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We give an elementary, direct proof that if an array of random variables 
{(X,, LY, Ti, rl,); i, ia N } is separately exchangeable, then X = {XV; i, je IV) and 
{(a, t;, nj); i, Jo N} are conditionially independent given the shell a-geld Yx of X. 
We show further that if (X, Y) = { (X,j, Y,,); i, jE N } is separately exchangeable, 
then X and Yx,’ are conditionally independent given Yx. 0 1989 Academic Press, Inc. 

We consider separately exchangeable arrays (X,; i, je f+J }, that is, arrays 
such that 

for any permutations K and CT of N. (Joint exchangeability is the same 
condition with n = CT.) 

We will use X to denote the entire array {X,; i, jE IV }, and similarly 5 
or 11 for a sequence {ti; iE N} or (uj; jE fV}. 

A number of authors ([Al], [K], and in a special case, [Ly]) have 
offered proofs that if the random variables a, ti, qj, iti, i, je N are i.i.d., 
and f is a measurable function, then the separately exchangeable array 
X, =f(a, ri, qj, cii), i, je N, is conditionally independent (c.i.) of a, 5, q 
given the shell o-field 

Yx=n (X,;iv j>n}. 
” 
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We feel that the most simple and direct proof of this result is that con- 
tained in our unpublished paper [Hl, Corollary 5.101. That proof was for 
arrays with an arbitrary finite number of indices, and was bound up with 
an unfamiliar model for separately exchangeable arrays. Here we give the 
proof disentangled from these complications, and slightly cleaned up. 

Our result is the following. Superficially, it appears more general than 
that quoted above, but using Aldous’ Representation Theorem ([Al 1, 
Theorem 1.4) and padding the representation of X, one can see that they 
are actually equivalent. 

THEOREM. If {(AT,, a, ti, qj); i, j E N } is separately exchangeable, then X 
and (a, 5, q) are c.i. given 9”. 

The proof of the theorem is a generalization of the proof of Lemma 1 of 
[H2], which essentially proves this theorem when each of X, 5, and VI is 
i.i.d. (and hence Yx is trivial). In fact, the proof given here is just that 
proof, fortified with the most basic facts about tail and shell a-fields. 

REVIEW OF CONDITIONAL INDEPENDENCE 

Before proving our main theorem, we need to recall some elementary 
facts about conditional independence. Recall first that a family of a-fields, 
4, ie Z, is conditionally independent given a u-field B iff for any distinct 
il, . . . . i, E Z, and G, E ‘9$,, j = 1, . . . . n, 

P(Gi,, . . . . G, 1%) = P(G, 1%) . . . P(G, ( %). 

Random variables Xi, i E I are c.i. given 9 if cr(XJ, i E I, are c.i. given F. 
We say that Xi, iE Z, are c.i.i.d. given 9 if they are also conditionally 
identically distributed given 9’; that is, P(X, E . 196) is independent of i. 

l(F) denotes the indicator function of the set F. 

LEMMA 1. ( 1) Q and J? are c.i. given % iff for any G E 9, 
P(GI%,c%)=P(G(%). 

(2) If %O c 9 E $49, and 99 and ~8 are c.i. given %0, then Y and 2 are 
c.i. given %. 

(3) Zf B and 2 are c.i. given 8 v %, and 9 and % are c.i. given 8, 
then 9 and % v & are c.i. given 8. 

Proof. (1) is Theorem 25.3A on page 351 of [Lo]. For (2) let HE %‘. 
Then, by (I), 

P(HI 8, 9) = P(Hl %A 
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since 9-, 9 EY. Since & s 9 z 9, it follows that P(Hl9) = P(iYl&). 
The result follows by (1). 

To prove (3), let G E 3. Then 

P(GIb,F,&f)=P(GIb,9) 

=P(GIL?). 

The first equality follows by the first hypothesis and (l), the second 
equality by the second hypothesis and (1). The result now follows by (1). 

CONDITIONING ON SHELL FIELDS 

If Yi, in N are exchangeable, we define the tail a-field yy of Y in the 
usual way, by 

FY= n u{ Yi; i>n}. 
n 

LEMMA 2. Let ( Y,*; ie N > be an exchangeable sequence and 
{X,;i, jcN> b e a separately exchangeable array. 

(1) Yi, ie N are c.i.i.d. given 9’. 

(2) X,, i, jE N are c.i. gioen 9’. 

ProoJ (1) follows from Proposition (6.4) and Lemma (6.5) in [A2], 
and (2) is Proposition (14.7) in [A2]. 

LEMMA 3. Zf the sequence ( Yi, A), ie N is exchangeable, then Y and A 
are c.i. given Fy. 

Proof: This result follows from (3.8) and (2.16) in [A2]. 

Proof of Theorem. First apply Lemma 3 to Yi = (X,, ri; je N), ie N, 
and A = (a, qj; j E N ) to get Y and A c.i. given yy. By Lemma 1 (2), (X, 5) 
and (a, II) are ci. given 9” v o(k). By Lemma 3 again, X and 5 are c.i. 
given the tail of 2, = (X,; iE N), hence given Yx, by Lemma 1 (2) again. 
The result now follows by Lemma 1 (3), with Q= a(X), 2 = ~(a, TI), 
9 = o(e), and d = 9”. 

COROLLARY 1. In the theorem, if X is i.i.d. then X and (a, g,q) are 
independent. Zf 5 and q are also i.i.d., then X, 5, q, and a are independent. 

Proof The first statement follows from the Theorem because if X is 
i.i.d., 9’ is trivial. If 5 is also i.i.d., then F-5 is trivial, hence, by Lemma 3, 
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5 and A = (a, R) are independent. Similarly, q and a are independent. This 
proves the second statement. 

The following generalization follows easily using Aldous’ Representation 
Theorem (in fact it requires only part of the proof of that result). We give 
it by way of asking whether it has a direct proof like that we have given 
for our theorem. This corollary generalizes the theorem, because CI, 5, and 
n are Y’** 5, “‘-measurable. 

COROLLARY 2. Zf {(X,, Y,); i, j E N } is separately exchangeable then X 
and 9’~~ are c.i. given Yx. 

Proof: By Lemma 2(2) X,, i, Jo N are c.i. given each of 9” and Yx, y, 
so it suffices to show that X,, and Yx*’ are c.i. given 9’. 

By the Representation Theorem, we may assume that there is a Bore1 
function f and an i.i.d. family of random variables {a, ti, qj, g,; i, Jo N >, 
such that for each i, Jo N, (X,, Yii) =f(a, ti, qj, iv). Then A’,, and 
{(X,, Y,); i v j> 1 } are c.i. given ~1, 5, n. But, by the Theorem, X,, and 
a, 5, q are c.i. given Yx. The result follows. 

Our proofs generalize to prove the analogous results for exchangeable 
systems of processes with. n indices, for any finite n (Corollary 5.10 in 
CHll). 
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