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In this paperwe construct complex equiangular tight frames (ETFs).

In particular, we study the grammian associated with an ETF

whose off-diagonal entries consist entirely of fourth roots of unity.

These ETFs are classified, and we also provide some computational

techniques which give rise to previously undiscovered ETFs.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Recently several different methods for constructing equiangular tight frames (ETFs) have been

explored. In [11], a partial list of pairs (n, k), which admit complex ETFs is, determined by studying

analysis operators satisfying the property that each entry of the scaled matrix
√

kV∗ (V is an analysis

operator) is apth root of unity. A correspondencebetweendifference sets andequiangular cyclic frames

is given in [8]. Bodmann et al. [2] provide necessary and sufficient conditions for the existence of Seidel

matrices with two eigenvalues whose off-diagonal entries are all cube roots of unity. Finding Seidel

matrices with two eigenvalues is known to be equivalent to the existence of ETFs, see [7].

In this paper, we study the existence and construction of Seidel matrices with two eigenvalues

(equivalently ETFs) whose off-diagonal entries are all fourth roots of unity. Some of our methods are
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similar to thatof [2].However, unlike thecube rootsofunity case,weareable to showthat a certain class

of real skew-symmetric matrices yield complex ETFs. In addition, we provide necessary and sufficient

conditions for a certain class of fourth root Seidel matrices to have exactly two eigenvalues. It is worth

noting that in [2], the authors take advantage of known results about certain regular directed graphs

to construct complex ETFs. Although the fourth roots of unity case can be translated into a problem in

graph theory, we were unable to find any known results in the literature to construct complex ETFs of

this type.

This paper is organized as follows. We complete the introduction by defining a Seidel matrix and

stating a crucial result relating Seidel matrices to ETFs. Section 2 describes our extension of Seidel

matrices to include fourth roots of unity and somedirect consequencesof this generalization. In Section

3, we use real skew-symmetric matrices to construct complex ETFs. Section 4 covers the construction

of complex ETFs which do not arise from previously known ETFs or real skew-symmetric matrices.

1.1. Seidel matrices and ETFs

Both of the papers [3,9] provide an excellent introduction to the general theory on frames as well

as a good read. However, for a detailed discussion on equiangular frames, the motivation behind this

paper, the authors recommend reading [1,7].

The following definition and theorem are due to Holmes and Paulsen [7].

Definition 1.1. An n × n self-adjoint matrix Q such that qii = 0 and |qij| = 1 for all i /= j is called a

Seidel matrix.

Note that some authors refer to a Seidel matrix as a signature matrix.

Theorem 1.2 (Theorem 3.3 of [7]). Let Q be a self-adjoint n × n matrix with qii = 0 and |qij| = 1 for all

i /= j. Then the following are equivalent:
1. Q is the Seidel matrix of an ETF,

2. Q2 = (n − 1)I + μQ for some necessarily real number μ,

3. Q has exactly two eigenvalues.

The focus of this paper is to construct Seidel matrices with exactly two eigenvalues whose off

diagonal entriesareall fourth rootsofunity.Weshall see that condition (2) inTheorem1.2 isparticularly

useful for the computational aspects of this construction.

A Seidel matrix Q satisfying any of the three equivalent conditions in Theorem 1.2 yields several

useful parameters. It is shown in [7], if λ1 < 0 < λ2 are Q ’s two eigenvalues, then the parameters

n, k,μ, λ1, and λ2 satisfy the following properties:

μ = (n − k)

√
n − 1

k(n − k)
= λ1 + λ2, k = n

2
− μn

2
√
4(n − 1) + μ2

, (1)

λ1 = −
√
k(n − 1)

n − k
, λ2 =

√
(n − 1)(n − k)

k
, n = 1 − λ1λ2.

2. Preliminaries

We begin by introducing some new definitions and preliminary results which will prove useful

throughout this discussion.

Definition 2.1. A self-adjointmatrixwith all diagonal entries equal to zero and all nondiagonal entries

equal to complex fourth roots of unity will be called a fourth root Seidel matrix. A fourth root Seidel
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matrix S is said to be in standard form if all of the entries in the first row and column are one, except

for s11.

Note that conjugating by the appropriate diagonalmatrixwill transform a fourth root Seidelmatrix

into standard form. This process leads to an equivalence relation on fourth root Seidel matrices where

the matrices in standard form are class representatives.

Theorem 1.2 connects equiangular frames to Seidel matrices with two eigenvalues. This motivates

the following proposition (and subsequent corollary) which is similar to Proposition 2.4 of [2]. Notice

that an n × n fourth root Seidel matrix S with two eigenvalues satisfies the equation

S2 = (n − 1)I + μS

for some real number μ.

Proposition 2.2. Let S be a fourth root Seidel matrix in standard form satisfying the equation

S2 = (n − 1)I + μS

and xj = #{k|Skj = 1}. Then ej := n+μ−2xj
2

is the number of entries in the jth column equal to i, for j > 1.
Furthermore, in the jth column, ej is the number of entries equal to −i, and the number of entries equal to

−1 is
n−μ−2ej−2

2
.

Proof. For 1 < j � n, define

yj := #{k|Skj = i},
zj := #{k|Skj = −1},
tj := #{k|Skj = −i}.

For 1 < j � n,

μ = μS1j = [(n − 1)I + μS]1j =
[
S2
]
1j

= (xj − 1) + yji + zj(−1) + tj(−i),

which gives

(xj − μ − 1 − zj) + (yj − tj)i = 0.

Thus, yj = tj and zj = xj − μ − 1. Since the jth column has n − 1 nonzero entries, we have

xj + yj + zj + tj = n − 1.

Substituting for zj and tj , we are left with

yj = n + μ − 2xj

2
. �

Corollary 2.3. The difference between the number of 1’s and the number of −1’s in a column is μ + 1.
Furthermore, μ is an integer.

Proof

xj − n − μ − 2ej − 2

2
= xj − n − μ − (n + μ − 2xj) − 2

2

= xj − (−μ + xj − 1)

= μ + 1. �



D.M. Duncan et al. / Linear Algebra and its Applications 432 (2010) 2816–2823 2819

Table 1

Possible 4 < n� 30,μ, k values.

n μ k n μ k

4 0 2 18 0 9

6 0 3 20 0 10

8 0 4 22 0 11

10 0 5 24 0 12

12 0 6 26 0 13

14 0 7 28 −6 21

16 −2 10 28 0 14

16 0 8 28 6 7

16 2 6 30 0 15

Searching for fourth root Seidel matrices using brute force is only feasible for “small” values of n.

Given a particular n, the following proposition bounds the possible values of μ.

Proposition 2.4. Let S be an n × n fourth root Seidel matrix in standard form satisfying S2 = (n − 1)I +
μS. Then n − 2 > μ > 2 − n.

Proof. By Corollary 2.3,μ + 1 is the number of onesminus the number of negative ones in all columns

except possibly the first column. The largest this can be is n − 1 and the smallest is 3 − n. So n −
1� μ + 1� 3 − n or n − 2� μ � 2 − n. �

Note that Proposition 2.2 also implies that μ is even if and only if n is even, and Proposition 2.4

gives us a list of possible values of μ for each n. Evaluating Eq. (2) at possible values of n and μ and

checking to see if k is an integer, gives the possible values for n,μ and k. The values corresponding to

4 < n� 30 are listed in Table 1.

3. Constructing complex ETFs using real matrices

Here we present a method for constructing fourth root Seidel matrices from real skew symmetric

matrices whose entries are all ±1. Note that, if A is any such matrix, then iA is a fourth root Seidel

matrix.

Proposition 3.1. Let A be a real matrix with all diagonal entries equal to zero and all off diagonal entries

equal to ±1 such that AT = −A. Then the standard form, S, of iA has entries sj,k = ±i for j > 1, k > 1

and j /= k.

Proof. Let A be a real n × nmatrix such that AT = −A, ajj = 0, and all off diagonal entries are equal to

±1. Fix D as the diagonal matrix with d11 = 1 and djj = −ia1j for j > 1. Then the matrix S = D∗(iA)D
is in standard form. For j > 1, k > 1, and j /= k,

sjk = d∗
jj(iajk)dkk = (ia1j)(iajk)(−ia1k) = ±i. �

Corollary 3.2. Let S denote the standard form of a fourth root Seidel matrix with two eigenvalues.

1. If sj,k = ±1 for j > 1, k > 1, and j /= k, then S corresponds to a real equiangular frame.
2. If sj,k = ±i for j > 1, k > 1, and j /= k, then S corresponds to a complex equiangular frame

arising from a skew symmetric matrix (as described in Proposition 3.1).

3. If S is does not fit (1) or (2) above then S corresponds to a “truly” complex equiangular frame.

We will refer to fourth root Seidel matrices with two eigenvalues (and the corresponding frames)

mentioned above as real (R), skew-symmetric (SS), and truly complex (TC) respectively. We now
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provide some restrictionson theexistenceof fourth root Seidelmatriceswith twoeigenvaluesobtained

from skew symmetric matrices which expedite our computer search for these frames.

Proposition 3.3. Let A be a real n × nmatrix with two eigenvalues such that AT = −A, and ajk = ±1 for

j /= k, then −A2 = (n − 1)I.

Proof. Clearly, b = 0 for A to satisfy −A2 = (n − 1)I + b(iA). �

The following theorem uses the structure of the fourth root Seidel matrices.

Theorem 3.4. Let A be a real n × n matrix with two eigenvalues such that AT = −A, and ajk = ±1 for

j /= k, then n = 2 or n ≡ 0 mod 4.

Proof. When n = 2, the matrix(
0 1

−1 0

)

satisfies our conditions.

Suppose n� 4. Without loss of generality, assume a1j = 1 for 2� j � n and a23 = 1. For 3� j � n,

define

C++ := #{j|a2j = 1 and a3j = 1},
C+− := #{j|a2j = 1 and a3j = −1},
C−+ := #{j|a2j = −1 and a3j = 1},
C−− := #{j|a2j = −1 and a3j = −1}.

Since a23 = 1, and the rows of A are orthogonal, we get

C++ + C+− − C−+ − C−− = −1 and

C++ − C+− + C−+ − C−− = 1

by considering the inner product of rows 2 and 3 with row 1. The inner product of rows 2 and 3 gives

the equation

C++ − C+− − C−+ + C−− = −1.

Lastly, the inner product of row 2 with itself gives the equation

C++ + C+− + C−+ + C−− = n − 3.

The relation 4C++ = n − 4 follows from combining the previous four equations. Since n is an integer,

it must be divisible by 4. �

Example 3.5. Let

A =
⎛
⎜⎜⎝

0 1 −1 1

−1 0 −1 −1

1 1 0 −1

−1 1 1 0

⎞
⎟⎟⎠ .

Clearly, A satisfies A = −At , and the eigenvalues of A are±i
√

3. Thus, thematrix iA satisfies iA = (iA)∗
and has eigenvalues ±√

3. Interestingly, iA is a Grammian matrix for the complex equiangular (4,2)

frame.

While Theorem 3.4 tells us where to look for skew-symmetric matrices with nondiagonal entries

equal to±1, it does not guarantee the existence of any suchmatrices. However, Example 3.5 does show
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Table 2

Possible 1 < n� 30,μ, k values.

n μ k R? SS? n μ k R? SS?

4 0 2 N[1] Y (Known) 18 0 9 Y[1] N (Theorem 3.4)

6 0 3 Y[1] N (by Const.) 20 0 10 N[1] Y (by Const.)

8 0 4 N[1] Y (by Const.) 22 0 11 N[1] N (Theorem 3.4)

10 0 5 Y[1] N (by Const.) 24 0 12 N[1] Y (Proposition 3.6)

12 0 6 N[1] Y (by Const.) 26 0 13 Y[1] N (Theorem 3.4)

14 0 7 N[1] N (Theorem 3.4) 28 −6 21 Y[1] N (Proposition 3.3)

16 −2 10 Y[1] N (Proposition 3.3) 28 0 14 N[1] Y (by Const.)

16 0 8 N[1] Y (Proposition 3.6) 28 6 7 Y[1] N (Proposition 3.3)

16 2 6 Y[1] N (Proposition 3.3) 30 0 15 Y[1] N (Theorem 3.4)

that such amatrix existswhenn = 4. The followingproposition goes further to show that the existence

of one such square matrix of dimension n, guarantees the existence of another with dimension 2n.

Proposition 3.6. If M is a matrix of dimension n such that MT = −M and M2 = (1 − n)In, then the

matrix

N =
( −M M − In
M + In M

)

satisfies NT = −N and N2 = (1 − 2n)I2n.

Proof

N2 =
(
2 ∗ M2 − In 0

0 2 ∗ M2 − In

)

=
(
(1 − 2n)In 0

0 (1 − 2n)In

)
= (1 − 2n)I2n. �

Applying Proposition 3.6 to the matrix in Example 3.5 yields an 8 × 8 antisymmetric matrix

corresponding to a skew-symmetric frame. Repeatedly applying this proposition yields frames for

n = 4 · 2k where k is any nonnegative integer. We have also constructed antisymmetric matrices for

n = 12 and n = 20 satisfying M2 = (1 − n)In yielding two infinite families of frames for n = 12 · 2k
and n = 20 · 2k . Table 2 summarizes our results for fourth root Seidel matrices with two eigenvalues

coming from real matrices.

4. Truly complex ETFs from blocks

Consider matrices of the form⎛
⎝B0 B1 B2
Bt1 D C

Bt2 C∗ −D

⎞
⎠ , (2)

where B0 is a 2 × 2 matrix with ones on the off diagonal and zeros on the diagonal, B1 consists of a

row of ones followed by a row of negative ones, B2 is two rows of ones, D is a n−2
2

× n−2
2

Seidel matrix

with
(
n−2
4

− 1
)
negative ones in each row, and C is a matrix with entries ±1 or ±i. Analyzing this

pattern, we get the following proposition.
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Table 3

Possible 1 < n� 20,μ, k values.

n μ k TC?

4 0 2 N (by Const.)

6 0 3 Y (using Proposition 4.1)

8 0 4 N (by Const.)

10 0 5 Y (using Proposition 4.1)

12 0 6 Y (by Const.)

14 0 7 Y (using Proposition 4.1)

16 −2 10 Y (by Const.)

16 0 8 Unknown

16 2 6 Y (by Const.)

18 0 9 Y (using Proposition 4.1)

20 0 10 Unknown

Proposition 4.1. Let A be a matrix of the form described by Eq. (2). Then the following statements are

equivalent:
1. A2 = (n − 1)I.
2. C is normal, CD = DC, D2 + CC∗ = (n − 1)I − 2J, and the row and column sums of C are zero.

Proof. Squaring A yields⎛
⎜⎜⎜⎜⎜⎝

B20 + B1B
T
1 + B2B

T
2 B0B1 + B1D + B2C

∗ B0B2 + B1C − B2D

BT1A + DBT1 + CBT2 BT1 + D2 + CC∗ BT1B2 + DC − CD

BT2B0 + C∗D − DC∗ BT2B1 + C∗D − DC∗ BT2B2 + C∗C + D2

⎞
⎟⎟⎟⎟⎟⎠ .

It is clear that the (1,1)-entry of A2 is the 2 × 2 identitymatrix. Since BT1B2 is the zeromatrix, it follows

that the (2,3)-entryofA2 is the zeromatrix if andonly ifCD = DC. The (2,2) and (3,3) entries ofA2 equal

(n − 1)I if and only if CC∗ = C∗C (C is normal) andD2 + CC∗ = (n − 1)I − 2J. Since B0B1 = B1D and

B0B2 = B2D, it follows that the (1,2) and (1,3)-blocks of A2 are the zero matrix if and only if the row

and column sums of C are equal to zero. �

Proposition 4.1 has led to the construction of new fourth root Seidelmatriceswith two eigenvalues.

Using Proposition 4.1, for each matrix D, we can quickly search for possible matrices C. The blocks D

and C are significantly smaller than the overall matrix. This greatly sped up our search. The results of

this search are summarized in Table 3. The entry of “by Const.” means that a brute force algorithmwas

used.
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