The Combinatorial Laplacian of the Tutte Complex

Graham Denham

Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
E-mail: denham@noether.uoregon.edu

Communicated by Corrado DeConcini

Received February 21, 2000

Let M be an ordered matroid and $C_\ast(M)$ be an exterior algebra over its underlying set E, graded by both corank and nullity. Then $C_\ast(M)$ is the simplicial chain complex of $IN(M)$, the simplicial complex whose simplices are indexed by the independent sets of the matroid. Dually, $C^\ast_\ast(M)$ is the cochain complex of $IN(M^*)$. We give a combinatorial description of a basis of eigenvectors for the combinatorial Laplacian of a family of boundary maps on the double complex, extending work by W. Kook, V. Reiner, and D. Stanton [2000, J. Amer. Math. Soc. 13, 129–148] on $IN(M)$. The eigenvalues are enumerated by a weighted version of the Tutte polynomial, using an identity of G. Etienne and M. Las Vergnas [1998, Discrete Math. 179, 111–119]. As an application, we prove a duality theorem for the cohomology of Orlik–Solomon algebras. © 2001 Academic Press

Key Words: matroid; Orlik–Solomon algebra; Tutte polynomial; combinatorial Laplacian.

1. SUMMARY

Throughout this note, let M be a matroid whose underlying set E is totally ordered. Let $L(M)$ be the lattice of flats of M and ρ its rank function. In his survey [1], Björner examines a simplicial complex $IN(M)$ comprised of the independent sets of M, and he relates its singular homology to that of the order complex of the dual matroid, M^*.

In [11], Kook et al. continue Björner’s study by explicitly determining the spectrum of the combinatorial Laplace operator on the chain complex of $IN(M)$. Recall that if $\partial_p: C_p \to C_{p-1}$ is the boundary map in the chain complex C_\ast and each C_p is a vector space with a positive definite inner product, then the combinatorial Laplacian is defined to be

$$\Delta_p = \partial_p^\dagger \partial_p + \partial_{p+1}^\dagger \partial_{p+1}.$$
They show that, for the complex they consider and a particular inner product, the eigenvalues of the Laplacian are nonnegative integers obtained from the cardinalities of the flats of M.

The purpose of this note is to extend their work in two different directions. On one hand, let R be an integral domain and $a : E \to R^*$ a function that we shall interpret as an assignment of weights from the units of R to the set E. Extend a additively to all subsets of E. This choice of weights gives a choice of inner products, and it turns out that the eigenvalues of the generalized Laplacian are, more generally, the weights of the flats of M.

The inner product involved is closely related to the one introduced for hyperplane arrangements by Schechtman and Varchenko in [15], then generalized to arbitrary matroids by Brylawski and Varchenko in [3].

On the other hand, let $\Lambda(M)$ be the exterior algebra with base ring R over the set E. $\Lambda(M)$ has a bigrading that reflects the structure of the matroid: Let

$$\Lambda^q_p(M) = \langle e_1 \wedge e_2 \wedge \cdots \wedge e_q : p(\{e_1, \ldots, e_q\}) = p \rangle.$$

The usual differential on the exterior algebra makes $\Lambda(M)$ into a double complex. The subcomplex $\Lambda^q_p(M)$, generated by monomials given by independent sets, is equivalent to the singular chain complex of $IN(M)$ that Kook et al. consider. Our second objective is to extend their description of the spectrum of the Laplacian of $IN(M)$ to what we shall call here the Tutte complex, $\Lambda^q_p(M)$ (Theorem 21).

Perhaps the most natural motivation for this extension is that one finds the matroid and its dual play symmetric roles in the larger complex, via a pairing between $\Lambda(M)$ and $\Lambda(M^*)$. Also, since the dimensions of the spaces $\Lambda^q_p(M)$ determine the Tutte polynomial, a generating function for the spectrum of the Laplacian is a refinement of both the Tutte polynomial and Kook et al.'s spectrum polynomial Spec$_M(t, q)$.

The last application given here is to a homological property of the Orlik–Solomon algebra. Various authors have considered the cohomology of the Orlik–Solomon algebra $\Lambda(M)$ of a hyperplane arrangement M, viewed as a cochain complex under a boundary map $d(x) = \omega \wedge x$, where

$$\omega = \sum_{H \in E} a(H)H,$$

for some complex- or integer-valued weight function a: see, for example, [7, 16, 17]. Gelfand and Zelevinsky [10] have shown that

$$\cdots \to \Lambda^{p+1}_p \to \Lambda^p_p \to \Lambda^p(M) \to 0$$

is a free resolution of the Orlik–Solomon algebra. In this context, the pairing between $\Lambda(M)$ and $\Lambda(M^*)$ gives an isomorphism in cohomology for
all p (Theorem 27),

$$H^p(\Lambda^*(M), d) \cong H^{m-2n+p}(\Lambda^*(M^*), d),$$

where m and n are the cardinality and rank of the matroid M, respectively.

2. LAPLACIANS

This section begins by defining the generalized Laplacians studied here (2.1), then indicates the relation between the complex of a matroid and that of the matroid’s dual (2.2). The combinatorial fact from 2.3, together with a discussion of the kernel of the Laplacian (2.4), lead to a characterization of the Laplacian’s spectrum, Theorem 21.

2.1. Maps. Facts about matroids used here can be found in the book by Oxley [14]. Fix an integral domain R, and let M be an ordered matroid. Call the generators of the R-exterior algebra e_1, \ldots, e_m, where e_i corresponds to the ith element of E in its given total order, and $m = |E|$. In order to write the monomial basis efficiently, for any subset $S = \{s_1, s_2, \ldots, s_q\}$ of E ordered so that $s_i < s_{i+1}$ for all i, let

$$e_S = s_1 \wedge s_2 \wedge \cdots \wedge s_q.$$

We first introduce boundary maps that make the exterior algebra into a double complex. The usual boundary map $\partial = \partial(M)$ in the exterior algebra is defined for all $S \subseteq E$ by

$$\partial(e_S) = \sum_{s \in S} e(s, S - \{s\})e_{S - \{s\}},$$

where $e(s, S - \{s\})$ is a sign, defined to be $(-1)^{k-1}$, where s is the kth element of S.

Then $\partial(M)$ is the sum of boundary maps $\partial_h = \partial_h(M)$ and $\partial_v = \partial_v(M)$. $\partial_h: \Lambda^q_p(M) \rightarrow \Lambda^{q-1}_{p-1}(M)$ is given by restricting (2) to those $s \in S$ for which $\rho(S - \{s\}) < \rho(S)$, while $\partial_v: \Lambda^q_p(M) \rightarrow \Lambda^q_{p-1}(M)$ sums over the remaining elements of S.

We extend the sign notation: if $S, T \subseteq E$, let $e(s, T) = (-1)^k$, where k is the number of pairs $(s, t) \in S \times T$ for which $s > t$, and write $e(s, T)$ if $S = \{s\}$.

Fix a weight function $a: E \rightarrow \mathbb{R}^\times$ on the underlying set of the matroid, and define an R-module map $\phi: \Lambda^q(M) \rightarrow \Lambda^{m-q}(M)$ on monomials as

$$\phi(e_S) = \left(\prod_{s \in S} a(s)^{-1}\right)e(S, E - S)e_{E - S}.$$
Let \(\langle \cdot , \cdot \rangle \) denote the pairing on the exterior algebra given by \(\langle u, v \rangle = \text{det}(u \wedge v) \) for \(u \in \Lambda^q(M) \) and \(v \in \Lambda^{m-q}(M) \), for each \(q \). Then the map \(\phi \) gives a bilinear form on \(\Lambda^q_p(M) \), for each \(p, q \), defined by \(\langle u, v \rangle = \langle \phi(u), v \rangle \). The bilinear form is symmetric, since
\[
\langle e_S, e_T \rangle = \begin{cases}
\prod_{s \in S} a(s)^{-1} & \text{if } S = T \\
0 & \text{otherwise}.
\end{cases}
\]

Next, let \(\delta, \delta_h, \) and \(\delta_v \) be the adjoints to \(\partial, \partial_h, \) and \(\partial_v \), respectively, with respect to \(\langle \cdot, \cdot \rangle \). By direct calculation, \(\delta_v : \Lambda^q_p(M) \to \Lambda^{q+1}_p(M) \) satisfies
\[
\delta_v(e_S) = \sum_{s \in V} a(s) s \wedge e_S = \sum_{s \in V - S} e(s, S) a(s) e_{S \cup \{s\}},
\]
where \(V = \{ s \in E : \rho(S \cup \{s\}) = \rho(S) \} \), while \(\delta_h \) is given by the same expression, with \(V \) replaced with \(E - V \). Let \(\delta = \delta_h + \delta_v \), which acts by left-multiplication by the element
\[
\omega = \sum_{s \in E} a(s) s.
\]

Finally, define the operators \(\Delta_h = \Delta_h(M) \) and \(\Delta_v = \Delta_v(M) \) by setting
\[
\Delta_h = \delta_h \circ \partial_h + \partial_h \circ \delta_h \quad \text{and} \quad \Delta_v = \delta_v \circ \partial_v + \partial_v \circ \delta_v.
\]

When the base ring is the real numbers \(\mathbb{R} \) and all of the weights are positive, the inner product is positive definite. Then \(\Delta_v \) and \(\Delta_h \) are combinatorial Laplace operators in the traditional sense. Most of the ideas presented here are essentially independent of the base ring, however, so we shall work with an arbitrary integral domain \(R \) while still calling the operators above “Laplacians.”

2.2. Duality. In order to simplify notation (in the long run), \(\Lambda^q_p(M) \) will be regraded to reflect the symmetry between \(M \) and its dual. Let
\[
C_{pq}(M) = \Lambda^{n-p+q}_n(M),
\]
where \(n \), as usual, the rank of the matroid \(M \). The basic properties of \(C_*(M) \) can now be expressed in the following way.

5. Proposition. Let \(C_*(M) \) be the bigraded free \(R \)-module defined above, for a matroid of rank \(n \) and cardinality \(m \). Let \(a : E \to R^* \).

1. Any of the four pairs of maps \(\{ \partial_h, \delta_h \} \times \{ \partial_v, \delta_v \} \) make \(C_*(M) \) a double complex.

2. For all \(0 \leq p \leq n \) and \(0 \leq q \leq m - n \), \(\langle \cdot, \cdot \rangle \) induces a nondegenerate pairing
\[
C_{pq}(M) \otimes C_{q\bar{p}}(M^*) \to R.
\]
Under this pairing, \(\partial_h(M) \) is adjoint to \(\partial_v(M^*) \), and \(\delta_h(M) \) to \(\delta_v(M^*) \), as well as \(\Delta_h(M) \) to \(\Delta_v(M^*) \) and \(\Delta_v(M) \) to \(\Delta_h(M^*) \).
Proof. To show that $C_{pq}(M)$ is a double complex under each choice of horizontal and vertical boundary maps, one must verify that
\[
\partial_h \partial_v + \partial_v \partial_h = 0 \quad \text{and} \quad \delta_h \partial_v + \partial_v \delta_h = 0.
\]
The remaining pair of identities follows by taking adjoints with respect to (\cdot, \cdot).

To prove the second claim, let $U \subseteq E$ be a set of rank $n - p$ in M and cardinality $n - p + q$, corresponding to a monomial $e_U \in C_{pq}(M)$. Let ρ^* denote the rank function of M^*. Since $\rho^*(E - U) = m - n - q$ and the cardinality of $E - U$ is $m - n + p - q$, the monomial $e_{E - U}$ lies in $C_{qp}(M^*)$.

The identities $\langle \partial_h(u), v \rangle = \langle u, \partial_v(v) \rangle$ and $\langle \delta_h(u), v \rangle = \langle u, \delta_v(v) \rangle$, together with the two remaining choices obtained by exchanging h and v, all follow immediately from the formulas of Section 2.1. The adjunctions of the Laplacians are obtained by combining the identities above.

Equivalently, ϕ restricts to an isomorphism that makes the following diagram commute.

\[
\begin{array}{ccc}
C_{pq}(M) & \xleftarrow{\phi} & C_{qp}(M^*) \\
\downarrow{\langle \cdot, \cdot \rangle} & & \downarrow{\langle \cdot, \cdot \rangle} \\
\text{Hom}_R(C_{pq}(M), R) & & \text{Hom}_R(C_{qp}(M^*), R)
\end{array}
\]

The map ϕ gives an isomorphism of double complexes,
\[
(6) \quad \phi : (C_{pq}(M), \partial_h, \delta_v) \to (C_{qp}(M^*), \delta_v, \partial_h),
\]
and similarly for the other choices of boundary maps making $C_{pq}(M)$ a double complex.

Extend the weight function to each subset U of E by setting
\[
a(U) = \sum_{e \in U} a(e).
\]

7. Corollary. For any matroid and weight function a,
\[
\Delta_h + \Delta_v = a(E) \cdot \text{Id}.
\]

Proof. Let $\Delta = \delta \partial + \partial \delta$ be the Laplace operator on the whole exterior algebra. It follows from Proposition 5(1) that $\Delta = \Delta_h + \Delta_v$. On the other hand, it is easy to check that $\Delta(x) = a(E)x$ for any $x \in \Lambda(M)$.

The generating function

\[s_M(x, y) = \sum_{p, q} \dim C_{pq}(M)x^py^q \]

is called the corank-nullity polynomial, and it is well known that \(s_M(x - 1, y - 1) = t_M(x, y) \), the Tutte polynomial. For more information about this family of matroid invariants refer to [1, 5] or the comprehensive treatment in [4].

2.3. A Matroid Identity. In our discussion of eigenvalues, we shall require a formula due to Kook et al. [12] that expresses the corank-nullity polynomial in terms of characteristic polynomials of flats and their duals.

Recall that the characteristic polynomial of a matroid \(M \) is given by

\[\chi(M; t) = \sum_{X \in L(M)} \mu(\hat{0}, X)t^{\rho(M) - \rho(X)}. \]

Let us recall the terminology of activities [5]. Let \(M \) be an ordered matroid and \(S \) an independent set of \(M \). Let \(X = [S] \), the smallest flat containing \(S \). An element \(e \in X - S \) is externally active for \(S \) (in \(M \)) if it is the least element in the (unique) circuit contained in \(S \cup \{ e \} \). Dually, for any set \(S \subseteq E \), not necessarily independent, let \(X = [S] \). An element \(e \in S \) is internally active in \(S \) if \(e \) is externally active for \(X - S \) in the matroid \(M(X)^* \), where \(M(X) \) is the restriction of \(M \) to \(X \) and \(M(X)^* \) is its dual.

Etienne and Las Vergnas [8] have proven the following.

9. Theorem (Theorem 4.2 of [8]). Let \(M \) be an ordered matroid. Every set \(S \subseteq E \) can be written uniquely as a disjoint union \(S = \pi_1(S) \cup \pi_2(S) \) with the properties that

1. \(\pi_1(S) \) is an independent set in \(M/\{\pi_2(S)\} \) with no externally active elements, and
2. \(\pi_2(S) \) has no internally active elements.

We remark that Kook et al. give an explicit algorithm in [11, Theorem 1] to find this decomposition when \(S \) is a base of \(M \). It is not difficult to check that their algorithm applies without change in this more general case, and we include it here for the sake of completeness.

- Let \(S_2 := S \) and \(S_1 := \emptyset \).
- Let \(X := [S_2] \). If \(S_2 \) contains an internally active element \(e \) in the matroid \(M(X) \), then set \(S_2 := S_2 - \{e\} \) and \(S_1 := S_1 \cup \{e\} \). Repeat this step.
- If not then stop, with output \(\pi_1(S) := S_1 \) and \(\pi_2(S) := S_2 \).

Recall that an independent set \(S \) in \(M \) is said to have no broken circuits if it has no externally active elements [1]. Write \(\text{nb}_e(M) \) for the set of all such independent sets \(S \) in \(M \), although this notation is commonly used to refer to just the bases of \(M \).
10. **Corollary.** Let M be an ordered matroid. There is a bijection

$$f : 2^E \rightarrow \bigsqcup_{X \in L(M)} \text{nbc}(M/X) \times \text{nbc}(M(X)^*),$$

given by $f(S) = (\pi_1(S), X - \pi_2(S))$, where $X = [\pi_2(S)]$, using the decomposition $S = \pi_1(S) \cup \pi_2(S)$ from Theorem 9.

It should be noted that if a matroid M contains an isthmus, then M^* contains a loop e. Then e is externally active for any independent set of M^*, so the set $\text{nbc}(M^*)$ is empty. A flat X is cyclic if $M(X)$ contains no isthmuses. With this in mind, it would be equivalent to restrict the index set in the corollary above to the cyclic flats X of M.

11. **Example.** Consider the elements $S = \{2, 4, 5\}$ of the matroid M given by Fig. 1. Applying the algorithm to S gives $\pi_1(S) = \{5\}$ and $\pi_2(S) = \{2, 4\}$. Then $X = \{1, 2, 3, 4\}$, and $f(S) = (\{5\}, \{1, 3\})$. Conversely, $\text{nbc}(M/X) = \{\emptyset, \{5\}\}$, and

$$\text{nbc}(M(X)^*) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\}.$$

Eleven other sets $S \subseteq E$ map under f into $\text{nbc}(M/X) \times \text{nbc}(M(X)^*)$.

The theorem gives the generating function identity from [12] that underlies the structure of the Laplacian’s eigenspaces (Theorem 21).

12. **Corollary [12].** Let M be a matroid of rank n. Then

$$s_M(x, y) = \sum_{X \in L(M)} (-1)^{n-|X|} \chi(M/X; -x)\chi(M(X)^*; -y).$$

Proof. For any ordering of a matroid M, the coefficient of t^p in $(-1)^p\chi(M, -t)$ counts the number of independent sets of rank $\rho(M) - p$, with external activity zero [1, (7.4.2)]. The corank-nullity polynomial $s_M(x, y)$ is a generating function for all subsets of the underlying set. Keeping track of the grading on both sides of the bijection of Corollary 10 establishes the identity. \blacksquare
2.4. Eigenspaces. We now describe the eigenspaces of the Laplacian, starting with the eigenvalue zero. In the real, positive-definite case, the kernel of the Laplacian has a natural interpretation as homology, which we defer to Section 3.3. Here, we give an explicit basis for a submodule $A_p(M)$ of the kernel of Δ_p. Under a genericity assumption on the weights, we show later that the containment of $A_p(M)$ in the kernel is an isomorphism.

The first step is to recall the definition of Brylawski and Varchenko’s flag complex $F^*(M)$ from [3]. The basis is the set of flags of flats (F^0, F^1, \ldots, F^p), where $0 = F^0 < F^1 < \cdots < F^p$, and $\rho(F^i) = j$, modulo a relation of the form

$$\sum_{\tilde{F}} (F^0, \ldots, \tilde{F}, \ldots, F^p) = 0$$

for each $1 \leq i \leq p$. Note that $F^p(M) \cong H^p_{\text{w}}(L(M))$, the Whitney homology of the order complex of M [13]. Define a map $B^p : F^p \to C_{n-p,0}$ for $F = (F^0, \ldots, F^p)$ by

$$B(F) = \sum_{U \in S} a(s_1)a(s_2)\cdots a(s_p)e_U,$$

where S consists of sets $U = \{s_1, \ldots, s_p\}$ for which $s_i \in F^i$ and $s_i \notin F^{i-1}$, for $1 \leq i \leq p$. This map lifts Brylawski and Varchenko’s map in [3] from the Orlik–Solomon algebra to the exterior algebra; however, their proof that (13) is well-defined remains valid here.

14. Definition. For $0 \leq p \leq n$, let $A_p(M) = \text{im} B^{n-p} \subseteq C_{p,0}(M)$. Its properties are summarized by the next proposition.

15. Proposition. 1. $A_p(M)$ is a chain complex under the restriction of both of the boundary maps ∂_h and δ_h.

2. $A_p(M)$ lies in the zero eigenspace of $\Delta_p(M)$ and the $a(E)$-eigenspace of $\Delta_h(M)$.

3. Dually, the image of $\phi^{-1} : A_p(M^*) \to C_{0,p}(M)$ is in the $a(E)$-eigenspace of $\Delta(M)$.

Proof. The first claim is proved by noting that $F^*(M)$ is a (co)chain complex with two boundary maps and $B : F^*(M) \to C_{n-p,0}(M)$ is a chain map: see [15].

The two parts of the second claim are equivalent, by Corollary 7. To prove the first part, it is sufficient to show that $\delta_B(F) = 0$ for any flag $F \in F^p(M)$. Explicitly,

$$\delta_B(F) = \sum_{U \subseteq \text{E} - \text{U}} a(s_1)a(s_2)\cdots a(s_p)e_s \wedge e_U,$$
where \(S \) is as defined for Eq. (13) and \(s \in F^i \), but \(s \notin F^{i-1} \) for some \(1 \leq i \leq p \). By exchanging \(s \) with \(s_i \), we see that each term in the sum occurs twice, with opposite signs.

To prove the third claim, note \(A_s(M^*) \) is in the \(a(E) \)-eigenspace of \(\Delta_\phi(M^*) \), by the previous paragraph. Then \(\varphi^{-1} \Delta_\phi(M^*) = \Delta_\phi(M) \varphi^{-1} \), from (6).

Recall that the characteristic polynomial is a generating function for the dimensions of \(F^i \) \(\rightarrow \) \(A_i(M) \) [1]. We show that \(B_p: F^p \rightarrow A_{n-p} \) is an isomorphism, in order to conclude that

\[
\sum_{p=0}^{n} \dim(A_p(M))t^p = (-1)^n \chi(M; -t).
\]

In fact, the next proposition makes a slightly stronger statement.

17. Proposition. For any matroid \(M \) and weight function \(a: E \rightarrow \mathbb{R}^* \), the map \(B^{n-p}: F^{n-p}(M) \rightarrow A_p \) is an isomorphism, and the inclusion \(A_p \hookrightarrow C_{p0}(M) \) has a splitting.

Proof. Only a sketch is given, since the proof is substantially the same as that of Theorem 14 in [11]. \(F^p(M) \) has a basis consisting of flags of the form

\[
F = (\hat{0}, [s_p], [s_p, s_{p-1}], \ldots, [s_p, \ldots, s_1]),
\]

where \(s_1 < s_2 < \cdots < s_p \) are the elements of an independent set with external activity zero [1]. Let \(V \) denote the submodule of \(C_{n-p,0}(M) \) generated by monomials \(e_S \) for which \(S \) has external activity zero. Then \(\dim V = \dim F^p(M) \). Let \(\pi: C_{n-p,0}(M) \rightarrow V \) be the projection map that kills all other monomials. It is not hard to check that, on a flag \(F \) from the basis above, \(\pi \circ B: F^p(M) \rightarrow V \) satisfies

\[
\pi \circ B(F) = a(s_1) \cdots a(s_p)e_S,
\]

where \(s_i \) is the least element of \(F^i - F^{i-1} \), for \(1 \leq i \leq p \). Since the weights \(a(s) \) are units in \(R \), \(\pi \circ B \) is a \(R \)-module isomorphism. It follows that \(B^p: F^p(M) \rightarrow C_{n-p,0}(M) \) is an injection and has a splitting.

2.5. The Main Result. We have shown that the kernel of the Laplacian is isomorphic to the flag complex. All of the eigenspaces of \(\Delta_\phi \) can be described in a similar way, and the description is the main result of this note, Theorem 21. We begin by showing, as in [11], that the Laplacian obeys the Leibniz rule on certain subspaces.
18. Lemma. Let X be a flat of a matroid M. Let $e_S \in C_\bullet(M/X)$ and $e_T \in C_\bullet(X)$ be monomials for which S is independent in M/X and T spans X. Then

$$\Delta_v(M)(e_S \wedge e_T) = \Delta_v(M/X)(e_S) \wedge e_T + e_S \wedge \Delta_v(X)(e_T).$$

Proof. First check that

$$\delta_v(M)(e_S \wedge e_T) = \delta_v(M/X)(e_S) \wedge e_T + (-1)^{|S|} e_S \wedge \delta_v(X)(e_T).$$

From the definitions in Section 2.1,

$$\delta_v(M)(e_S \wedge e_T) = \sum_{e \in V \cap (E- X)} a(e) e \wedge e_S \wedge e_T + \sum_{e \in V \cap X} a(e) e \wedge e_S \wedge e_T$$

$$= \sum_{e \in V \cap (E- X)} a(e) e \wedge e_S \wedge e_T + (-1)^{|S|} e_S \wedge \sum_{e \in V \cap X} a(e) e \wedge e_T,$$

where

$$V = \{e: \rho_M(S \cup T \cup \{e\}) = \rho_M(S \cup T)\}.$$

Since T spans X, $\rho_{M/X}(U) = \rho_M(U \cup T) - \rho_M(X)$ for any subset $U \subseteq E - X$, so

$$V \cap (E - X) = \{e: \rho_{M/X}(S \cup \{e\}) = \rho_{M/X}(S)\}.$$

Again, since T spans X, $V \cap X = X$. Claim (19) follows.

Using a similar argument, one finds that

$$\delta_v(M)(e_S \wedge e_T) = \delta_v(M/X)(e_S) \wedge e_T + (-1)^{|S|} e_S \wedge \delta_v(X)(e_T).$$

The lemma is proved by combining (19) and (20). \blacksquare

Recall that $A_\bullet(M)$ (from Definition 14) is the kernel of $\Delta_v(M)$.

21. Theorem. Let M be a matroid and $L(M)$ its lattice of flats. Let $a: E \to R^*$ be a weight function.

1. For a flat X of M, the image of the injection

$$\sigma_X: A_p(M/X) \otimes A_q(M(X)^*) \to C_{pq}(M)$$

defined on monomials by $\sigma_X(e_S \otimes e_T) = e_S \wedge e_{X-T}$ is the $a(X)$-eigenspace of $\Delta_v(M)$ on $C_{pq}(M)$. If R is a field, all eigenvectors of Δ_v appear in this way.

2. The images of σ_X and σ_Y are orthogonal with respect to the inner product (\cdot, \cdot), for flats $X \neq Y$.

3. The map

\[\sigma: \bigoplus_{X \in L(M)} A_p(M/X) \otimes A_q(M(X)^*) \to C_{pq}(M), \]

where \(\sigma = \bigoplus_{X \in L(M)} \sigma_X \), is an injection. Over the fraction field of \(R \), \(\sigma \) is an isomorphism.

Proof. Clearly each map \(\sigma_X \) is an injection. We show first that the image of \(\sigma_X \) is indeed contained in the \(a(X) \)-eigenspace of \(\Delta_u \). Note that the \(R \)-modules \(A_p(M/X) \otimes A_q(M(X)^*) \) themselves do not have monomial bases; strictly speaking, then, \(\sigma_X \) is defined by restriction from \(C_{pq}(M/X) \otimes C_{01}(M(X)^*) \). Let \(u = \sum_{S \in S} c_S e_S \) and \(v = \sum_{T \in T} c_T e_T \) be arbitrary elements of \(A_p(M/X) \) and \(A_q(M(X)^*) \), respectively. Since \(A_p(M/X) \) is contained in the independence complex \(C_{pq}(M/X) \), each \(S \in S \) is independent in \(M/X \). For the same reason, each \(T \in T \) is independent in the matroid \(M(X)^* \), which means that \(X - T \) spans \(M(X) \). Therefore the monomials of \(\sigma_X(u \otimes v) \) satisfy the conditions of Lemma 18. By Proposition 15, \(u \) is a zero eigenvector of \(\Delta_u(M/X) \), and \(v \) is a \(a(X) \)-eigenvector of \(\Delta_v(M(X)^*) \). It follows from Lemma 18 that \(\sigma_X(u \otimes v) \) is a \(0 + a(X) \) eigenvector of \(\Delta_u(M) \), as required.

In order to prove Assertion 2, let

\[P = \mathbb{Z}[b_s, b_s^{-1} : s \in E], \]

the ring of Laurent polynomials in the weights. Under the natural weight function \(a: E \to P \), the eigenvalues are all distinct. Since \(\Delta_u \) is self-adjoint with respect to \(\langle \cdot, \cdot \rangle \), then \(a(X) \)- and \(a(Y) \)-eigenspaces are orthogonal. Any weight function factors through \(P \), and the orthogonality is preserved by a change of rings.

It follows that we have an injection

\[\sigma: \bigoplus_{X \in L(M)} A_p(M/X) \otimes A_q(M(X)^*) \to C_{pq}(M). \]

Counting ranks using corollary 12 and (16) proves Assertion 3. That is, if \(R \) is a field, then the map is an isomorphism.

Over a field, the map \(\sigma \) is an isomorphism. In general, though, the eigenspaces of \(\Delta_u \) do not span the operator’s domain. The gap between the two is addressed by the remark following Theorem 27.

In order to recover the results of [11], which we claim to have generalized, let \(q = 0 \) and \(a: E \to R \) by \(a(s) = 1 \) for all \(s \in E \). For any matroid \(M \) of rank \(n \) and cardinality \(m \),

\[A_0(M) \cong F^n(M) = H^0_u(M) \cong H_{n-1}(L(M)) \cong H_{m-1}(IN(M^*)), \]

from [1]. Since \((C_{n-p,0}(M), \partial_h) \) is isomorphic to the singular chain complex of \(IN(M) \), and its Laplacian \(\Delta_h \) satisfies \(\Delta_h = m \cdot \text{Id} - \Delta_u \), Theorem 21 gives the eigenspace decomposition of \(\Delta_h \).
3. INTERPRETATION

3.1. Generating Functions. One can form a generating function that encodes only the eigenvalues of Δ_v and their multiplicities, using Theorem 21. Let $b = \{b_s: s \in E\}$ be a set of indeterminates, and write $b_X = \Pi_{s \in X} b_s$. Set

$$\Phi_M(x, y, b) = \sum_{p, q \geq 0, X \in L(M)} c_{pq}(X) x^p y^q b_X,$$

where the coefficient $c_{pq}(X)$ is the dimension of the $a(X)$-eigenspace of $\Delta_{v, pq}$. By Theorem 21, all of the eigenvalues have this form. Φ_M has some immediate properties:

1. $\Phi_M(x, y, b) = \sum_{X \in L(M)} (-1)^{|X|} \chi(M/X; -x) \chi(M(X)^*; -y) b_X$;
2. $\Phi_M(x, y, b) = b_x \Phi_M(y, x, \{b_s^{-1}: s \in E\})$;
3. $\Phi_M(x, 0, \{b_s \leftarrow q\}) = x^{\dim \Spec_M(x^{-1}, q)}$.

The first restates Theorem 21, while the second uses Proposition 5(2) and Corollary 7. The third statement is that one recovers the spectrum polynomial of [11] by specializing each b_s to a single indeterminate q.

23. EXAMPLE. Let M be the matroid of Fig. 1. Table I below lists the cyclic flats X, together with the characteristic polynomials of $M(X)^*$ and M/X. The first identity indicates how to calculate $\Phi_M(x, y, b)$.

\[
\Phi_M(x, y, b) = (x^3 + 5x^2 + 8x + 4) + (x^2y + x^2 + 3xy + 3x + 2y + 2) b_1 b_2 \\
+ (xy + x + y + 1) b_2 b_3 b_6 + (xy^2 + 3xy + y^2 + 2x + 3y + 2) \\
\times b_1 b_2 b_3 b_4 + (y^3 + 5y^2 + 8y + 4)b_1 \cdots b_6.
\]

By specializing according to the third identity, we find that the spectrum polynomial

$$t^{\dim \Spec_M(t^{-1}, q)} = \sum_{\lambda, p} \dim(\Delta_{v, p0}(M))_\lambda t^\lambda q^\lambda$$

<table>
<thead>
<tr>
<th>X</th>
<th>$(−1)^{\chi(M(X)^)}x(M(X)^, y)$</th>
<th>$(−1)^{\chi(M/X)}x(M/X, −x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>1</td>
<td>$4 + 8x + 5x^2 + x^3$</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>$1 + y$</td>
<td>$2 + 3x + x^2$</td>
</tr>
<tr>
<td>${4, 5, 6}$</td>
<td>$1 + y$</td>
<td>$1 + x$</td>
</tr>
<tr>
<td>${1, 2, 3, 4}$</td>
<td>$2 + 3y + y^2$</td>
<td>$1 + x$</td>
</tr>
<tr>
<td>${1, 2, 3, 4, 5, 6}$</td>
<td>$4 + 8y + 5y^2 + y^3$</td>
<td>1</td>
</tr>
</tbody>
</table>
equals
\[4 + 8t + 5t^2 + t^3 + (2 + 3t + t^2) q^2 + (1 + t) q^3 + (2 + 2t) q^4 + 4q^6, \]
where \((\Delta)_\lambda\) denotes the \(\lambda\)-eigenspace of an operator \(\Delta\).

The next theorem refines well-known formulas for the corank-nullity and Tutte polynomials.

24. THEOREM. For any ordered matroid \(M\),

1. \(\Phi_M(x, y, b) = \sum_{X \subseteq E} x^{\text{cor}(S)} y^{\text{null}(S)} b_X \), where \(\text{cor}(S) = n - \rho(S) \), \(\text{null}(S) = |S| - \rho(S) \), and \(X = [\pi_3(S)] \) (from Theorem 9).
2. \(\Phi_M(x - 1, y - 1, b) = \sum_{\text{bases } B} x^{i(B)} y^{e(B)} b_{[\pi_3(B)]} \), where \(i(B) \) and \(e(B) \) are, respectively, the number of internally and externally active elements of \(B \).

Proof. The first follows by comparing the first identity in this section with Corollary 10. The second is an application of [8, Corollary 5.4].

3.2. Reconstruction. For a flat \(X \) of \(M \), let \(\alpha^*(X) = \dim H_{\rho(X)-1}(\text{IN}(X)) \). In [11], Kook et al. ask to what extent \(\text{Spec}_M(t, q) \) determines \(t_M(x, y) \), since

\[t^n \text{Spec}_M(-t^{-1}, q) = \sum_{X \in L(M)} (-1)^{n-\rho(X)} \alpha^*(X) q^{|X|} \chi(M/X; t), \]
while the polynomial
\[\tilde{\chi}_M(t, q) = \sum_{X \in L(M)} q^{|X|} \chi(M/X; t) \]
equals \(t_M(x, y) \) under a change of variables. Brylawski calls \(\tilde{\chi}_M(t, q) \) the Poincaré polynomial of \(M \); see [4].

While it is not known whether or not \(\text{Spec}_M(t, q) \) determines the Tutte polynomial, it is relatively easy to see that the weighted version of the question has an affirmative answer.

25. PROPOSITION. Let \(M \) be a matroid with the underlying set \(E \). From \(\Phi_M(x, 0, b) \) one can determine the list of flats of \(M \), hence the isomorphism class of the matroid.

Proof. We have
\[\Phi_M(x, 0, b) = \sum_{X \in L(M)} (-1)^{n-\rho(X)} \alpha^*(X) \chi(M/X; -x) b_X. \]
Recall that \(\chi(M/X; -x) = 0 \) only if \(M/X \) contains loops and \(\alpha^*(X) = 0 \) only if \(X \) contains an isthmus. Since \(M/X \) never contains a loop, the product \(b_X \) gives the members of each cyclic flat \(X \). The degree of \(\chi(M/X; -x) \) provides the rank of \(X \). Using [14, Example 13, p. 78], one can reconstruct the matroid from this information.
3.3 Cohomology of the Orlik–Solomon Algebra. This section applies the results of Section 2 to interpret the homology of the Tutte complex.

The first step is the definition of the Orlik–Solomon algebra of a matroid M: let $\Lambda^{n-p}(M) = C_{p0}/\partial_v(C_{p1})$, the quotient of independent p-tuples by the boundaries of circuits. $\Lambda^\bullet(M)$ is a (co)chain complex in two ways, with boundary maps induced by both ∂_h and δ_h. Its algebra structure is inherited from the exterior algebra. The Orlik–Solomon algebra was introduced originally in [2] and [13] to describe the cohomology ring of the complex complement of a hyperplane arrangement, though many of its interesting properties extend to arbitrary matroids [1, 3, 9].

By this definition, $\Lambda^{n-p}(M)$ is the zero homology module of the chain complex $(C_p^\bullet/M, \partial_v)$. More generally, we have the following proposition, which was proved for hyperplane arrangements by Gel'fand and Zelevinsky [10].

\[\cdots \longrightarrow C_{p1}(M) \xrightarrow{\partial_v} C_{p0}(M) \longrightarrow \Lambda^{n-p}(M) \longrightarrow 0 \]

is a free resolution of the Orlik–Solomon algebra of M, as a chain or cochain complex. Dually,

\[\cdots \longrightarrow C_{q0}(M) \xrightarrow{\delta_v} C_{q1}(M) \longrightarrow \Lambda^{n-q}(M^\ast) \longrightarrow 0 \]

is also a free resolution.

Proof. We show that the first sequence above is exact at $C_{q0}(M)$ for $q > 0$. It is sufficient to do so for the natural weight function $a: E \to P$, where P is the ring of Laurent polynomials over E. For short, let $H_q = H_q(C_{p0}, \partial_v)$. Since δ_v is a chain homotopy for the chain complex (C_{pq}, ∂_v), Δ_v induces the zero map on the homology module H_q. Therefore $\text{det}(\Delta_v)$ annihilates H_q. Theorem 21(1) shows that, when $q > 0$,

\[\text{det}(\Delta_v) = \prod_{X \in \mathcal{L}(M) - \{\emptyset\}} a(X)k_X, \]

for some nonnegative integers k_X. Since ∂_v does not depend on the weight function, though, $\text{det}(\Delta_v)H_q = 0$ implies that $H_q = 0$, as required.

To show that the second sequence is also exact, form the first sequence for M^\ast, then apply the isomorphism ϕ^{-1} from (6).

If the weight function a is real and positive, then Δ_v is a Laplacian in the strict sense and has the well-known property that its kernel is isomorphic to the homology of the complex. Note that in general, however, the kernel of Δ_v is larger if the weight function satisfies $a(X) = 0$ for a flat $X \not= \emptyset$.

The homology of the total complexes $(C_{p\ast}(M), \partial_h, \partial_v)$ and $(C_{q\ast}(M), \delta_h, \delta_v)$ are zero, since they are the reduced cellular (co)chain complexes.
of a solid simplex with vertices E. Let us consider the other two pairs of boundary maps. Let $d: \mathbb{A}^p \to \mathbb{A}^{p+1}$ denote the boundary map induced by δ_h. The map d depends on the weight function $a: E \to \mathbb{R}$.

27. Theorem. For any matroid M, of rank n and cardinality m, there is an isomorphism for all p,

$$H^{n-p}(\mathbb{A}^\bullet(M), d) \cong H^{m-n-p}(\mathbb{A}^\bullet(M^*), d).$$

Proof. Compute the homology of the total complex of $(\mathbb{C}^\bullet(M), \partial_v, \delta_h)$ by columns, then rows, using Proposition 26. Repeating the calculation with rows first gives

$$H^{n-p}(\mathbb{A}^\bullet(M), d) \cong H^{\text{pol}}_p(C^\bullet(M), \partial_v, \delta_h)$$

$$\cong H^{m-n-p}(\mathbb{A}^\bullet(M^*), d),$$

for all p. ☐

We note that if M is realizable over \mathbb{C} and $R = \mathbb{C}$, then the theorem should also have a geometric proof. With some additional assumptions, $H^p(\mathbb{A}^\bullet(M), d)$ has an interpretation as the cohomology of sections of a line bundle, parameterized by the weight function, over the complement of the hyperplanes in complex space; refer to [17] or [7, 16].

The isomorphism above is induced by $\phi_* (3)$, so it requires our assumption that the weights assigned to the underlying set were invertible. On the other hand, let $R = \mathbb{Z}[\{b_s: s \in E\}]$ and consider the natural weight function $a: E \to R$. Then Eisenbud et al. [6, Theorem 3.1] have shown, in the context of hyperplane arrangements, that $H^p(\mathbb{A}^\bullet(M), d) \cong 0$ for all $p \neq n$ and that the module $H^n(\mathbb{A}^\bullet(M), d)$ has projective dimension n over R. Furthermore, they show that the complex $(\mathbb{A}^{n-*}(M), d)$ is in fact a minimal free resolution over R of the top cohomology module. In this case, then, the isomorphism (28) will fail. However, by localizing R to invert the weights, one obtains the natural weight function $a: E \to P$ (from (22)). Then Theorem 27 applies to their result to show that

$$H^p(\mathbb{A}^\bullet(M), d) \cong H^{m-n}(\mathbb{A}^\bullet(M^*), d)$$

is a P-module whose support has codimension β, Crapo’s beta-invariant, and

$$H^{n-p}(\mathbb{A}^\bullet(M), d) \cong H^{m-n-p}(\mathbb{A}^\bullet(M^*), d) \cong 0$$

for $p \neq 0$.

ACKNOWLEDGMENTS

The author thanks Victor Reiner for his thoughtful comments on an earlier version of this manuscript and Raul Cordovil for a remark clarifying Corollary 12.
REFERENCES