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Over a commutative Noetherian ring R, the Bass invariants u(p, M) were
defined for any module M and any prime p € Spec R by H. Bass (Math. Z. 82,
1963, 8-28). In the first part of this paper, we study these numbers further. We are
concerned primarily with the modules having a certain vanishing property of their
Bass numbers. For instance, we show that R is Gorenstein if and only if w,(p, F)
= 0 whenever ht(p) # i for any flat module F. In the second part, we define the
invariants m,{ p, M) for any prime p € Spec R and module M by a minimal flat
resolution of M. As with the Bass invariants, we can characterize Gorenstein rings
and modules by a vanishing property of these numbers. For instance, injective
modules are just those modules M having w,(p, M) =0 for all prime p with
ht( p) # i and all i > 0. Finally, we introduce strongly cotorsion modules and show
that these modules M are just those modules having 7;(p, M) = 0 for all prime p
with ht( p) > / and all i > 0. From this paper we will see that flat covers defined by
E. Enochs (Israel J. Math. 39, 1981, 189-209) behave in a manner dual to the
behavior of injective envelopes.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Let R be a commutative Noetherian ring, M be an R-module. Using
the minimal injective resolution of M, H. Bass defined the ith invariant
w,(p, M) for any prime p &€ Spec R in [1]. These numbers were shown
particularly interesting for the regular module R when R is Gorenstein. In
general, it is noted that most nice properties of u,(p, M) depend on M
being finitely generated. Here, we study the minimal injective resolutions
of modules of finite flat dimension and do not assume them to be finitely
generated. We are particularly interested in the vanishing property of the
Bass numbers. For instance, Theorem 2.1 shows that R is Gorenstein if
and only if any flat R-module F has up(p, F) = 0 for all prime p with
ht(p) # { and all { = 0. In [18], a finitely generated module having the
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above property is called a Gorenstein module. On the other hand, in [3, 4],
Enochs studied commutative Noetherian rings over which injective en-
velopes of flat modules are flat. It turns out that for such rings R is
generically Gorenstein. That is, R, is Gorenstein for any p € Ass(R).
These rings were also studied in[1, Proposition 6.1; 9, Theorem 2.4]. Here,
it is shown that for any module M, f.dim, E(M) < f.dim M if and only if
R is Gorenstein (Theorem 2.2). In Section 2, many other properties of
modules over Gorenstein rings will be proved.

As a generalization of a projective cover of a module, Enochs defined
flat covers of modules by commutative diagrams in [2]. In Auslander’s
terminology, a flat cover is a minimal right #-approximation, where %
stands for subcategory of flat modules (see [14]). Then in Section 3, we
consider minimal flat resolutions by flat covers of modules. Note that over
a commutative Noetherian ring R, every pure injective flat module F can
be uniquely written in the form F = I17,, where T, is a completion of a
free R,-module with respect to p-adic topology [7, p. 183]. This result is
similar to the Matlis theorem for injective modules. Using this fact, we can
define the ith invariant 7 (p, M) for p € Spec R and a module M which
admis a minimal flat resolution. By the vanishing property of these
invariants, some interesting properties of modules over Gorenstein rings
will be given in this section. For example, Theorem 3.2 shows that over a
Gorenstein ring R, injective modules are just those modules E having
7 p, E) = 0 for all prime p with ht(p) # i and all i > 0.

In Section 4, we introduce the strongly cotorsion modules. We prove the
existence of minimal flat resolution for strongly cotorsion modules (which
may have infinite injective dimension and infinite flat dimension) over a
Gorenstein ring. We also show that over a Gorenstein ring R, strongly
cotorsion modules are just those modules M having the numbers 7(p, M)
= 0 for all prime p with ht(p) > i and all i > 0. As a consequence, we
show that any module over a n-Gorenstein ring admits a minimal flat
resolution. This is a partial answer to an open problem posed by Enochs in
[2). That is, when does every module over a ring always admit a minimal
flat resolution? At the end of Section 4, we determine all modules M
having wu,(p, M) = 0 for all prime p with ht(p) > i and all i > 0. These
modules are the duals of strongly cotorsion modules in a certain sense. We
call them strongly torsion free because they are at least torsion free.

Throughout this paper, all rings R are commutative Noetherian with the
identity, all modules are unitary. For any module X, f.dimzX stands for
the flat dimension of R-module X, inj.dimgX stands for the injective
dimension of X, proj.dim,X stands for the projective dimension of X,
E(X) stands for its injective envelope, and F(X) stands for its flat cover if
it exists. All other notation is standard. For instance, ht(p) means the
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height of p, DimR means the Krull dimension of R, and R, means the
localization of R at a prime p.

2. MINIMAL INJECTIVE RESOLUTIONS OF
FLAT MODULES

Let R be a commutative Noetherian ring and M an R-module. A
minimal injective resolution of M is an exact sequenec

dg d, g,
O——)M—)EO——>E1——)E2—> e > E o e

such that for each i = 0, E; is an injective envelope of ker(d,). It is well
known that each E; has a unique decomposition E; = @ E(R/p), p €
Spe R [8]. If u,(p, M) denotes the ith Bass number, it can be written in
the form

Ei = @pGSpccR /’Lz(p’M)E(R/p)

DEFINITION 2.1. A commutative Noetherian ring is called Gorenstein if
inj.dimg R, is finite for any maximal ideal m.

H. Bass established many characterizations of Gorenstein rings in his
article [1]. For convenience, we quote one result of his fundamental
theorem as a lemma.

LEMMA 2.1. A commutative Noetherian ring R is Gorenstein if and only if
it admits a minimal injective resolution as
dy dy d;
O—-)R—-)EO—)EI—>E2—> —>E,.—9
such that E; = &,,,_; E(R/p). Namely, u(p, R) = &,

We will see that there are several generalizations of this classical
characterization of Gorenstein rings. First we need a preliminary result
which will be used later.

PROPOSITION 2.1. Let R be a commutative Noetherian ring. Then the
following are equivalent.
(1) R is Gorenstein.
(2) fdimgzE(R/m) = ht(m) for any maximal ideal m.
(3) fdimgzE(R/m) < = for any maximal ideal m.
(4) fdimgzE(R/p) = ht(p) for any p € Spec R.
(5) fdimpE(R/p) < = for any p € Spec R.
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Proof. (1) = (2). Note that f.dimgzE(R/m) = f.dimg E(R/m) by the
isomorphism E(R/m),, = E(R/m) [8]. Also note that ht(m) = ht(m,)).
Then we may assume that (R,m) is a local Gorenstein ring. For any
finitely generated R-module M, we have the natural isomorphism [5, VI,
Proposition 5.3],

Hom g (Ext},( M, R), E(R/m)) = Tor;(M,Hom(R, E(R/m))).

It follows that f.dimz E(R/m) = inj.dimz R = ht(m).

(2) = (3). This is obviously true.

(3) = (1). We only need to show that R, is Gorenstein for any maximal
ideal m. Since f.dimy E(R/m) is finite, so is f.dimy E(R/m),. We may
simply consider the local case (R, m) with f.dim RE("R/m) finite. There-
fore, the above natural isomorphism implies that inj.dim, R, is finite and
then that R, is Gorenstein. "

Next, note that E(R/p), # 0 if and only if p Cq for any two prime
ideals p,q. Then we can finish the implications (1) = (4) = (5) = (1)
similarly. |

Now we begin to investigate the minimal injective resolutions of flat
modules.

THEOREM 2.1, Let R be commutative Noetherian. Then the following are
equivalent.

(1) R is Gorenstein.
(2) For any flat R-module F, the minimal injective resolution

O——)F—-»EO—>E1—) —)Ei—)

is such that E, = & u(p, FYE(R/p) and p(p, F) = 0 if ht(p) # i.

(3) A module F is flat if and only if its minimal injective resolution is as
in (2).

Remark. As the referee suggested, by applying the results of [12] we
may have a shorter proof for Theorem 2.1. Here, for consistence in the
methods used later, we would like to give the following proof.

Proof. (2) = (1). For the regular module R, we have the minimal
injective resolution by the assumption
0-»>R->E,—-E — -+ >E - -
such that if E(R/p) C E,, then ht( p) = i. For any maximal ideal m, taking
localization at m, we get that (E,),, = 0 for i > ht(m). It follows that
inj.dimg R,, is finite. Namely, R,, is Gorenstein. Hence so is R.

m m
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(1) = (2). By Lemma 2.1, there is a special minimal injective resolution
of the regular module R, denoted by &(R). For any flat module F =
F ® R, taking the tensor product F ® &(R), we have an injective resolu-
tion of F

0->FO®R-FQ®E, > FQ®E —» - >F®E, —» -,

where E; = &,,,_; E(R/p), and F ® E, is injective. It is not hard to see
that F ® E(R/p) is a direct sum of copies of E(R/p). Therefore, E(R/p)
C F ® E; only if ht( p) = i. Finally, since any minimal injective resolution
of F is a direct summand of F ® £(R), the conclusion follows.

(2) = (3). Suppose F admits such a minimal injective resolution,

0—«>F—>E()—->E]—>-'-—>E,.~+---

such that E(R/p) C E, only if ht( p) = i. We have to show that F is flat.
Assume E, # 0. Then by Proposition 2.1, we have that f.dim,E(R/p) =i
= f.dimy E;. For any maximal ideal m, taking the localization at m, we get

0— Fm - (E())m - (El)m - (Es)m -

Note that (E}),, = 0 for i > ht(m) and if (E),, # 0, f.dim, (E),, = i.
So we have the exact sequence

0-F,>Gy—=G, > - -G, 0.

Here, s < ht(m), f.dimg; G, = i.
Break this long exact sequence into short exact sequences as

0K, —-G,_, -G, -0
0-K,->G,_,—>K, -0

0—-K,_,~G ~K, _,—0
0-F,-Gy—» K, ,—~0.
Now it is easy to see that fdim K, = s — 1, fdim K, =5 —
2,...,fdimK,_, =s— (s~ 1) =1, and then f.dim F,, = 0. This means

that F,, is flat for any maximal ideal m. Therefore, F is a flat R-module.
(3) = (2). This is trivially true. |

By the above theorem, we have the following interesting consequence.

PROPOSITION 2.2.  Let (R, m) be local Gorenstein and F have finite flat
dimension. Then F is flat if and only if every maximal R-sequence { u,, ..., p }
is also an F-sequence.
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Proof. We only need to show the sufficiency. Consider the minimal
injective resolution of F,

0->F->FE,—E —» - »E - -

By Theorem 2.1, we have to show that E(R/p) C E; only if ht(p) = i.
First of all, we claim that if E(R/p) C E,, then ht(p) > i. Suppose
E(R/p) is contained in E; and ht(p) < i. Considering the localization of
the resolution at the prime p, we have a minimal injective resolution of F,
as R,-module [1]. Since R, is Gorenstein and F, has finite flat dimension,
we have inj.dimp F, < Dim R, = ht( p) < i [13, Corollary 5.6]. This im-
plies that (E;), = ‘0. But this is a contradiction because E(R/p) is con-
tained in E,.

No we show that ht(p) < i if E(R/p) C E,. Consider at E, = @ E(R/p).
It is not hard to see that ht( p) = 0 by the hypothesis. Then assume that
under the hypotheses, for 0 <i <, it is true that E(R/p) C E; only if
ht( p) = { for any local Gorenstein ring. Now we consider the case (s + 1).
Suppose E(R/p) c E,, . Since ht(p) > s + 1, there is a non-zero divisor
u € p on both R and F. Using the functor Hom (R /uR, *), we have the
minimal injective resolution of F/uf,

0 — F/uF — Homg(R/uR,E,) = - — Homg(R/uR,E,, ) = -

It is easy to see that all conditions are preserved by R /uR and F /uF. That
is, R = R/uR is Gorenstein and F = F/uF has finite flat dimension as an
R-module. By the inductive hypothesis, we know that E(R/g) C E, =
Hom (R, E, . ) only if _ht(@) = s. 1t follows that ht(p/(u) = s and then
ht(p) = s + 1 since E(R/P) € Homy(R,E,, ). 1

As a generalization of Theorem 2.1, we have the following.

THEOREM 2.2. Let R be Gorenstein, M be an R-module. Then the
following are equivalent.

(1) fdimgM =5 < .
(@) M admits a minimal injective resolution as
()——)M—)EOw)El-—a —)El.—<>
such that E(R/p) CE; only if i <ht(p)<i+s for i 20 and s is the

smallest among such integers. In other words, u{p, M) + 0 only if i < ht(p)
<i+s.

Proof. (2) = (1). As before, taking the localization at any maximal
ideal m, we have the minimal injective resolution

0 - Mm - (EO)m - (El)m = (Ei)m -
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Then we know that (E,),, = 0 when i > ht(m) and i < f.dimg (E),, <
i + 5 if (E}), # 0. That is, we have

0-M, ->Gy,~>G,— - -G —~0

such that i < f.dim G, <i + 5.
We now break this into short exact sequences

0K —»G,_, -G, —0
0-K,->G,_,>K =0

O—)Kl-l_)Gl_)Kr*?._)O
0->M,>G,—K,_, >0,

Suppose that f.dim M,, = u > s. This will imply that fdim K, |, > u + 1,
and then f.dim G, > u + ¢t > s + . This is a contradiction. Therefore, we
have that f.dimg M, <s for any maximal ideal m and that f.dim;M <.
On the other hand, suppose f.dim M = u < s, by our proof that (1) implies
(2) we see that we can construct a minimal injective resolution of M such
that E(R/p) CE,; only if i < ht(p) <i + u for any i > 0. This contradicts
our choice of s.

(1) = (2). We use the induction on the dimension of M. By Theorem
2.1, we know that it is true for f.dimzM = 0. Supose it is true for all
modules with flat dimension less than n and suppose that f.dim,M = n.
Let us construct the desired minimal injective resolution of M.

As usual, we consider the exact sequence

0->N->F->M-0

with F flat and f.dimy;N = n — 1. By the induction hypothesis, we have
the desired minimal injective resolutions for both F and N as

()——aF—9E0-)El—) ———)E'.—>
O—)N—»GO-—>GI—> ->G'.—>

such that E(R/p) C E; only if ht(p) =i and E(R/p) € G, only if i <
ht(p) <i+ (n — 1)
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Consider the pushout diagram,

0 0

l I
0—>N->F ->M-0

Vool
0-Gy,—H ->M-0

N8 >

L, =L,

1 3

0 0

For the exact sequence 0 - F - H — L, — 0, we can construct the
following commutative diagram with exact rows and columns:

0 0 0

1) \ l
0-F »-H -»L,~»0

! ! {
0—-E,»W,-»G, —0

l l !
0—-K,»>X,~»L, ~0

i) ) l

0 0 0

Here W, = E;, @ G|, it is injective. Then using the resolutions of K, and
L,, we get an injective resolution of H,

()—)H-«)WO—-)Wl-—a--- -)VV'—>

Here, W, =E, ® G,,,. Therefore, i < fdimgW, <+ D+ (n -1 =
i + n. By Proposition 2.1, we know that E(R/p) C W, only if i < ht(p) <
i+ n.

Now, consider the following pushout diagram

0 0
l l

0-G,—»H >M -0
I l )

0-Gy»>W,~>Z -0

c<—c><<—
o<—:><<—
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It is easy to see that Z = W, /G| is injective and 0 < f.dimzZ < f.dim,G,
<1+ (n — 1) = n. Then, pasting the exact sequence 0 - M — Z — X,
— 0 and the resolution of X, together, we have that

O—)M——)Znazl——) —)Z’.-)

is such that Z; is injective and i < f.dimgzZ; <i + n. Note that the
ith term of any minimal injective resolution of M is a direct summand
of Z,. Therefore, by Proposition 2.1, E(R/p) is in the ith term only
if i <ht(p) <i+ n. By the first part of the proof, we also can assert
that n is the smallest among such integers. Otherwise, we deduce that
f.dim,M <n. |

Now we are ready to give some other characterizations of Gorenstein
Tings.

THEOREM 2.3.  Let R be commutative Noetherian. Then the following are
equivalent.

(1) R is Gorenstein
(2) For any finitely generated module M, f.dimE(M) < f.dim;M
(3) For any module M, f.dimg E(M) < f.dimyM.

Proof. (1) = 3.If f.dimy M = =, this is trivially true. If dim ;M = 5 < o,
by Theorem 2.2, we know that f.dimzE(M) = fdimzE;, <5 = f.dim ;M.

(3) = (2). This is trivial.

(2) = (1). For any maximal ideal m, consider a maximal R-sequence
{uy,..., ) in m. Then M = R/(pu,,...,n,) has finite flat dimension. By
the assumption, f.dimz E(M) < f.dim,M. On the other hand, since M is
m-primary, R/m C M. This implies that E(R/m) € E(M) and that it also
has finite flat dimension because it is a direct summand of E(M). Hence
R is Gorenstein by Proposition 2.1.

We may ask when f.dimz E(M) = f.dimy M for any module M. It turns
out that this condition is more restrictive.
THEOREM 2.4. Let R be commutative Noetherian, then the following are
equivalent.
(1) R is Gorenstein with Dim R < 1.
(2) For any module M with finite flat dimension, f.dimgE(M) =
f.dim M.
Proof. (1) = (2). If f.dimgM < o, we know that f.dimzM = 0 or 1 [13,
Corollary 5.6). Suppose f.dim M = 1, consider the exact sequence

0->M—->E(M)—-X—o.
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Since f.dimz X < =, f.dimgz X < 1. But then it follows that f.dim, E(M) =
1. Otherwise, we have f.dimz X = 2, a contradiction.

(2) = (1). First, by Theorem 2.3, R is Gorenstein. Suppose Dim R > 0.
For any maximal ideal m, choose a maximal R-sequence in m,{pu,,..., p,}.
This gives us that f.dimg(u,,..., z,) =t ~ 1. We claim that ¢ = 1.

Since E(R)is flat and I = (,,..., »,) € R, E(J) is a direct summand
of E(R). This means that E(]) is flat. But then by the assumption,
f.dimg E(I) = f.dimy /. This implies that [ is flat and t — 1 = 0. Namely,
t = 1. Finally, ht(m) = ht(I) = 1 for any maximal ideal m. It follows that
R is Gorenstein with Krull dimension one. |}

COROLLARY 2.1. Let (R, m) be commutative Noetherian. Then the fol-
lowing are equivalent.

(1) (R, m) is regular with Dim R < 1.
(2) fdimyM = f.dimg E(M) for all R-modules M.

Proof. (1) = (2). This is obvious. For (2) = (1), by Theorem 2.4, (R, m)
is Gorenstein with Dim R < 1. Note that f.dimgR/m = f.dim,E(R/m)
< 1 by the assumption. It follows that R is regular because gl.dim R =
fdimzR/m. |1

THEOREM 2.5. Let R be commutative Noetherian. Then the following are
equivalent.

(1) R is Gorenstein with DIm R < n + 1.

(2) 0 < fdimpM — f.dimyz E(M) < n for all R-modules with finite flat
dimension.

Proof. (2) = (1). Since the hypothesis implies that f.dimyFE(M) <
f.dimy M, by Theorem 2.3, R is Gorenstein. Suppose Dim R > 0 and let
{m-.., n,} be a maximal R-sequence in a maximal ideal m. As before,
fdimp(py,...,u) =5 ~1 and E(p,...,pn,) is a direct summand of
E(R). Hence, fdimg(pu,,..., n) — fdimgECu,, ..., u,) < n implies that
s — 1 < n and then that Dim R <n + 1.

(1) = (2). By Theorem 2.3, we have that f.dimz;M — f.dimz E(M) > 0.
If f£dimz M = n + 1, then for some maximal ideal m, f.dim R, M, =n +
1. It is not hard to see that f.dimg E(M,)=n+ 1 and then that
fdimzE(M) = n + 1. If fdimgM < n, then obviously fdimpzM —
fdimgE(M) <n. B

COROLLARY 2.2. Let R be commutative Noetherian. Then the following
are equivalent:

(1) R is regular with Dim R < n + 1.
(2) 0 < fdimyM ~ f.dimy E(M) < n for all R-modules M.
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(Here, the right half inequality means that fdimgM < f.dimzE(M) + n.)

We have seen that over a Gorenstein ring R flat modules M have the
vanishing property p(p, M) = 0 for all prime p with ht(p) # i. We will
be back to investigate the modules M having u(p, M) = 0 for all prime
p with ht(p) > i in Section 4.

3. MINIMAL FLAT RESOLUTIONS OF INJECTIVE
MODULES

DEFINITION 3.1. Let M be an R-module, F is a flat module. According
to Enochs’ terminology in (2], a homomorphism ¢: F — M is called a flat
cover of M if (1) for any homomorphism ¢': G — M with G flat, there is
a homomorphism f: G — F such that ¢’ = ¢f and (2) if ¢ = ¢f for
some endomorphism of F, then f is an automorphism of F.

Remark. If in the definition, (1) is satisfied, then we call ¢ a flat
precover. Enochs proved that if M admits a flat precover, then it also
admits a flat cover and that flat covers are unique up to isomorphism [2,
Theorem 3.1). If & denotes all flat modules, in Auslander’s terminology
[14], a flat cover of M is a minimal right $~approximation. We use F(M)
to denote the flat cover of M.

A minimal flat resolution of M is an exact sequence

4,
. _)Fi—’Fi—l" ——>F0—>M——>O

such that for each i, F; is a flat cover of im(d,). It is easy to see that for
any flat module G, applying the functor Homg(G, ) to the minimal flat
resolution of M, we still have an exact sequence. Actually, if M has an

exact sequence

d;
- F-SF | —» - >F->M-0

such that F; is flat and Hom z(G, *) makes it still exact for any flat module
G, then M admits a minimal flat resolution [2, 5). The above resolution is
called a F-resolution of M.

In this section, we are primarily concerned with minimal flat resolutions
of modules. We will see that there are results similar to those we got in the
last section.

Let R be a commutative Noetherian ring, F a pure injective flat module
(or, equivalently, cotorsion flat), then by [7, Theorem p. 183], F =T1T,.
Here, p € Spec R, 7, is the completion of a free R,-module with respect
to p-adic topology. Now, suppose M has a minimal flat resolution, F; is its
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ith term, then for i > 1, F, is pure injective flat [7, p. 183] and then
F, = T1T,. For i = 0, we take the pure injective envelope PE(F,) of F,.
Then we have PE(F,) =TI1T, [6, p. 352]. If M is cotorsion, that is,
ExtL(F,M) = 0 for any flat module, then F, is cotorsion and so PE(F,) =
F,.

Similarly as in [1, 6], we define the ith invariant for any M which admits
a minimal flat resolution as follows:

DEFINITION 3.2. Suppose M admits a minimal flat resolution

d,
. —)Fi—>F‘._l—~> —>F()—-)M—>()_

For i = 1, p € Spec R, w{(p, M) is the cardinality of a base of a free
R,-module whose completion is 7, where F; = I17, and each T, is the
completion of a free R,-module. For i = 0, we define m(p, M) as above
but using the pure injective envelope PE(F,) of F,,.

It is easy to see that m(p, M) are well defined and homologically
independent. But we do not know when they are finite. We will study the
calculations of these numbers further in a subsequent paper. Here, we are
particularly interested in their vanishing property.

THEOREM 3.1. Let R be commutative Noetherian, then the following are
equivalent:

(1) R is Gorenstein.

(2) For any injective module E, w{p, E) = 0 whenever ht(p) + i for
i>0.

Proof. (2) = (1). For any maximal ideal m, we have the minimal flat
resolution of £ = E(R/m).

d;
2 FE-oFo o > Fy 2 E(R/m) - 0.

Note that, by the assumption, 7, C F, = T17, only if ht(p) = i. Since R,
is flat, using th functor Homg(R,,, *), we have an exact sequence
= Homg(R,,, F;) —» -+ —» Hom(R,,, F,) —
Homg(R,,, E(R/m)) — 0.

Note that Homg(R,, E(R/m)) = E(R/m) and for any i > 0,
Homg(R,,, F;) = Homg(R,,,T17,) = [THomg(R,,, T,).

my L m> Lp



MINIMAL INJECTIVE AND FLAT RESOLUTIONS 463

Here T, can be taken as 7, = Homz(E(R/p), E(R/p)®’) for some set
X [6, p. 353). For each T,, we have that Homg(R,,,T) =

m> Lp

Homg(R,,, Homg( E(R/p), E(R/p)'*’))

= Hom(R,, & E(R/p), E(R/p)™).

Since R, ® E(R/p) is injective, it follows that Homg(R,, ®
E(R/p), E(R/p)*?) is flat because E(R/p)*’ is injective. But, on the
other hand, R,, ® E(R/p) = E(R/p), # 0 if and only if p € m. This
cannot happen for { > ht(m) because of ht(p) =i by our assumption.
Therefore, E(R/m) has finite flat dimension. It follows that R is Goren-
stein by Proposition 2.1.

(1) = (2). In order to construct the desired minimal flat resolution for
any injective module E, consider the minimal injective resolution of R by
Lemma 2.1.

d() dl dl
()—-)R-—)E[]—)El—«)E2-> ——>Ei-—>

such that E; = @&,,,_;, E(R/p). Using the functor Hom(*, E), we have
that

- — Homg( E;, E) —» -+ — Homg(E;, E) » Homg(R,E) — 0.

Note that Homg(R, E) = E,Homg(E,, E) = [THomgz(E(R /p), E) is flat.
Easily, we have that

Homg(E(R/p),E) = HomR(E(R/P) ®r vaE)
= Homg{ E(R/p),Hom,(R,, E)).

Since Homg(R,, E) is R, injective, hence Homy(R,, E) = ®@E(R/q),
g Cp. Set Homg(R,, E) =A4 & B, where 4 =o,_,E(R/q), B =
®,, , E(R/q). Note that for g € p,q # p, Homgz(E(R/p), E(R/q)) = 0,
then Homg(E(R/p),TTE(R/q)) =0 for all g Cp,q # p. Therefore,
Hom ,(E(R/p), B) = 0 because B is a direct summand of [TE(R/q),
g # p. Consequently, Homz(E(R/p), E) = Homg(E(R/p), A) =
Hom (E(R/p), E(R/p)*’) = T, for some set X, and then Homg(E,, E)
= [17, with ht(p) = i. Now it is easy to see that all ith terms F, of the
minimal flat resolution of E are direct summands of I17, with ht(p) =i,
correspondingly. Also, F; = I'17, with ht(p) = i by Theorem of [7]. 1

From the above argument and the fact f.dim E(R/p) = ht( p), we have
that

CoroLLARY 3.1. If R is Gorenstein, then for any p € Spec R,
Wht([))(p3 E(R/p)) = 1.
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We have the following which is dual to Proposition 2.1.

PROPOSITION 3.1. Let R be commutative Noetherian. Then the following
are equivalent.

(1) R is Gorenstein.

(2) inj.dimgT,, = ht(m) for any maximal ideal m.
(3) injdimgT,, < « for any maximal ideal m.

(4) inj.dim.T, = ht(p) for any prime p € Spec R.
(5) inj.dimg7, <  for any prime p € Spec R.

Proof. (1) = (4). We note that T, = HomR(E(R/p) E(R/p)*®)) and
fdlmRE(R/p) = ht(p). This implies 'that inj.dim,7, < ht(p). But on the
other hand, it is easy to see that R = HomR(E(R/p) E(R/p)) is a direct
summand of 7, and inj. dlmeR = inj.dimg R, = ht( p). Therefore,
inj.dim;T, = ht( p).

4 = (g) This is trivial.

(5) = (1). Note that R, is a direct summand of 7,. It follows that
inj.dim R R, < = for any p ‘e Spec R. Namely, R is Gorenstein. The other

1mpllcat10ns can be established similarly. [l

LEMMA 3.1. Let R be commutative Noetherian and let F be flat. If the
pure injective envelope of F, PE(F) = 1T, with ht(p) = 0, then F = PE(F)
is pure injective.

Proof. This is by Theorem 2.1 of [6]. 1

THEOREM 3.2. Let R be commutative Noetherian. Then the following are
equivalent.

(1) R is Gorenstein.

(2) An R-module X is injective if and only if w(p, X) =0 for all
prime p with ht(p) # i and all i > 0.

Proof. By Theorem 3.1, we only need to show that if R is Gorenstein
and X has 7,(p, X) = 0 for all prime p with ht(p) # i and all { > 0, then
X is injective. By the previous lemma, for all i > 0, if F; is not zero, then
F, = TIT, with ht(p) = .

Let C be an injective cogenerator of R-modules. In order to prove that
X is injective, we only need to show that Hom (X,C) = X* is flat. By
Theorem 2.1, X* is flat if and only if w,(p, X*) = 0 for all prime p with
ht(p) # i and all i > 0.

For any i > 0, Homg(F,, C) is injective and has flat dimension less than
or equal to i by Proposition 3.1. Then, F* = ®E(R/q) with ht(g) < i. We
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claim that ht(q) > i. Otherwise, p is not contained in g for all p for which
the 7, of F; is non-zero.
For any g, we have that

Homg(E(R/q), F*) = Homg(E(R/q) ® IIT,,C).

Note that E(R/q) ® I17, = 0 [6, Proof of Lemma 1.3]. But easily the left
side is not zero because E(R/g) is a direct summand of F*. This is a
contradiction. |

By constructing a minimal flat resolution for a module M of finite
injective dimension, we will see the vanishing property of the numbers
w( p, M). This gives us a generalization of Theorem 3.1.

THEOREM 3.3. Let R be commutative Noetherian. Then the following are
equivalent.

(1) R is Gorenstein.

() i M has injdimgM =5 < o, then M admits a minimal flat
resolution and for any i > 1, m(p, M) # 0 only if i < ht(p) <i + 5. For
s = 0, inj.dimg F, < inj.dimg M = s (F,, may not have the form T1T,).

Proof. (2) = (1). Consider the case s =0 and M is injective. Since
injdimgzF, < f.dim,M, F, = F(M) also injective. Then F, is flat and
injective. It also has the form F, = T17, with ht(p) = 0. Now, for i > 0,
F, = T17, with ht(p) = i for any injective module M. Now, by Theorem
3.1, R is Gorenstein.

Before we prove the implication (1) = (2), we need a lemma which is
useful for constructing flat covers.

LeEmMA 3.2. Suppose 0 - K =Y —» M — 0 is exact. If both K and M
have flat covers, and K is cotorsion (that is, Extx(G, K) = 0 for any flat
module G), then we have a diagram with exact rows and columns

0 0 0
Lol
0K, »X =Ly 0
1 ! !
0->G -W-oF -0
VoLl
0K ->Y->M-0
Lol

0 0 0
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such that W= G & F — Y is a flat precover of Y and such that X is also
cotorsion. Here, F — M — 0 is a flat cover of M, G — K — 0 is a flat cover
of K.

Proof.  Since K is cotorsion, there is a homomorphism F — Y making
the lower right corner triangle commutative. Therefore we can construct
homomorphisms naturally and get the desired diagram. |

Now, let us continue the proof of implication (1) = (2). We are proceed-
ing by induction on the injective dimension of M. Suppose it is true for all
modules with injective dimension less than n + 1. We consider the case
injdimy;M=n + 1.

As standard, choose an exact sequence

0-M->E->N-Q.

Here, E is injective and inj.dimyN = n.
By the inductive assumption, we have the desired minimal flat resolu-
tions for both E and N.

d,
. "’Fi—’Fi—l—" —*FO—>E—>()

. _“)Gi_;Gi—l'") e =Gy N0

with F, =TIT,, ht(p) =i for i 20, G, =TI17,, i <ht(p) <i+n for
i > 1 and f.dimgyG, < f.dim ;M.
Consider the following pullback diagram of £ — N and G, — N,

l ! l

0O -M—-F >N -0
l l
0 0

Then, we consider the exact sequence

0->Ky,»Z->N-0.
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Using the flat covers of E and K, and noting that K is cotorsion, by
Lemma 3.2, we can construct the following diagram with exact rows and
columns:

0 0 0

N ) N
0-K, —-X,—>L,—-0

1 ) \
0-G,»W,->F,—~»0

\’ ) N8
0-K,—Z -FE -0

N ) I

0 0 0

Here, W, = G, & F,. Then, using the flat precover W, — Z, we have the
following pullback diagram

0 0

\ )

Xy =X

Voo
0->Hy>W,>G, 0

V|
0-M—-Z -G,—0

v l

0 0

Now, H, is flat and H, » M is a flat precover of M. Further,
inj.dim, H, < inj.dim,G, + 1 < n + 1. Next, in order to construct a flat
precover of X,, we consider the following diagram by Lemma 3.2.

0 0 0

e A l
0-K,»X, »L -0

l M )
0-G,»W, —-F -0

l N )
0-K, »X,»>L,—~0

N ) i

0 0 0

Here, W, =G, ® F|, G, —» K, and F, — L, are flat covers, and K, is
cotorsion. Also, W, — X, is a flat precover. But then W, = T1T, & I17T, =
M7,,1 <ht(p’) <2 +n.
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In general, for i > 1, we have that 0 - X, - W, - X,_, — 0. Here,
W,=G,,,@F =TIT, > X,_, is a flat precover, i <ht(p) <(i + 1) + n
=i + (n + 1). Therefore, pasting them together, we have an exact se-
quence,

d.

. —>u/i—‘>I/Vi_1—> —>HO—->M—>()
such that (1) W, =TIT, with i <h(p)<i+(+ 1, i=1 Q)
inj.dimg H, < inj.dimz M; (3) Homgz(G, *) makes it exact for any flat
module G. Therefore, M has a minimal flat resolution such that each ith
term is a direct summand of W, and then our conclusion follows. |

In [4], Enochs studied the rings for which every injective module has a
flat cover which is also injective. Equivalently, these are the rings for which
every flat module has an injective envelope which is also flat. Now we have
the following

THEOREM 3.4. Let R be commutative Noetherian. Then the following are

equivalent.

(1) R is Gorenstein.

(2) For any module M with injdimyM =5 < o, then inj.dimzF(M)
< injdimyM =s.

Proof. (1) = (2). It follows by Theorem 3.3.

(2) = (1). For any maximal ideal m, let {,,..., »,} be a maximal
R-sequence in m. Then, M = R/(u,,..., p,) has finite length and has
finite flat dimension. This implies that M" = Hom (M, E(R/m)) has
finite injective dimension. By the assumption, its flat cover F has finite
injective dimension. That is, we have that

0->K—->F->M"-0.
Now taking the duals again, we have that
0->M">F"->K">0.

Note that M c M"" and F" has finite flat dimension. On the other hand,
since M is m-primary, R/m C M and then E(R/m) ¢ E(M) c F*. This
implies that E(R/m) has finite flat dimension. By Proposition 2.1, R is
Gorenstein. |

4. STRONGLY COTORSION MODULES

Recall that in the previous sections we have discussed the minimal
injective resolutions of modules which have finite flat dimension and
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minimal flat resolutions of modules finite injective dimension. In this
section we will discuss the minimal flat resolutions of strongly cotorsion
modules which may have infinite flat dimension and infinite injective
dimension.

DEFINITION 4.1. A module G is called strongly cotorsion if Exth(X, G)
= 0 for any X of finite flat dimension.

Remark. (1) Any strongly cotorsion module is cotorsion and any injec-
tive module is strongly cotorsion. (2) If R is n-Gorenstein, that is, R is
Gorenstein with Dim R = s, then strongly cotorsion modules are just the
so-called Gorenstein injective modules in [17].

We will prove the existence of minimal flat resolutions of strongly
cotorsion modules M and characterize them by a vanishing property of the
numbers 7, (p, M). In particular, we can apply these results to n-Goren-
stein rings. For instance, any module over a n-Gorenstein ring admits a
minimal flat resolution.

PROPOSITION 4.1.  Let R be Gorenstein and let G be strongly cotorsion. If
G has finite flat dimension, then it is injective.

Proof. By Theorem 2.3, the injective envelope of G, E(G), has finite
flat dimension because G has finite flat dimension. Consider the standard
exact sequence

0-G - E(G) > X—0.

Easily, X also has finite flat dimension. Now, using the functor
Hom 4(*, G), by the fact that Ext (X, G) = 0, we have the exact sequence

0 —» Homg( X,G) — Homg( E,G) — Homg(G,G) — 0.

It follows that 0 — G — E(G) — X — 0 is split, and then G is injectve. |}

LEMMA 4.1. Let R be Gorenstein and let G be strongly cotorsion. Then
there is an exact sequene

0-K—-E-G-0

such that E is injective and K is also strongly cotorsion.
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Proof. First of all, we show that G is a surjective image of an injective
module. Consider the following diagram with exact rows and columns.

0 0
) !
0-H—- P —-G-—-0
I ) )
0—-H —>E(P)—->D -0
! l
X =X
J !
0 0

Here, P — E(P) is the injective envelope of P, and P is a projective
module. By Theorem 2.3, E(P) has finite dimension, hence so does X. By
an argument similar to that in the above proposition, we know that
0 — G —» D — X — 0is split. Then it follows that G is a surjective image
of E(P).

By Theorm 2.1 of [2], G admits an injective cover ¢: E — G, which is
surjective because G is a surjective image of an injective module. In other
words, we have the exact sequence

0-»>K—->E—->G-0.

By a property of the injective cover, we know that Ext (W, K) = 0 for any
injective module W (similar to Lemma 2.2 of [7]). We claim that K is also
strongly cotorsion.

For any X with finite flat dimension, we have the exact sequence by
using Hom (X, *):

0 = Ext,L(X,G) — Ext3( X, K) — Ext}(X,E) = 0.

This means that Ext}(X,K) =0 for all modules X with finite flat
dimension.

Now, for any Y with finite flat dimension, by Theorem 2.3, E(Y) has
finite flat dimension. Then, consider the standard exact sequence

0->Y > E(Y)—>X—0.

Note that X also has finite flat dimension and then Ext3(X, K) = 0. But
then, using Hom z(*, K), we have

0 = ExtL(E(Y),K) - Ext4(Y, K) - Ext3(X,K) = 0.

This implies that Exti(Y, K) = 0 for any Y with finite flat dimension.
Namely, K is strongly cotorsion. i
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So far, we do not know if every module over a Gorenstein ring has a flat
cover, even more we do not know if it exists for any cotorsion module. But,
over a Gorenstein ring, we can show that it exists for any strongly
cotorsion module. In fact, any strongly cotorsion module admits a special
minimal flat resolution.

THEOREM 4.1. Let R be Gorenstein, M a module. Then the following are
equivalent.

(1) M is strongly cotorsion.
(2} M admits a minimal flat resolution

. _)F}if‘iflﬁ ._.)FO._)M_.)O
such that F; = TIT, for ht(p) < i. In other words, w(p, M) = 0 for any p
with ht(p) > i.
Proof. (1) = (2). By the last lemma, we have an exact sequence
0>»N->E->M-0
such that E is injective and N is also strongly cotorsion. If E is injective,

by Theorem 3.1, it has a minimal flat resolution,

dl
. —)FI,-«)F‘._I—-a —-)FU—>E~——>O

such that F, = T1T, with ht(p) = i. For convenience, we break this into
short exact sequences

0->K)y»F,»E~>0
0—=K, —»F —k,—0
0-K, > F, »K -0

Now, consider the following pullback diagram

0 0
{ l
K, =K,

{ )
0-H,—»F,-M-20
l Lo
0N —-F -M->0

! !

0 0
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Since H, is cotorsion, 0 — H, — F, > M — 0 gives us a flat precover
of M. By symmetry, N admits a flat cover 0 - W, -» G, > N — 0 such
that G, = I17, with ht(p) = 0.

Now, let us look at the exact sequence 0 — K, - H, - N — 0. By
Lemma 3.2, we have the following diagram with exact rows and columns.

0 0 0

! l !
0—-K,—-H -W,—0

! | 1)
0—-F —»P, =G, —>0

1) 1) !
0-»K,—>H,—>N —>0

N N N

0 0 0

Hence we have a flat precover of H,, P, = F, & G, =17, - H, with
ht(p) < 1. Therefore, for a strongly cotorsion module M, we have the
following two exact sequences

0->Hy—»F,»M->0
0-H -P,-H,—0
giving flat precovers and such that F, = I17, with ht(p) =0, Py =F, &
G, = I1T, with ht(p) < 1. Symmetrically, we get the same for N. In other
words, we have the following two exact sequences
0->W,»G,>N—-0
0->W -G ->W—-0
such that they are flat covers and G, = T'17, with ht(p) = O and G, = I17,
with ht(p) < 1.
Now, repeating the same procedure, we get the following diagram by

looking at the exact sequence 0 — K|, —» H;, - W, — 0 and using Lemma
3.2.

0 0 0

l ) !
0K, »H, >W, >0

! l l
0—>F,>P, -G, -0

l l i)
0K, »H —»W,—=0

! 1) i)

0 0 0
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Here P, =F, ® G, =T17T, with ht(p) <2,and 0 > H, > P, > H, > 0
gives us a flat precover of H,. By symmetry, W, also admits a similar exact
sequence which gives us a flat cover of W, and is such that F(W)) = G, =
I17, with ht(p) < 2. Therefore, we can continue this procedure and get
exact sequences

0-Hy—»Z,»M-0
0-H —»Z —-H,—~>0

'

0->H, W ~Z, 2 H >0

such that Z,, | —» H,;, Z; — M are flat precovers, Z; = I'17, with ht(p) < i.
It is easy to see that M admits a minimal flat resolution such that its ith
term F* is a direct summand of Z; and so then F* = 17, with ht(p) <.

(2) = (1). Suppose M admits a minimal flat resolution whose ith term is
F, = T1T, with ht(p) < i. First. note that if inj.dim;7, < i when ht(p) <,
then inj.dimgF, < i. If X is a module with finite flat dimension s and X is
cotorsion, then by induction, it is not hard to prove that Ext}" '(X, K) = 0.
Now, for any module X with finite flat dimension, we have to show that
ExtL(X, M) = 0. Consider the minimal flat resolution of M

. 5> F

i+1

—F - - —9F0~«>M~—>O_
Here, for i > 0, F; = T1T, with ht(p) <i. Then we have the following
short exact sequences

0—-K,_,»>F_,—K, _,—0

0- KS—Z - F:\‘\Z - Ks—3 -0

0-K, —F —-K,—0

0Ky F,>M—-0
Note that Ext}" (X, K,_,) = 0 since that X has finite flat dimension s
and K,_, is cotorsion. Also note that Exti(X, F,_ ;) = 0 because
inj.dimgF,_, <s — 1. Then, by applying Ext(X, =) to the first exact se-
quence, we have that Extj(X, K,_,) = 0. Repeating this procedure, we

have Exti(X, K,) = 0. Finally, applying Ext.(X, *) to the last exact
sequence, we have

0 = Extp( X, Fy) - Extp(X, M) — Exti(X,K,) = 0.

It follows that ExtL(X, M) = 0 and that M is strongly cotorsion. |}
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COROLLARY 4.1. Over a Gorenstein ring any flat cover of a strongly
cotorsion module is an injective module.

As an application of the previous result, we have the following

PROPOSITION 4.2. Let R be Gorenstein and let G be strongly cotorsion.
Then if G has finite injective dimension, it is injective.

Proof. By Theorem 4.1, G admits a minimal flat resolution as

.- —)FiwaFi_]——» —>F0—>G—->()

such that F; = I17, for ht(p) <.

Let C be any injective cogenerator for the category of R-modules. In
order to show that G is injective, we only need to show that G* =
Hom (G, C) is flat. By Theorem 2.1, we have to check that u,(p,G*) =0
whenever ht( p) # i. But, taking the duals, we have the exact sequence

()-)G*-—aF(;“-—)Fl*—a —>Fl*——)

Note that F* = Homg(F,,C) is injective and f.dimgF* <i because
inj.dimgzF; < i. Hence, F* = ®E(R/p) with ht( p) < i by Proposition 2.1.
Now, it is easy to see that u(p,G*) = 0 if ht( p) > i. On the other hand,
G* has finite flat dimension because G has finite injective dimension. By
Theorem 2.2, u{p,G*) # 0 only if i < ht(p) <i + f.dim,G*. Thus it
follows that u(p.G*) = 0 whenever ht( p) = i. Therefore, the conclusion
follows by Theorem 2.1. |

Now, as in Theorem 3.3, we can construct minimal flat resolutions for
modules which are not strongly cotorsion, but which have a finite resolu-
tion with strongly cotorsion modules.

THEOREM 4.2. Let R be Gorenstein. If M is such that there is an exact
sequence

0-M->G,»>G, — - »G, 0,
where each G, is strongly cotorsion, then M has a minimal flat resolution

-~—->F‘.——>F

i—1

> e > o> M0
such that for i > 1, F; = T1T, with ht(p) < ¢ + i and such that F, has finite
injective dimension less than or equal to t.

Proof. The proof is similar to that of Theorem 3.3. |

Now, we apply the above result to n-Gorenstein rings.
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COROLLARY 4.2. If R is an n-Gorenstein ring and M is any R-module,
then M admits a resolution with strongly cotorsion modules as in Theorem 4.2.
Therefore, M has a minimal flat resolution.

Proof. By Corollary 5.6 of [13], if M is a module M over a n-Goren-
stein ring R, then Ext%"'(X, M) = 0 for any module X of finite flat
dimension. Consider the partial injective resolution of M,

0>M->E,»FE —»E,—> - 2FE, _,—>G—0.

here, E; is injective. The above implies that G is strongly cotorsion.
Therefore, the conclusion follows by Theorem 4.2. |

Remark. Regarding the existence of flat covers over more general
rings, we have proved that every module over a commutative Noetherian
ring of finite Krull dimension has a flat cover in [16]. But the general
problem is still open.

Now let us go back to the first section. Recall that we have shown that
over a Gorenstein ring R, flat modules are just those modules M having
w,(p, M) = 0 for all prime p with ht(p) # i and all i > 0. We are ready to
determine all modules M having the vanishing property u,(p, M) = 0 for
all p with ht(p) > i.

DEFINITION 4.2. A R-module M is called strongly torsion free if
Torf(X, M) = 0 for all modules X of fintie flat dimension.

Let C be an injective cogenerator of R-modules. It is easy to see that M
is strongly torsion free if and only if the dual M* = Homy(M,C) is
strongly cotorsion.

THEOREM 4.3. Let R be Gorenstein, M a R-module. Then the following
are equivalent.

(1) M is strongly torsion free.
) pp, M) =0 for all prime p with ht(p) > iand all i > 0.

Proof. Suppose M has the stated vanishing property. Then M admits a

minimal injective resolution
0>M—E;, > E — -+ DE — o -,

Here, E, = @ E(R/p) with ht(p) < i. We are going to show that M* is
strongly cotorsion. Taking the duals, we have a $-resolution of M*, and
each F, = Homg(E,, C). Since E;, = @ E(R/p) with ht(p) < i, it is easy to
see that F, =17, with ht(p) <i for cach i. Note that any minimal
F-resolution M* is a direct summand of this dual resolution of M*. We
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have proved that M* is strongly cotorsion by Theorem 4.1. Hence, M is
strongly torsion free.

Conversely, suppose M is strongly torsion free. Consider the exact
sequence

0->M->M"*->N-0.

Since M — M** is pure and M** is strongly torsion free, N is also
strongly torsion free.

Note that M* is strongly cotorsion. It has a special minimal flat
resolution such that each F, = [17, with ht(p) < i. Therefore,
Homy(F,,C) = @ E(R/p) with ht(p) < i because inj.dimgF, < i. In other
words, M** has the desired minimal injective resolution. Now, by the
argument dual to that for the implication (1) = (2) of Theorem 4.1, we
have the desired minimal injective resolution of M. ||

Remark. In the above theorem, we consider the case { = 0; we see that
M is a submodule of E;, which is flat. Therefore, strongly torsion free
modules are torsion free when R is a Gorenstein domain.

PROPOSITION 4.3. Let R be Gorenstein. If M is strongly torsion free, then
the following are equivalent.

(1) M has finite flat dimension.
(2) M has finite injective dimension.
(3) Mis flat.

Proof. (2) = (1). Note that M* is strongly cotorsion with finite injec-
tive dimension. By Proposition 4.2, it is injective and so then M is flat. The
implication (3) => (1) can be proved by taking the dual of M and using
Proposition 4.1. 1
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