃λn)∈Z

m+n
2

dk(m) dk̃(n),

dk(m) :=
m∏

i=1

d3ki, dk̃(n) :=
n∏

j=1

d3k̃j , dK(m) := dK(m,0), dK̃(n) := dK(0,n),

dμ
(
K(m,n)

) := (8π)−
m+n

2 dK(m,n),

a∗(K(m)
) :=

m∏
i=1

a∗(Ki), a
(
K̃(m)

) :=
m∏

j=1

a(K̃j ),

∣∣K(m,n)
∣∣ := ∣∣K(m)

∣∣ · ∣∣K̃(n)
∣∣, ∣∣K(m)

∣∣ := |k1| · · · |km|, ∣∣K̃(m)
∣∣ := |̃k1| · · · |̃km|,

�
[
K(m)

] :=
n∑

|km|.

i=1
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Note that in view of the pull-through formula (6.2) is equal to∫
Bm+n

1

dμ(K(m,n))

|K(m,n)|1/2
a∗(K(m)

)
χ
(
Hf + �

[
K(m)

]
� 1

)
wm,n

(
Hf ,K(m,n)

)
× χ

(
Hf + �

[
K̃(n)

]
� 1

)
a
(
K̃(n)

)
. (6.3)

Thus we can restrict attention to integral kernels wm,n which are essentially supported on the sets

Qm,n := {(
r,K(m,n)

) ∈ [0,1] × Bm+n
1

∣∣ r � 1 − max
(
�
[
K(m)

]
,�

[
K̃(m)

])}
, m + n � 1.

Moreover, note that integral kernels can always be assumed to be symmetric. That is, they lie in
the range of the symmetrization operator, which is defined as follows,

w
(sym)

M,N

(
r,K(M,N)

) := 1

N !M!
∑

π∈SM

∑
π̃∈SN

wM,N(r,Kπ(1), . . . ,Kπ(N), K̃π̃(1), . . . , K̃π̃(M)). (6.4)

Note that (6.2) is understood in the sense of forms. It defines a densely defined form which
can be seen to be bounded using the expression (6.3) and Lemma A.2. Thus it uniquely deter-
mines a bounded operator which we denote by Hm,n(wm,n). This is explained in more detail in
Appendix A. We have the following lemma.

Lemma 6.1. For wm,n ∈ L∞([0,1] × Bm
1 × Bn

1) we have∥∥Hm,n(wm,n)
∥∥� ‖wm,n‖∞(n!m!)−1/2. (6.5)

The proof follows using Lemma A.2 and the estimate∫
Sm,n

dK(m,n)

|K(m,n)|2 � (8π)m+n

n!m! , (6.6)

where Sm,n := {(K(m), K̃(n)) ∈ Bm+n
1 | �[K(m)] � 1, �[K̃(n)] � 1}. The renormalization pro-

cedure will involve kernels which lie in the following Banach spaces. We shall identify the space
L∞(Bm+n

1 ;C[0,1]) with a subspace of L∞([0,1] × Bm+n
1 ) by setting

wm,n

(
r,K(m,n)

)= wm,n

(
K(m,n)

)
(r)

for wm,n ∈ L∞(Bm+n
1 ;C[0,1]). For example in (i) and (ii) of Definition 6.2 we use this identifi-

cation. The norm in L∞(Bm+n
1 ;C[0,1]) is given by

‖wm,n‖∞ := ess sup
K(m,n)∈Bm+n

1

sup
r�0

∣∣wm,n

(
K(m,n)

)
(r)

∣∣.
We note that for w ∈ L∞(Bm+n

1 ;C[0,1]) we have ‖w‖∞ � ‖w‖∞. Conditions (i) and (ii) of the
following definition are needed for the injectivity property stated in Theorem 6.4, below.
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Definition 6.2. We define W #
m,n to be the Banach space consisting of functions wm,n ∈

L∞(Bm+n
1 ;C1[0,1]) satisfying the following properties:

(i) wm,n(1 − χQm,n) = 0, for m + n � 1,

(ii) wm,n(·,K(m), K̃(n)) is totally symmetric in the variables K(m) and K̃(n),
(iii) the following norm is finite

‖wm,n‖# := ‖wm,n‖∞ + ‖∂rwm,n‖∞.

Hence for almost all K(m,n) ∈ Bm+n
1 we have wm,n(·,K(m,n)) ∈ C1[0,1], where the derivative is

denoted by ∂rwm,n. For 0 < ξ < 1, we define the Banach space

W #
ξ :=

⊕
(m,n)∈N

2
0

W #
m,n

to consist of all sequences w = (wm,n)m,n∈N0 satisfying

‖w‖#
ξ :=

∑
(m,n)∈N

2
0

ξ−(m+n)‖wm,n‖# < ∞.

Remark 6.3. We shall also use the norm ‖wm,n‖# for any integral kernel wm,n ∈ L∞(Bm+n
1 ;

C1[0,1]). Note that ‖w(sym)
m,n ‖# � ‖wm,n‖#.

Given w ∈ W #
ξ , we write w�r for the vector in W #

ξ given by

(w�r )m+n =
{

wm,n, if m + n � r,

0, otherwise.

We will use the following balls to define the renormalization transformation

B#(α,β, γ ) := {
w ∈ W #

ξ

∣∣ ‖∂rw0,0 − 1‖∞ � α,
∣∣w0,0(0)

∣∣� β, ‖w�1‖#
ξ � γ

}
.

For w ∈ W #
ξ , it is easy to see using (6.5) that H(w) := ∑

m,n Hm,n(w) converges in operator
norm with bounds ∥∥H(w)

∥∥� ‖w‖#
ξ , (6.7)∥∥H(w�r )

∥∥� ξ r‖w�r‖#
ξ . (6.8)

We shall use the notation

W [w] :=
∑

m+n�1

Hm,n(w).

We will use the following theorem, which is a straightforward generalization of a theorem proven
in [1]. A proof can also be found in [15].
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Theorem 6.4. The map H : W #
ξ → B(Hred) is injective and bounded.

Definition 6.5. Let Wξ denote the Banach space consisting of strongly analytic functions on
D1/2 with values in W #

ξ and norm given by

‖w‖ξ := sup
z∈D1/2

∥∥w(z)
∥∥#

ξ
.

For w ∈ Wξ we will use the notation wm,n(z, ·) := (wm,n(z))(·). We extend the definition of
H(·) to Wξ in the natural way: for w ∈ Wξ , we set(

H(w)
)
(z) := H

(
w(z)

)
and likewise for Hm,n(·) and W [·]. We say that a kernel w ∈ Wξ is symmetric if wm,n(z) =
wn,m(z) for all z ∈ D1/2. Note that because of Theorem 6.4 we have the following lemma.

Lemma 6.6. Let w ∈ Wξ . Then w is symmetric if and only if H(w(z)) = H(w(z))∗ for all
z ∈ D1/2.

The renormalization transformation will be defined on the following balls in Wξ

B(α,β, γ )

:=
{
w ∈ Wξ

∣∣∣ sup
z∈D1/2

∥∥∂rw0,0(z) − 1
∥∥∞ � α, sup

z∈D1/2

∣∣w0,0(z,0) + z
∣∣� β, ‖w�1‖ξ � γ

}
.

We define on the space of kernels W #
m,n a natural representation of SO(3), UW , which by Theo-

rem 6.4 is uniquely determined by

H
(

UW (R)wm,n

)= UF (R)H(wm,n)U ∗
F (R), ∀R ∈ SO(3), (6.9)

and it is given by UW (R)w0,0(r) = w0,0(r) and for m + n � 1 by(
UW (R)wm,n

)
(r, k1, λ1, . . . , k̃n, λ̃n)

=
∑

(λ′
1,...,̃λ

′
n)∈Z

m+n
2

Dλ1λ
′
1
(R, k1) · · ·Dλ̃nλ̃′

n
(R, k̃n)wm,n

(
r,R−1k1, λ

′
1, . . . ,R

−1k̃n, λ̃
′
n

)
. (6.10)

That (6.10) implies (6.9) can be seen from (5.3). The representation on W #
m,n yields a natural

representation on W #
ξ , which is given by (UW (R)w)m,n = UW (R)wm,n for all R ∈ SO(3). We

say that a kernel wm,n ∈ W #
m,n is rotation invariant if UW (R)wm,n = wm,n for all R ∈ SO(3) and

we say a kernel w ∈ W #
ξ is rotation invariant if each component is rotation invariant.

Lemma 6.7. (i) Let wm,n ∈ W #
m,n. Then H(wm,n) is rotation invariant if and only if wm,n is

rotation invariant. Let w ∈ W #
ξ . Then H(w) is rotation invariant if and only if w is rotation

invariant. (ii) If wm,n ∈ W # with m + n = 1 is rotation invariant, then wm,n = 0.
m,n
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Proof. (i) The if part follows from (6.9). The only if part follows from (6.9) and the injectivity
of the map H(·), see Theorem 6.4. (ii) Let w1,0 ∈ W #

1,0 be rotation invariant. Then wr defined by
wr(k,λ) := w1,0(r, k, λ) is in h for all r ∈ [0,1]. By (6.10), (5.1), and (5.2) it follows that a∗(wr)

is rotation invariant. By Lemma 5.1, wr = 0. The proof of the corresponding statement for W #
0,1

is analogous. �
For a different proof of (ii) see [17].
To state the contraction property of the renormalization transformation we will need to intro-

duce balls of integral kernels which are invariant under rotations

B0(α,β, γ ) := {
w ∈ B(α,β, γ )

∣∣wm,n(z) is rotation invariant for all z ∈ D1/2
}
.

To show the continuity of the ground state and the ground state energy as a function of the
infrared cutoff we need to introduce a coarser norm in W #

m,n. The supremum norm is to fine. To
this end we introduce the Banach space L2

ω(Bm+n
1 ;C[0,1]) with norm

‖wm,n‖2 :=
[ ∫
Bm+n

1

dK(m,n)

(8π)m+n|K(m,n)|2 sup
r∈[0,1]

∣∣wm,n

(
r,K(m,n)

)∣∣2]1/2

.

Observe that L∞(Bm+n
1 ;C[0,1]) ⊂ L2

ω(Bm+n
1 ;C[0,1]) and that by (6.6) we have

‖wm,n‖2 � ‖wm,n‖∞√
n!m! , (6.11)

for all wm,n ∈ W #
m,n. We have the following lemma which is a consequence of Lemma A.2.

Lemma 6.8. For wm,n ∈ L2
ω(Bm+n

1 ;C[0,1]) we have∥∥Hm,n(wm,n)
∥∥� ‖wm,n‖2. (6.12)

Definition 6.9. Let S be topological space. We say that the mapping w : S → W #
ξ is com-

ponentwise L2-continuous (c-continuous) if for all m,n ∈ N0 the map s �→ wm,n(s) is an
L2

ω(Bm+n
1 ;C[0,1])-valued continuous function, that is

lim
s∈S,s→s0

∥∥w(s0)m,n − w(s)m,n

∥∥
2 = 0

for all s0 ∈ S.

The above notion of continuity for integral kernels, yields continuity of the associated opera-
tors with respect to the operator norm topology. This is the content of the following lemma.

Lemma 6.10. Let w : S → W #
ξ be c-continuous and uniformly bounded, that is

sups∈S ‖w(s)‖#
ξ < ∞. Then H(w(·)) : S → B(Hred) is continuous, with respect to the opera-

tor norm topology.
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Proof. From Lemma 6.8 it follows that Hm,n(w(s))
‖·‖−→ Hm,n(w(s0)) as s tends to s0. The

lemma now follows from a simple argument using the estimate (6.8) and the uniform bound
on w(·). �
7. Initial Feshbach transformations

In this section we shall assume that the assumptions of Hypothesis (H) hold. Without loss of
generality, see Section 4, we assume that the distance between the lowest eigenvalue of Hat and
the rest of the spectrum is one, that is

inf
(
σ(Hat) \ {Eat}

)− Eat = 1. (7.1)

Let χ1 and χ1 be two functions in C∞(R+; [0,1]) with χ2
1 + χ2

1 = 1, χ1 = 1 on [0,3/4), and
suppχ1 ⊂ [0,1]. For an explicit choice of χ1 and χ1 see for example [1]. We use the abbreviation
χ1 = χ1(Hf ) and χ1 = χ1(Hf ). It should be clear from the context whether χ1 or χ1 denotes a
function or an operator. By ϕat we denote the normalized eigenstate of Hat with eigenvalue Eat
and by Pat the eigen-projection of Hat corresponding to the eigenvalue Eat. By Hypothesis (H)
the range of Pat is one-dimensional. This allows us to identify the range of Pat ⊗ Pred with Hred,
and we will do so. We define χ(I)(r) := Pat ⊗ χ1(r) and χ(I)(r) = P̄at ⊗ 1 + Pat ⊗ χ1(r),
with P̄at = 1 − Pat. We set χ(I) := χ(I)(Hf ) and χ(I) := χ(I)(Hf ). It is evident to see that

χ(I)2 + χ(I)2 = 1. The next theorem is the main theorem of this section. It states properties
about the Feshbach map and the associated auxiliary operator, see Appendix C.

Theorem 7.1. Assume Hypothesis (H). For any 0 < ξ < 1 and any positive numbers δ1, δ2, δ3
there exists a positive number g0 such that following is satisfied. For all (g,β,σ, z) ∈ Dg0 × R ×
R+ × D1/2 the pair of operators (Hg,β,σ − z − Eat,H0 − z − Eat) is a Feshbach pair for χ(I).
The operator valued function

Qχ(I) (g,β,σ, z) := Qχ(I) (Hg,β,σ − z − Eat,H0 − z − Eat) (7.2)

defined on Dg0 × R × R+ × D1/2 is bounded, analytic in (g, z), and a continuous function of
(σ, z). There exists a unique kernel w(0)(g,β,σ, z) ∈ W #

ξ such that

H
(
w(0)(g,β,σ, z)

)∼= Fχ(I) (Hg,β,σ − z − Eat,H0 − z − Eat) � RanPat ⊗ Pred. (7.3)

Moreover, w(0) satisfies the following properties.

(a) We have w(0)(g,β,σ ) := w(0)(g,β,σ, ·) ∈ B0(δ1, δ2, δ3) for all (g,β,σ ) ∈ Dg0 × R × R+.
(b) w(0)(g,β,σ ) is a symmetric kernel for all (g,β,σ ) ∈ (Dg0 ∩ R) × R × R+.
(c) The function (g, z) �→ w(0)(g,β,σ, z) is a W #

ξ -valued analytic function on Dg0 × D1/2 for
all (β,σ ) ∈ R × R+.

(d) The function (σ, z) �→ w(0)(g,β,σ, z) ∈ W #
ξ is a c-continuous function on R+ ×D1/2 for all

(g,β) ∈ Dg0 × R.

The remaining part of this section is devoted to the proof of Theorem 7.1. Throughout this
section we assume that



D. Hasler, I. Herbst / Journal of Functional Analysis 261 (2011) 3119–3154 3137
z = ζ − Eat ∈ D1/2. (7.4)

To prove Theorem (7.1), we write the interaction part of the Hamiltonian in terms of integral
kernels as follows,

Hg,β,σ = Hat + Hf + :Wg,β,σ :,
Wg,β,σ :=

∑
m+n=1,2

Wm,n(g,β,σ ), (7.5)

where Wm,n(g,β,σ ) := Hm,n(w
(I)
m,n(g,β,σ )) with

Hm,n(wm,n) :=
∫

(R3)
m+n

dK(m,n)

|K(m,n)|1/2
a∗(K(m)

)
wm,n

(
K(m,n)

)
a
(
K̃(n)

)
, (7.6)

and

w
(I)
1,0(g,β,σ )(K) := 2g

N∑
j=1

pj · ε(k,λ)
κσ,Λ(k)eiβk·xj

√
16π3

,

w
(I)
1,1(g,β,σ )(K, K̃) := g2

N∑
j=1

ε(k,λ) · ε(̃k, λ̃)
κσ,Λ(k)e−iβk·xj

√
16π3

κσ,Λ(̃k)eiβk̃·xj

√
16π3

,

w
(I)
2,0(g,β,σ )(K1,K2)

:= g2
N∑

j=1

ε(k1, λ1) · ε(k2, λ2)
κσ,Λ(k1)e

−iβk1·xj

√
16π3

κσ,Λ(k2)e
−iβk2·xj

√
16π3

, (7.7)

w
(I)
0,1(g,β,σ )(K̃) := w

(I)
0,1(g,β,σ )(K̃)∗, and w

(I)
0,2(g,β,σ )(K̃1, K̃2) := w

(I)
2,0(g,β,σ )(K̃1, K̃2).

We note that (7.6) is understood in the sense of forms, cf. Appendix A. We set

w
(I)
0,0(z)(r) := Hat − z + r.

By w(I) we denote the vector consisting of the components w
(I)
m,n with m + n = 0,1,2.

The next theorem establishes the Feshbach property. To state it, we denote by P0 the orthog-
onal projection onto the closure of Ranχ(I). We will use the convention that (H0 − z)−1χ(I)

stands for (H0 − z � Ranχ(I))−1χ(I), and that (H0 − z)−1P0 stands for (H0 − z � RanP0)
−1P0.

The proof of the Feshbach property is based on the fact that

infσ(H0 � RanP0) = Eat + 3

4
, (7.8)

which follows directly from the definition, and the fact that the interaction part of the Hamiltonian
is bounded with respect to the free Hamiltonian.
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Theorem 7.2. Let |Eat − ζ | < 1
2 . Then

∥∥((H0 − ζ ) � RanP0
)−1∥∥� 4. (7.9)

There is a C < ∞ and g0 > 0 such that for all (β,σ ) ∈ R × R+ and |g| < g0,∥∥(H0 − ζ )−1χ(I)Wg,β,σ

∥∥� C|g|, ∥∥Wg,β,σ (H0 − ζ )−1χ(I)
∥∥� C|g|, (7.10)

and (Hg,β,σ − ζ,H0 − ζ ) is a Feshbach pair for χ(I). The function (g,β,σ, ζ ) �→ (H0 −
ζ )−1χ(I)Wg,β,σ on C × R × R+ × D1/2(Eat) is analytic in (g, ζ ) and continuous in (σ, ζ ).

Proof. Eq. (7.9) follows directly from Eq. (7.8). We will only show the first inequality of (7.10),
since the second one will then follow from∥∥Wg,β,σ (H0 − ζ )−1χ(I)

∥∥= ∥∥(H0 − ζ )−1χ(I)Wg,β,σ

∥∥,
where we used that the norm of an operator is equal to the norm of its adjoint. The Feshbach
property will follow by Lemma C.3 as a consequence of (7.9) and (7.10). For |Eat − ζ | < 1

2 , we
estimate∥∥(H0 − ζ )−1χ(I)Wg,β,σ

∥∥�
∥∥(H0 − ζ )−1P0(H0 − Eat + 2)P0(H0 − Eat + 2)−1Wg,β,σ

∥∥
�
∥∥∥∥H0 − Eat + 2

H0 − ζ
P0

∥∥∥∥∥∥(H0 − Eat + 2)−1Wg,β,σ

∥∥. (7.11)

Using the spectral theorem we estimate the first factor in (7.11) by∥∥∥∥H0 − Eat + 2

H0 − ζ
P0

∥∥∥∥� sup
r�0

∣∣∣∣ 3
4 + 2 + r

Eat + 3
4 − ζ + r

∣∣∣∣� sup
r�0

∣∣∣∣11 + 4r

1 + 4r

∣∣∣∣� 11. (7.12)

It remains to estimate the second factor in (7.11). We insert (7.5) and use the triangle inequality,∥∥(H0 − Eat + 2)−1Wg,β,σ

∥∥�
∑

m+n=1,2

∥∥(H0 − Eat + 2)−1Wm,n(g,β,σ )
∥∥. (7.13)

We estimate each summand occurring in the sum on the right-hand side individually. To estimate
the summands with m + n = 2 we first use the trivial bound∥∥(H0 − Eat + 2)−1Wm,n(g,β,σ )

∥∥�
∥∥(Hf + 1)−1Wm,n(g,β,σ )

∥∥. (7.14)

The right-hand side of (7.14) is estimated for (m,n) = (0,2) as follows,∥∥(Hf + 1)−1W0,2(g,β,σ )
∥∥

� |g|2N
16π3

[ ∫
3 2

dK̃(2)

|K̃(2)|2
∣∣κσ,Λ(̃k1)

∣∣2∣∣κσ,Λ(̃k2)
∣∣2 sup

r�0

(r + |̃k1| + |̃k2|)2

(r + 1)2

]1/2
(R )
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� |g|2N
16π3

[
3‖κσ,Λ/ω‖4

h + 6‖κσ,Λ/ω‖2
h‖κσ,Λ‖2

h

]1/2
, (7.15)

where in the first inequality we used Lemma A.2 and in the last inequality we used the following
estimate for r � 0,

(r + |̃k1| + |̃k2|)2

(r + 1)2
� 3

(
1 + |̃k1|2 + |̃k2|2

)
.

To estimate the right-hand side of (7.14) for (m,n) = (2,0) we use the fact that the norm of an
operator is equal to the norm of its adjoint, the pull-through formula, and a similar estimate as
used in (7.15),

∥∥(Hf + 1)−1W2,0(g,β,σ )
∥∥= ∥∥W0,2(g,β,σ )(Hf + 1)−1

∥∥� r.h.s. (7.15).

To estimate the right-hand side of (7.14) for (m,n) = (1,1) we first use the pull-through formula
and then Lemma A.2 to obtain

∥∥(Hf + 1)−1W1,1(g,β,σ )
∥∥

� |g|2N
16π3

[ ∫
(R3)

2

dK(1,1)

|K(1,1)|2
∣∣κσ,Λ(k1)

∣∣∣∣κσ,Λ(̃k1)
∣∣ sup
r�0

(r + |k1|)(r + |̃k1|)
(r + 1)2

]1/2

� |g|2N
16π3

[
2‖κσ,Λ/ω‖4

h + 2‖κσ,Λ/ω‖2
h‖κσ,Λ‖2

h

]1/2
, (7.16)

where in the last inequality we used the following estimate for r � 0,

(r + |k1|)(r + |̃k1|)
(r + 1)2

� 2 + |k1|2 + |̃k1|2.

To estimate the summands with m + n = 1 on the right-hand side of (7.13) we insert the trivial
identity 1 = (Hf + 1)1/2(−� + 1)1/2(Hf + 1)−1/2(−� + 1)−1/2 and obtain the estimate

∥∥(H0 − Eat + 2)−1Wm,n(g,β,σ )
∥∥

�
∥∥∥∥ (Hf + 1)1/2(Hat − Eat + 1)1/2

H0 − Eat + 2

∥∥∥∥∥∥(Hat − Eat + 1)−1/2(−� + 1)1/2
∥∥

× ∥∥(−� + 1)−1/2(Hf + 1)−1/2Wm,n(g,β,σ )
∥∥.

The first factor on the right-hand side is bounded by 1/2, which follows from a trivial application
of the spectral theorem. The second factor on the right-hand side is bounded, since V is infinites-
imally operator bounded with respect to −�. The last factor on the right-hand side is estimated
as follows. For m + n = 1,
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∥∥(−� + 1)−1/2(Hf + 1)−1/2Wm,n(g,β,σ )
∥∥

� 2|g|
N∑

j=1

3∑
l=1

∥∥∥∥ (pj )l

(−� + 1)1/2

∥∥∥∥
× ∥∥(Hf + 1)−1/2[δm0H 1,0

(
ω1/2f(l,βxj )

)+ δn0H 0,1
(
ω1/2f(l,βxj )

)]∥∥
� 6√

8π3
N |g|(‖κσ,Λ/ω‖2

h + δn0‖κσ,Λ/
√

ω‖2
h

)1/2
, (7.17)

where in the first inequality we used the triangle inequality and (5.7), and in the second inequality
we used the pull-through formula and Lemma A.2. Collecting estimates we obtain the desired
bound on the second factor in (7.11). The statement about the analyticity and continuity follow
from the explicit expression and the bounds in (7.11)–(7.17). �

As a consequence of the first equation in (7.10) it follows that the operator valued function
(7.2) is uniformly bounded for g0 sufficiently small. Theorem 7.2 furthermore implies that (7.2)
is continuous in (σ, z) and analytic in (g, z), provided g0 is sufficiently small. Next we want to
show that there exists a w(0)(g,β,σ, z) ∈ W #

ξ such that (7.3) holds. Uniqueness will follow from
Theorem 6.4. In view of Theorem 7.2 we can define for z = ζ − Eat ∈ D1/2 and g sufficiently
small the Feshbach map and express it in terms of a Neumann series.

Fχ(I) (Hg,β,σ − ζ,H0 − ζ ) � Xat ⊗ Hred

= (
T + χWχ − χWχ(T + χWχ)−1χWχ

)
� Xat ⊗ Hred

=
(

T + χW χ − χW χ

∞∑
n=0

(−T −1χW χ
)n

T −1χW χ

)
� Xat ⊗ Hred,

where here we used the abbreviations T = H0 − ζ , W = Wg,β,σ , χ = χ(I), χ = χ(I). We put
the above expression into normal order using the pull-through formula. To this end we use the
identity of Theorem B.1, see Appendix B. Moreover we will use the definition

Wm,n
p,q [w](K(m,n)

) :=
∫

(R3)
p+q

dX(p,q)

|X(p,q)|1/2
a∗(X(p)

)
wm+p,n+q

(
K(m),X(p), K̃(n), X̃(q)

)
a
(
X̃(q)

)
.

We obtain a sequence of integral kernels w̃(0), which are given as follows. For M + N � 1,

w̃
(0)
M,N(g,β,σ, z)

(
r,K(M,N)

)
= (8π)

M+N
2

∞∑
L=1

(−1)L+1
∑

(m,p,n,q)∈N
4L
0 :

|m|=M,|n|=N,
1�ml+pl+ql+nl�2

L∏
l=1

{(
ml + pl

pl

)(
nl + ql

ql

)}

× V(m,p,n,q)

[
wI (g,β,σ, ζ )

](
r,K(M,N)

)
. (7.18)
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Furthermore,

w̃
(0)
0,0(g,β,σ, z)(r) = −z + r +

∞∑
L=2

(−1)L+1
∑

(p,q)∈N
2L
0 : pl+ql=1,2

V(0,p,0,q)

[
w(I)(g,β,σ, ζ )

]
(r).

Above we have used the definition

Vm,p,n,q [w](r,K(|m|,|n|))
:=

〈
ϕat ⊗ Ω,F0[w](Hf + r)

L∏
l=1

{
Wml,nl

pl ,ql
[w](K(ml,nl)

)
Fl[w](Hf + r + r̃l )

}
ϕat ⊗ Ω

〉
,

(7.19)

where for l = 0,L we set Fl[w](r) := χ1(r), and for l = 1, . . . ,L − 1 we set

Fl[w](r) := F [w](r) := χ(I)(r)2

w0,0(r)
.

Moreover, see (B.4) for the definition of r̃l . We define w(0)(g,β,σ, z) := (w̃(0))(sym)(g,β,σ, z).
So far we have determined w(0) on a formal level. We have not yet shown that the involved series
converge. Our next goal is to show estimates (7.28), (7.29), and (7.30), below. These estimates
will then imply that w(0)(g,β,σ, z) ∈ W #

ξ and they will be used to show part (a) of Theorem 7.1.

To this end we need an estimate on Vm,p,n,q [w(I)], which is given in the following lemma.

Lemma 7.3. There exists finite constants CW and CF such that with CW(g) := CW |g| we have
for |ζ − Eat| < 1/2,∥∥Vm,p,n,q

[
w(I)(g,β,σ, ζ )

]∥∥# � (L + 1)CL+1
F CW(g)L, (7.20)

for all (g,β,σ ) ∈ C × R × R+.

To show this lemma we will use the estimates from the following lemma and we introduce
the following operator

G0 := −� + Hf + 1.

Lemma 7.4. There exist finite constants CW and CF such that the following holds. We have∥∥G−1/2
0 Wm,n

p,q

[
w(I)(g,β,σ, ζ )

](
K(m,n)

)
G

−1/2
0

∥∥� CWgm+p+n+q, (7.21)

for all (g,β,σ, ζ,K(m,n)) ∈ C × R × R+ × C × Bm+n
1 . For |ζ − Eat| < 1/2, we have∥∥G1/2

0 F
[
w(I)(g,β,σ, ζ )

]
(r + Hf )G

1/2
0

∥∥� CF , (7.22)∥∥G1/2
0 ∂rF

[
w(I)(g,β,σ, ζ )

]
(r + Hf )G

1/2
0

∥∥� CF , (7.23)

for all (g,β,σ, r) ∈ C × R × R+ × R+.
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Proof. First we show (7.21). For simplicity we drop the (g,β,σ, ζ )-dependence in the notation.
If p = q = 0 it follows directly from the definition that

l.h.s. of (7.21) � 2|g|m+n+p+qN.

To see the corresponding estimate for p + q � 1 we first introduce the notation

B0(r) := (−� + r + 1)−1/2. (7.24)

Hence by definition B0(Hf ) = G
−1/2
0 . Using the pull-through formula and Lemma A.2 we see

that

Im,n
p,q := ∥∥G−1/2

0 Wm,n
p,q

[
w(I)

](
K(m,n)

)
G

−1/2
0

∥∥
�

∫
(R3)

p+q

dX(p,q)

|X(p,q)|2 sup
r�0

[∥∥B0
(
r + �

[
X(p)

])
× w

(I)
m+p,n+q

(
K(m),X(p), K̃(n), X̃(q)

)
B0

(
r + �

[
X̃(q)

])∥∥2

× (
r + �

[
X(p)

])p(
r + �

[
X̃(q)

])q]
, (7.25)

where we used the trivial estimate for r � 0,

p∏
l=1

(
r + �

[
X(l)

])
�
(
r + �

[
X(p)

])p
. (7.26)

Now we use (7.25) to estimate the remaining cases for m,n,p,q separately. We find

Im,n
p,q �

⎧⎪⎨⎪⎩
|g|2N‖κσ,Λ/ω‖h, if S = 1, p + q = 1,

|g|2N‖κσ,Λ/ω‖p+q

h
, if S = 2, max(p, q) = 1,

|g|2N(‖κσ,Λ/ω‖2
h

+ 2‖κσ,Λ/ω‖2
h
‖κσ,Λ/ω1/2‖h)1/2, if S = 2, max(p, q) = 2,

with S := m + n + p + q . Collecting estimates, (7.21) follows. Next we show (7.22). Inserting
two times the identity 1 = (H0 + r − Eat + 1)1/2(H0 + r − Eat + 1)−1/2 into the left-hand side
of (7.22) we find

l.h.s. of (7.22) �
∥∥G1/2

0 (H0 + r − Eat + 1)−1/2
∥∥2
∥∥∥∥H0 + r − Eat + 1

H0 + r − ζ

[
χ(I)(Hf + r)

]2
∥∥∥∥.

The first factor is bounded since V is infinitesimally bounded with respect to −�. The second
factor can be bounded using a similar estimate as (7.12). Finally (7.23) is estimated in a similar
way using

F
[
w(I)(g,β,σ, ζ )

]′
(r) = −[χ(I)(r)]2

(w
(I)

(ζ )(r))2
+ 2χ(I)(r)∂rχ

(I)(r)

w
(I)

(ζ )(r)
0,0 0,0
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and the bound∥∥∥∥H0 + r − Eat + 1

(H0 + r − ζ )2

[
χ(I)(Hf + r)

]2
∥∥∥∥ �

∥∥∥∥ H0 + r − Eat + 1

(H0 + r − Eat − 1/2)2

[
χ(I)(Hf + r)

]2
∥∥∥∥

� sup
r�0

∣∣∣∣ r + 3
4 + 1

(r + 1/4)2

∣∣∣∣� 32. �

Proof of Lemma 7.3. We estimate ‖Vm,p,n,q [w(I)(g,β,σ, ζ )]‖∞ using

∣∣〈ϕat ⊗ Ω,A1A2 · · ·Anϕat ⊗ Ω〉∣∣� ‖A1‖op‖A2‖op · · · ‖An‖op, (7.27)

where ‖ · ‖op denotes the operator norm, and inequalities (7.21) and (7.22). To estimate
‖∂rVm,p,n,q [w(I)(g,β,σ, ζ )]‖∞ we first calculate the derivative using the Leibniz rule. The re-
sulting expression is estimated using again (7.27) and inequalities (7.21)–(7.23). �

Now we are ready to establish inequalities (7.28)–(7.30), below. Recall that we assume (7.4).
Let SL

M,N denote the set of tuples (m,p,n, q) ∈ N
4L
0 with |m| = M , |n| = N , and 1 � ml + pl +

ql + nl � 2. We estimate the norm of (7.18) using (7.20) and find, with ξ̃ := (8π)−1/2ξ ,

∥∥w(0)
�1(g,β,σ, z)

∥∥#
ξ
=

∑
M+N�1

ξ−(M+N)
∥∥w̃M,N(g,β,σ, z)

∥∥#

�
∑

M+N�1

∞∑
L=1

∑
(m,p,n,q)∈SL

M,N

ξ̃−(M+N)4L
∥∥Vm,p,n,q

[
w(I)(g,β,σ, ζ )

]∥∥#

�
∞∑

L=1

∑
M+N�1

∑
(m,p,n,q)∈SL

M,N

ξ̃−|m|−|n|(L + 1)CF

(
4CW(g)CF

)L

�
∞∑

L=1

(L + 1)14Lξ̃−2LCF

(
4CW(g)CF

)L
, (7.28)

for all (g,β,σ ) ∈ C × R × R+, where in the second line we used
(
m+p

p

)
� 2m+p and in the

last line we used |m| + |n| � 2L and that the number of elements (m,p,n, q) ∈ N
L
0 with 1 �

ml + nl + pl + ql � 2 is bounded by 14L. A similar but simpler estimate yields

sup
r∈[0,1]

∣∣∂rw
(0)
0,0(g,β,σ, z)(r) − 1

∣∣� ∞∑
L=2

∑
(p,q)∈N

2L
0 : pl+ql=1,2

∥∥V0,p,0,q

[
w(I)(g,β,σ, ζ )

]∥∥#

�
∞∑

L=2

3L(L + 1)CF

(
CW(g)CF

)L
, (7.29)

for all (g,β,σ ) ∈ C × R × R+. Analogously we have for all (g,β,σ ) ∈ C × R × R+,
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∣∣w(0)
0,0(g,β,σ, z)(0) + z

∣∣� ∞∑
L=2

∑
(p,q)∈N

2L
0 : pl+ql=1,2

∥∥V0,p,0,q

[
w(I)(g,β,σ, ζ )

]∥∥#

�
∞∑

L=2

3L(L + 1)CF

(
CW(g)CF

)L
. (7.30)

In view of the definition of CW(g) the right-hand sides in (7.28)–(7.30) can be made arbitrarily
small for sufficiently small |g|. This implies that the kernel w(0)(g,β,σ, z) is in W #

ξ and that the

inequalities in the definition of B0(δ1, δ2, δ3) are satisfied. Rotation invariance of w(0) follows
since the right-hand side of (7.3) is invariant under rotations and Lemma 6.7. (b) follows from
the properties of the right-hand side of (7.3) and Lemma 6.6. It remains to show (c) and (d).
(c) respectively (d) follows from the convergence established in (7.28)–(7.30), which is uniform
in (g,β,σ, z) ∈ Dg0 × R × R+ × D1/2, and Lemma 7.5 respectively Lemma 7.6, shown below.

Lemma 7.5. The mapping (g, z) �→ Vm,p,n,q [w(I)(g,β,σ,Eat + z)] is a W #|m|,|n|-valued analytic
function on Dg0 × D1/2.

Proof. The analyticity in g follows since Vm,p,n,q [w(I)(g,β,σ, z + Eat)] is a polynomial in g

and the coefficients of this polynomial are elements in W #|m|,|n| because of (7.20). To show the
analyticity in z first observe that Vm,p,n,q is multilinear expression of integral kernels and that

the kernels w
(I)
m,n do not depend on z if m + n � 1. We will use the following algebraic identity

A1(s) · · ·An(s) − A1(s0) · · ·An(s0)

s − s0

−
n∑

i=1

A1(s0) · · ·Ai−1(s0)A
′
i (s0)Ai+1(s0) · · ·An(s0)

=
n∑

i=1

A1(s) · · ·Ai−1(s)

[
Ai(s) − Ai(s0)

s − s0
− A′

i (s0)

]
Ai+1(s0) · · ·An(s0)

+
n∑

i=1

[
A1(s) · · ·Ai−1(s) − A1(s0) · · ·Ai−1(s0)

]
A′

i (s0)Ai+1(s0) · · ·An(s0). (7.31)

Using (7.31) and (7.27) the analyticity in z follows as a consequence of the estimates in
Lemma 7.4 and the following limits for the function

F
(I)
g,β,σ (r)(z) := G

1/2
0 F

[
w(I)(g,β,σ,Eat + z)

]
(Hf + r)G

1/2
0 .

If z, z + h ∈ D1/2 then for t = 0,1,

sup
r�0

∥∥∥∥1

h
∂t
r

(
F

(I)
g,β,σ (z + h)(r) − F

(I)
g,β,σ (z)(r)

)+ ∂t
rG

1/2
0

[χ(I)(r)]2

(Hat + Hf + r − Eat − z)2
G

1/2
0

∥∥∥∥ h→0−→ 0,

sup
r�0

∥∥∂t
rF

(I)
g,β,σ (z + h)(r) − ∂t

rF
(I)
g,β,σ (z)(r)

∥∥ h→0−→ 0. �
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Lemma 7.6. The mapping (σ, z) �→ Vm,p,n,q [w(I)(g,β,σ,Eat + z)] is an L2
ω(B

|m|+|n|
1 ;C[0,1])-

valued continuous function on R+ × D1/2.

Proof. First observe that the kernel Vm,p,n,q is a multi-linear expression of integral kernels, thus
to show continuity we can use the following identity,

A1(s) · · ·An(s) − A1(s0) · · ·An(s0)

=
n∑

i=1

A1(s) · · ·Ai−1(s)
(
Ai(s) − Ai(s0)

)
Ai+1(s0) · · ·An(s0). (7.32)

The lemma follows using (7.32), (7.27), and the following estimates

∥∥W(I)
g,β(σ0, z0)

(
K(m,n)

)− W
(I)
g,β(σ, z)

(
K(m,n)

)∥∥
2

(σ,z)→(σ0,z0)−→ 0, (7.33)

sup
r�0

∥∥F (I)
g,β(σ0, z0)(r) − F

(I)
g,β(σ, z)(r)

∥∥ (σ,z)→(σ0,z0)−→ 0, (7.34)

for the kernels

W
(I)
g,β(σ, z) := G

−1/2
0 Wm,n

p,q

[
w(I)(g,β,σ, z + Eat)

]
G

−1/2
0 ,

F
(I)
g,β(σ, z)(r) := G

1/2
0 F

[
w(I)(g,β,σ, z + Eat)

]
(r + Hf )G

1/2
0 .

It remains to show (7.33) and (7.34). The limit given in (7.34) is verified by inserting the defini-
tions. Using the notation introduced in (7.24) we find for m + n + p + q � 1∫

(R3)
m+n

dK(m,n)

|K(m,n)|2
∥∥B0(Hf )Wm,n

p,q

[
w
](

K(m,n)
)
B0(Hf )

∥∥2

�
∫

(R3)
m+n+p+q

dK(m,n)

|K(m,n)|2
dX(p,q)

|X(p,q)|2

× sup
r�0

[∥∥B0
(
r + �

[
X(p)

])
wm+p,n+q

(
K(m),X(p), K̃(n), X̃(q)

)
B0

(
r + �

[
X̃(q)

])∥∥2

× (
r + �

[
X(p)

])p(
r + �

[
X̃(q)

])q]
=: [‖w‖�

m,n,p,q

]2
, (7.35)

where we used Lemma A.2 and (7.26). Now using dominated convergence it follows from the
explicit expression for the kernels w(I) that

lim
(z,σ )→(z0,σ0)

∥∥w(I)
p,q(g,β,σ0, z0) − w(I)

p,q(g,β,σ, z)
∥∥�

m,n,p,q
= 0. (7.36)

Now (7.35) and (7.36) imply (7.33). �
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8. Renormalization transformation

In this section we define the renormalization transformation as in [1] and use results from [15].
Let 0 < ξ < 1 and 0 < ρ < 1. For w ∈ Wξ we define the analytic function

Eρ[w](z) := ρ−1E[w](z) := −ρ−1w0,0(z,0) = −ρ−1〈Ω,H
(
w(z)

)
Ω
〉

and the set

U [w] := {
z ∈ D1/2

∣∣ ∣∣E[w](z)∣∣< ρ/2
}
.

Lemma 8.1. Let 0 < ρ � 1/2. Then for all w ∈ B(ρ/8, ρ/8, ρ/8), the function Eρ[w] : U [w] →
D1/2 is an analytic bijection.

For a proof of the lemma see [1] or [15, Lemma 6.1]. In the previous section we introduced
smooth functions χ1 and χ1. We set

χρ(·) = χ1(·/ρ), χρ(·) = χ1(·/ρ),

and use the abbreviations χρ = χρ(Hf ) and χρ = χρ(Hf ). It should be clear from the context
whether χρ or χρ denotes a function or an operator.

Lemma 8.2. Let 0 < ρ � 1/2. Then for all w ∈ B(ρ/8, ρ/8, ρ/8), and all z ∈ D1/2 the pair of
operators (H(w(Eρ[w]−1(z))),H0,0(w(Eρ[w]−1(z)))) is a Feshbach pair for χρ .

A proof of Lemma 8.2 can be found in [1] or [15, Lemma 6.3 and Remark 6.4]. The defini-
tion of the renormalization transformation involves a scaling transformation Sρ which scales the
energy value ρ to the value 1. It is defined as follows. For operators A ∈ B(F ) set

Sρ(A) = ρ−1ΓρAΓ ∗
ρ ,

where Γρ is the unitary dilation on F which is uniquely determined by

Γρa#(k)Γ ∗
ρ = ρ−3/2a#(ρ−1k

)
, ΓρΩ = Ω.

It is easy to check that ΓρHf Γ ∗
ρ = ρHf and hence ΓρχρΓ ∗

ρ = χ1. We are now ready to define
the renormalization transformation, which in view of Lemmas 8.1 and 8.2 is well defined.

Definition 8.3. Let 0 < ρ � 1/2. For w ∈ B(ρ/8, ρ/8, ρ/8) we define the renormalization trans-
formation

(
RρH(w)

)
(z) := SρFχρ

(
H
(
w
(
Eρ[w]−1(z)

))
,H0,0

(
w
(
Eρ[w]−1(z)

)))
� Hred (8.1)

where z ∈ D1/2.
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Theorem 8.4. Let 0 < ρ � 1/2 and 0 < ξ � 1/2. For w ∈ B(ρ/8, ρ/8, ρ/8) there exists a unique
integral kernel Rρ(w) ∈ Wξ such that(

RρH(w)
)
(z) = H

(
Rρ(w)(z)

)
. (8.2)

If w is symmetric then also Rρ(w) is symmetric. If w(z) is invariant under rotations for all
z ∈ D1/2 than also Rρ(w)(z) is invariant under rotations for all z ∈ D1/2.

A proof of the existence of the integral kernel as stated in Theorem 8.4 can be found in [1]
or [15, Theorem 8.2]. The uniqueness follows from Theorem 6.4. The statement about the rota-
tion invariance can be seen as follows. If w(z) is rotation invariant for all z ∈ D1/2, then H(w(z))

and H0,0(w(z)) and Eρ[w](z) are rotation invariant for all z ∈ D1/2, by Lemma 6.7. In that case it
follows from the definition of the Feshbach map (C.1) that the right-hand side of (8.1) is rotation
invariant. Now (8.2) and Lemma 6.7 imply that Rρ(w)(z) is rotation invariant for all z ∈ D1/2.
The statement about the symmetry follows from Lemma 6.6 and the fact that the Feshbach trans-
formation, the rescaling of the energy, and reparameterization of the spectral parameter preserve
the symmetry property.

Theorem 8.5. For any positive numbers ρ0 � 1/2 and ξ0 � 1/2 there exist numbers ρ, ξ, ε0
satisfying ρ ∈ (0, ρ0], ξ ∈ (0, ξ0], and 0 < ε0 � ρ/8 such that the following property holds,

Rρ : B0(ε, δ1, δ2) → B0(ε + δ2/2, δ2/2, δ2/2), ∀ε, δ1, δ2 ∈ [0, ε0). (8.3)

A proof of Theorem 8.5 can be found in [15, Theorem 9.1]. The proof given there relies on
the fact that there are no terms which are linear in creation or annihilation operators. Since by
rotation invariance and Lemma 6.7 there are no terms which are linear in creation and annihila-
tion operators, Theorem 8.5 follows from the same proof. Using the contraction property we can
iterate the renormalization transformation. To this end we introduce the following hypothesis.

(R) Let ρ, ξ, ε0 be positive numbers such that the contraction property (8.3) holds and ρ � 1/4,
ξ � 1/4 and ε0 � ρ/8.

Hypothesis (R) allows us to iterate the renormalization transformation as follows,

B0

(
1

2
ε0,

1

2
ε0,

1

2
ε0

)
Rρ−→ B0

([
1

2
+ 1

4

]
ε0,

1

4
ε0,

1

4
ε0

)
Rρ−→ · · ·

Rρ−→ B0

(
n∑

l=1

1

2l
ε0,

1

2n
ε0,

1

2n
ε0

)
Rρ−→ · · · .

Theorem 8.6. Assume Hypothesis (R). There exist functions

e(0)[·] : B0(ε0/2, ε0/2, ε0/2) → D1/2,

ψ(0)[·] : B0(ε0/2, ε0/2, ε0/2) → F

such that the following hold.
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(a) For all w ∈ B0(ε0/2, ε0/2, ε0/2),

dim ker
{
H
(
w
(
e(0)[w]))}� 1,

and ψ(0)[w] is a nonzero element in the kernel of H(w(e(0)[w])).
(b) If w is symmetric and −1/2 < z < e(0)[w], then H(w(z)) is bounded invertible.
(c) The function ψ(0)[·] is uniformly bounded with bound

sup
w∈B0(ε0/2,ε0/2,ε0/2)

∥∥ψ(0)[w]∥∥� 4e4.

(d) Let S be an open subset of C respectively a topological space. Suppose

w(·, ·) : S × D1/2 → W #
ξ

(s, z) �→ w(s, z)

is an analytic respectively a c-continuous function such that w(s)(·) := w(s, ·) is in
B0(ε0/2, ε0/2, ε0/2). Then s �→ e(0)[w(s)] and ψ(0)[w(s)] are analytic respectively con-
tinuous functions.

A proof of Theorem 8.6 is given in [15, Theorem 10.3 and Theorem 10.4].

9. Main theorem

In this section, we prove Theorem 2.1, the main result of this paper. Its proof is based on
Theorems 7.1 and 8.6.

Proof of Theorem 2.1. Choose ρ, ξ , ε0 such that Hypothesis (R) holds. Choose g0 such
that the conclusions of Theorem 7.1 hold for δ1 = δ2 = δ3 = ε0/2. Let g ∈ Dg0 . It fol-
lows from Theorem 8.6(a) that ψ(0)[w(0)(g,β,σ )] is a nonzero element in the kernel of

H
(0)
g,β,σ (e(0)[w(0)(g,β,σ )]). From Theorem 7.1 we know that there exists a finite CQ such that

sup
(g,β,σ,z)∈B0×R×R+×D1/2

∥∥Qχ(I) (g,β,σ, z)
∥∥� CQ. (9.1)

From the Feshbach property, Theorem C.2, it follows that

ψβ,σ (g) := Qχ(I)

(
g,β,σ, e(0)

[
w(0)(g,β,σ )

])
ψ(0)

[
w(0)(g,β,σ )

]
(9.2)

is nonzero and an eigenvector of Hg,β,σ with eigenvalue Eβ,σ (g) := Eat + e(0)[w(0)(g,β,σ )].
By Theorem 7.1, we know that (g, z) �→ w(0)(g,β,σ, z) is analytic and hence by Theo-
rem 8.6(d) it follows that g �→ ψ(0)[w(0)(g,β,σ )] and g �→ Eβ,σ (g) are analytic. This implies
that g �→ ψβ,σ (g) is analytic because of the analyticity of (g, z) �→ Qχ(I) (g,β,σ, z) and (9.2).

By Theorem 7.1, we know that (σ, z) �→ w(0)(g,β,σ, z) is c-continuous. By Theorem 8.6(d) it
now follows that σ �→ ψ(0)[w(0)(g,β,σ )] and σ �→ Eβ,σ (g) are continuous. This implies that
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σ �→ ψβ,σ (g) is continuous because of the continuity of (σ, z) �→ Qχ(I) (g,β,σ, z) and (9.2). As
a consequence of the definition it follows that we have the bound

sup
(g,β,σ )∈Dg0×R×R+

∣∣Eβ,σ (g)
∣∣� Eat + 1/2. (9.3)

By (9.2), Theorem 8.6(c), and the bound in (9.1) we have

sup
(g,β,σ )∈Dg0×R×R+

∣∣ψβ,σ (g)
∣∣� CQ4e4. (9.4)

By possibly restricting to a smaller ball than Dg0 we can ensure that the projection operator

Pσ,β(g) := |ψβ,σ (g)〉〈ψβ,σ (g)|
〈ψβ,σ (g),ψβ,σ (g)〉 (9.5)

is well defined for all (β,σ ) ∈ R × R+ and g ∈ Dg0 , which is shown as follows. First ob-
serve that the denominator of (9.5) is an analytic function of g. By fixing the normalization
we can assume that 〈ψβ,σ (0),ψβ,σ (0)〉 = 1. If we estimate the remainder of the Taylor expan-
sion of the denominator of (9.5) using analyticity and the uniform bound (9.4) it follows, by
possibly choosing g0 smaller but still positive, that there exists a positive constant c0 such that
|〈ψβ,σ (g),ψβ,σ (g)〉| � c0 for all |g| � g0. Now using the corresponding property of ψβ,σ (g), it
follows from (9.5) that Pβ,σ (g) is analytic on Dg0 , continuous in σ and that

sup
(g,β,σ )∈Dg0×R×R+

∥∥Pσ,β(g)
∥∥< ∞. (9.6)

If g ∈ Dg0 ∩ R, then by definition (9.5) we see that Pβ,σ (g)∗ = Pβ,σ (g).
The kernel w(0)(g,β,σ ) is symmetric for g ∈ Dg0 ∩ R, see Theorem 7.1. It now follows

from Theorem 8.6(b) that H
(0)
g,β,σ (z) is bounded invertible if z ∈ (− 1

2 , e(0,∞)[w(0)(g,β,σ )]).
Applying the Feshbach property, Theorem C.2, it follows that Hg,β,σ − ζ is bounded invertible
for ζ ∈ (Eat − 1

2 ,Eat + e(0,∞)[w(0)(g,β,σ )]). For ζ � Eat − 1/2 the bounded invertibility of
Hg,β,σ − ζ for g sufficiently small follows from the estimate

∥∥(H0 − ζ )−1Wg,β,σ

∥∥� 4
∥∥(H0 − Eat + 2)−1Wg,β,σ

∥∥� C|g|,

where in the first inequality we used that Eat is the infimum of the spectrum of H0 and in the
second inequality we used the estimate of the second factor in (7.11), which is given in the proof
of Theorem 7.2. Thus Eβ,σ (g) = infσ(Hg,β,σ ) for real g ∈ Dg0 ∩ R. �

We want to note that the proof provides an explicit bound on the ground state energy, Eq. (9.3).
Next we show that Theorem 2.1 implies Corollary 2.2.

Proof of Corollary 2.2. We use Cauchy’s formula. For any positive r which is less than g0, we
have
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E
(n)
β,σ = 1

2πi

∫
|z|=r

Eβ,σ (z)

zn+1
dz, ψ

(n)
β,σ = 1

2πi

∫
|z|=r

ψβ,σ (z)

zn+1
dz,

P
(n)
β,σ = 1

2πi

∫
|z|=r

Pβ,σ (z)

zn+1
dz. (9.7)

The first equation of (9.7) implies that |E(n)
β,σ | � r−n sup(g,β,σ )∈Dg0×R×R+ |Eβ,σ (g)| and that

σ �→ E
(n)
β,σ is continuous on R+ by dominated convergence. Similarly we conclude by

(9.7) that there exists a finite constant C such that ‖ψ(n)
β,σ ‖ � Cr−n, respectively ‖P (n)

β,σ ‖ �
Cr−n, and that ψ

(n)
β,σ , respectively P

(n)
β,σ , are continuous functions of σ ∈ R+. Finally ob-

serve that (−1)NHg,β,σ (−1)N = H−g,β,σ where N is the closed linear operator on F with
N � F (n)(h) = n. This implies that the ground state energy Eβ,σ (g) cannot depend on odd pow-
ers of g. �
Acknowledgments

D.H. wants to thank J. Fröhlich, G.M. Graf, M. Griesemer, and A. Pizzo for interesting con-
versations. Moreover, D.H. wants to thank ETH Zurich for hospitality and financial support.

Appendix A. Elementary estimates and the pull-through formula

To give a precise meaning to expressions which occur in (6.2) and (7.6), we introduce the
following. For ψ ∈ F having finitely many particles we have

[
a(K1) · · ·a(Km)ψ

]
n
(Km+1, . . . ,Km+n) =

√
(m + n)!

n! ψm+n(K1, . . . ,Km+n), (A.1)

for all K1, . . . ,Km+n ∈ R
3 := R

3 × Z2, and using Fubini’s theorem it is elementary to see that
the vector valued map (K1, . . . ,Km) �→ a(K1) · · ·a(Km)ψ is an element of L2((R3)m; F ). The
following lemma states the well-known pull-through formula. For a proof see for example [5,15].

Lemma A.1. Let f : R+ → C be a bounded measurable function. Then for all K ∈ R
3 × Z2

f (Hf )a∗(K) = a∗(K)f
(
Hf + ω(K)

)
, a(K)f (Hf ) = f

(
Hf + ω(K)

)
a(K).

Let wm,n be function on R+ × (R3)
n+m

with values in the linear operators of Hat or the
complex numbers. To such a function we associate the quadratic form

qwm,n(ϕ,ψ) :=
∫

(R3)
m+n

dK(m,n)

|K(m,n)|1/2

〈
a
(
K(m)

)
ϕ,wm,n

(
Hf ,K(m,n)

)
a
(
K̃(n)

)
ψ
〉
,

defined for all ϕ and ψ in H respectively F , for which the right-hand side is defined as a complex
number. To associate an operator to the quadratic form we will use the following lemma.
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Lemma A.2. Let X = R
3 × Z2. Then∣∣qwm,n(ϕ,ψ)

∣∣� ‖wm,n‖�‖ϕ‖‖ψ‖, (A.2)

where

‖wm,n‖2
� :=

∫
Xm+n

dK(m,n)

|K(m,n)|2 sup
r�0

[∥∥wm,n

(
r,K(m,n)

)∥∥2
m∏

l=1

{
r + �

[
K(l)

]} n∏
l̃=1

{
r + �

[
K̃(̃l)

]}]
.

Proof. We set P [K(n)] :=∏n
l=1(Hf + �[Kl])1/2 and insert 1’s to obtain the trivial identity

∣∣qwm,n(ϕ,ψ)
∣∣= ∣∣∣∣ ∫

Xm+n

dK(m,n)

|K(m,n)|
〈
P
[
K(m)

]
P
[
K(m)

]−1∣∣K(m)
∣∣1/2

a
(
K(m)

)
ϕ,wm,n

(
Hf ,K(m,n)

)

× P
[
K̃(n)

]
P
[
K̃(n)

]−1∣∣K̃(n)
∣∣1/2

a
(
K̃(n)

)
ψ
〉∣∣∣∣.

The lemma now follows using the Cauchy–Schwarz inequality and the following well-known
identity for n � 1 and φ ∈ F ,

∫
Xn

dK(n)
∣∣K(n)

∣∣∥∥∥∥∥
n∏

l=1

[
Hf + �

[
K(l)

]]−1/2
a
(
K(n)

)
φ

∥∥∥∥∥
2

= ∥∥P ⊥
Ω φ

∥∥2
, (A.3)

where P ⊥
Ω := |Ω〉〈Ω|. A proof of (A.3) can for example be found in [15, Appendix A]. �

Provided the form qwm,n is densely defined and ‖wm,n‖� is a finite real number, then the form
qwm,n determines uniquely a bounded linear operator Hm,n(wm,n) such that

qwm,n(ϕ,ψ) = 〈
ϕ,Hm,n(wm,n)ψ

〉
,

for all ϕ,ψ in the form domain of qwm,n . Moreover, ‖Hm,n(wm,n)‖ � ‖wm,n‖�. Using the pull-
through formula and Lemma A.2 it is easy to see that for w(I), defined in (7.7), with m+n = 1,2,
the form

q(I)
m,n(ϕ,ψ) := q

w
(I)
m,n

(
ϕ, (Hf + 1)−

1
2 (m+n)(−� + 1)−

1
2 δ1,m+nψ

)
is densely defined and bounded. Thus we can associate a bounded linear operator L

(I)
m,n such that

q
(I)
m,n(ϕ,ψ) = 〈ϕ,L

(I)
m,nψ〉. This allows us to define

Hm,n

(
w(I)

m,n

) := L(I)
m,n(Hf + 1)

1
2 (m+n)(−� + 1)

1
2 δ1,m+n

as an operator in H.
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Appendix B. Generalized Wick theorem

For m,n ∈ N0 let Mm,n denote the space of measurable functions on R+ × (R3)m+n with
values in the linear operators of Hat. Let

M =
⊕

m+n=1,2

Mm,n.

For w ∈ M we define

W [w] :=
∑

m+n=1,2

Hm,n(w).

The following theorem is from [5]. It is a generalization of Wick’s theorem.

Theorem B.1. Let w ∈ M and let F0,F1, . . . ,FL ∈ M0,0. Then as a formal identity

F0(Hf )W [w]F1(Hf )W [w] · · ·W [w]FL−1(Hf )W [w]FL(Hf ) = H
(
w̃(sym)

)
,

where

w̃M,N

(
r;K(M,N)

)
=

∑
m1+···+mL=M
n1+···+nL=N

∑
p1,q1,...,pL,qL:

ml+pl+nl+ql�1

L∏
l=1

{(
ml + pl

pl

)(
nl + ql

ql

)}

× F0(r + r̃0)

〈
Ω,

L−1∏
l=1

{
Wml,nl

pl ,ql
[w](r + rl;K(ml,nl)

l

)
Fl(Hf + r + r̃l )

}

× WmL,nL
pL,qL

[w](r + rL;K(mL,nL)
L

)
Ω

〉
FL(r + r̃L), (B.1)

with

K(M,N) := (
K

(m1,n1)
1 , . . . ,K

(mL,nL)
L

)
, K

(ml,nl)
l := (

k
(ml)
l , k̃

(nl)
l

)
, (B.2)

rl := �
[
K̃

(n1)
1

]+ · · · + �
[
K̃

(nl−1)

l−1

]+ �
[
K

(ml+1)

l+1

]+ · · · + �
[
K

(mL)
L

]
, (B.3)

r̃l := �
[
K̃

(n1)
1

]+ · · · + �
[
K̃

(nl)
l

]+ �
[
K

(ml+1)

l+1

]+ · · · + �
[
K

(mL)
L

]
. (B.4)

A proof can be found in [5]. We note that the proof is essentially the same as the proof of
Theorem 3.6 in [1] or Theorem 7.2 in [15].
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Appendix C. Smooth Feshbach property

In this appendix we follow [1,9]. We introduce the Feshbach map and state basic isospectrality
properties. Let χ and χ be commuting, nonzero bounded operators, acting on a separable Hilbert
space H and satisfying χ2 + χ2 = 1. A Feshbach pair (H,T ) for χ is a pair of closed operators
with the same domain,

H,T : D(H) = D(T ) ⊂ H → H

such that H,T ,W := H − T , and the operators

Wχ := χWχ, Wχ := χWχ,

Hχ := T + Wχ, Hχ := T + Wχ,

defined on D(T ) satisfy the following assumptions:

(a) χT ⊂ T χ and χT ⊂ T χ ,
(b) T ,Hχ : D(T ) ∩ Ranχ → Ranχ are bijections with bounded inverse,
(c) χH−1

χ χWχ : D(T ) ⊂ H → H is a bounded operator.

Remark C.1. By abuse of notation we write H−1
χ χ for (Hχ � Ranχ)−1χ and likewise T −1χ for

(T � Ranχ)−1χ .

We call an operator A : D(A) ⊂ H → H bounded invertible in a subspace V ⊂ H (V not
necessarily closed), if A : D(A)∩ V → V is a bijection with bounded inverse. Given a Feshbach
pair (H,T ) for χ , the operator

Fχ(H,T ) := Hχ − χWχH−1
χ χWχ (C.1)

on D(T ) is called the Feshbach map of H . The auxiliary operator

Qχ := Qχ(H,T ) := χ − χH−1
χ χWχ (C.2)

is by conditions (a), (c), bounded, and Qχ leaves D(T ) invariant. The Feshbach map is isospec-
tral in the sense of the following theorem.

Theorem C.2. Let (H,T ) be a Feshbach pair for χ on a Hilbert space H. Then the following
holds. χ kerH ⊂ kerFχ(H,T ) and Qχ kerFχ(H,T ) ⊂ kerH . The mappings

χ : kerH → kerFχ(H,T ), Qχ : kerFχ(H,T ) → kerH

are linear isomorphisms and inverse to each other. H is bounded invertible on H if and only if
Fχ(H,T ) is bounded invertible on Ranχ .

The proof of Theorem C.2 can be found in [1,9]. The next lemma gives sufficient conditions
for two operators to be a Feshbach pair. It follows from a Neumann expansion [9].
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Lemma C.3. Conditions (a), (b), and (c) on Feshbach pairs are satisfied if:

(a′) χT ⊂ T χ and χT ⊂ T χ ,
(b′) T is bounded invertible in Ranχ ,
(c′) ‖T −1χWχ‖ < 1, ‖χWT −1χ‖ < 1, and T −1χWχ is a bounded operator.
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