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1. Introduction 

There has been considerable interest over the last few years in bipartite graphs 

wherein any set of vertices is guaranteed to have quite a large set of neighbours, 

without the maximum degree being large. Formally, it is customary to define a 

bipartite graph, with vertex classes X and Y, to be (n, a, b)-expanding if 

[XI= (YI = it and every subset A c X with IA I = a has at least b neighbours in Y; 

b is usually a function of a. The aim is to find graphs with b as large as possible, 

given some constraint on the maximum degree. It is not hard to show that 

random bipartite graphs will have more or less best possible expansion properties, 

but explicit constructions have proved hard to find. 

Most attention has been focussed on linear expanders, that is, where the 

maximum degree is regarded as constant whilst n grows large (see for instance 

Margulis [lo], Chung [6] and Gabber and Galil [7]). However, dense expanders, 

where the maximum degree grows with n, have also found applications, most 

noticeably to parallel sorting algorithms. The algorithm of Ajtai, Koml6s and 

SzemerCdi [l] for sorting n objects in time O(log n) using n/2 processors uses 

expanders explicitly, and the proofs of the two round sorting algorthms of 

Hsggkvist and Hell [S] and of Bollob& and Thomason [5] make implicit use of 

the expanding properties of certain dense graphs, in the latter case random 

graphs. (An algorithm for sorting n objects in r rounds, using 171 parallel 

processors, makes m pairwise comparisons in the first round, deduces as much as 

possible from the result via transitivity, then makes m further comparisons in the 

second round, and so on. The rth and final round consists of comparing all pairs 

whose relative order remains in doubt. We denote by f,(n) the least value of m 

for which there is such an algorithm. Moreover fr(n, d) denotes the least m for 

which there is an algorithm employing only d-step transitivity between rounds; 

this means if we know x0 <x1 < * . . =C xk we may deduce x0 < xk only if k s d.) It 

was shown in [5] that 

and 

(2/G + o(l))n” S&(n) G (1/2)nt log n 

2-‘nl+d’P--1) sf2@, d) c (1/2d)n’+d’(2d-‘)(log n)‘42d-‘) 
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for fixed d and large IZ. The proofs were non-constructive. Alon [2], developing 
an eigenvalue technique of Tanner [ll], was able to prove that a certain graph 
(which we describe later) was (n, X, v - n ‘+“dlx)-expanding for all X, and showed 
how, in the case d = 4, such a graph would yield a constructive proof that 
f(n, 2) = O(nI). F or a good survey of the use of graphs in parallel sorting, see 
Bollobas and Hell [4]. 

Our purpose in this note is to point out how checking a very simple condition 
often suffices to show that a dense bipartite graph is a good expander. The check 
is much easier to apply than the eigenvalue method, though in the cases where 
both methods are feasible both will give much the same results. The sufficient 
condition we offer is derived from a study of pseudo-random graphs [12]; for a 
survey see Thomason [13] and for an extension to hypergraphs see Haviland and 
Thomason [9]. The check involves merely the degrees of vertices and the number 
of common neighbours of pairs of vertices. In fact it is sufficient to imply the 
bipartite graph is “pseudo-random” in a sense analogous to that of [12] and [9], 
but we shall not develop the point. 

2. Sufficient conditions 

Our principal result is Theorem 2. The proof is very straightforward and is the 
bipartite analogue of Theorem 1. The latter theorem appeared in [12] but the 
proof was slightly deficient, so we give a correct version here. 

Theorem 1. Let G be a graph of order n, with minimum degree at least pn, where 

0 <p < 1. Let p 2 0 be such that no two vertices of G have more than p2n + ,u 

common neighbours. Then, for every induced subgraph H of G, 

IeW-p(‘y’)l ~~IHI 

holds. Here 2a = E + vm, and E = 1 if p (HI < 1, E = 0 otherwise. 

Proof. Let H be a subgraph of G of order k s n, and let the average degree in H 

be d. Let a,, . . . , uk be the degree sequence of H, and let bI, . . . , bn_k be the 
number of edges between H and each of the n - k vertices of G - H. Then 

,$ai-kd 
n-k 

and 2 bi 3 i (pn - ai) = k(pn -d). 
i=l i=l 

Moreover, since no two vertices have more than p2n + p common neighbours, we 
have 
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so, if pn Z= d, 

k(pn - d)l(n -k) 
k(i)+(n-k)( 2 

Rearranging gives 

383 

(d -p(k - 1))2~ [(n - k)ln][(k - l),u +np(l -p)] +2p(d -pk) +p2 

<ku+(n-k)p(l-p)+2p(d-pk)+p2 

<pn+uk ifpnad, 

which yields the result claimed. 
We must now check the result in the case pn s d. Since bi 2 0 the above gives 

k(z)S(i)(p’n+p) or dSvm(p2n+u)+j+$, (1) 

where m = k - 1. Our aim is to show Jd - pm1 s 2a, and since d >pn, we must 
show d ~pm + 2&. So by (1) it is enough to demonstrate Vm(p2n + u) + a S 
pm + 2a - 1; squaring both sides (note pm + E s i) this is equivalent to proving 

P(n - m)(pm - 1) - p G (2pm + 2.5 - l)Vs + 2epm. 

This is immediate if pm s 1, the left hand side being negative. Otherwise E = 0 
and 2pm - 1 ?=pm, so it suffices to show p(n - m) s dpx. In this case 
pn apm 3 1, and we compute from (1) and pn s d that urn >pn(p(n - m) - 1). 
So we need only verify p(n - m) ~pvm, and this is clearly true. El 

For the bipartite analogue of this theorem it is convenient to use the notation 
e(A, B) to denote the number of edges between the vertex subsets A and B. 

Theorem 2. Let G be a bipartite graph with vertex classes X and Y, where 
[XI= (YJ = n. Let each vertex in, X have degree at least pn, where 0 <p < 1, and 
let u 3 0 be such that no two vertices of X have more than p2n + u common 
neighbours. Then for every subset A c X and every subset B c Y, with IAl = a and 

PI = b, 

I44 B) -pubI s Eb + ab(pn + pa), 

where E = 1 if pa < 1 and E = 0 otherwise. 

Proof. The proof is very similar to that of the previous theorem. Define d by 
e(A, B) = bd. Then e(A, Y - B) 3apn - e(A, B) = b(rpn - d), where r = a/b. 
By estimating common neighbours of pairs of vertices of A, we have, if rpn 3 d, 
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Rearranging gives 

(d -pa)2s [r(n - b)ln][(a - 1)P +np(I -p)] 

s r(pn + Pa), 

as desired. 

Otherwise d 2 rpn, and we obtain instead 

b(JS(l)(p’n+p) or dSVrm(p*n+p)+!+t, (2) 

where m = a - 1. Our aim is to show Id -pal s /3, where /3 = E + vs. 

Since d > rpn spa this means we show d spa + /3. In fact by (2) it is enough to 

demonstrate vrm(p*n + p) + ! <pm + p - 4; squaring both sides (note pm + 

E 2 1) this is equivalent to 

p(rn - m)(pm - 1) - rp < (2pm + 2.5 - l)vs + 2epm. 

The right hand side is positive so we need only consider the case pm 2 1. But 

then E = 0 and 2pm - 1 apm, so it suffices to show p(rn - m) s ds. 
Moreover pm 3 1 implies rpn apm 2 1, whence (2) and rpn =S d yield rpm 3 
rpn(rpn -pm - 1). So it need only be shown that p(rn -m) ~pvrn(rn -m), 
which is manifest. 0 

We remark that in each of the proofs approximations were made for the sake of 

obtaining a cleanly stated inequality, designed for ease of general application. In 

any particular circumstance it would be possible to obtain a better, though likely 

not significantly better, result. 

The expansion properties of the graph described in the last theorem can be 

stated more explicitly. 

Corollary 3. Let G be a bipartite graph with vertex classes X and Y, where 
1X1= I YI = n. Let each vertex in X have degree at least pn, where 0 <p < 1, and 
let ,u 3 0 such that no two vertices of X have more than p2n + p common 
neighbours. Then G is (n, a, n - n fpu - p lp2)-expanding for every a < n. 

Proof. If pa s 1 there is nothing to prove. Otherwise Theorem 2 shows G is 

(n, a, n - b)-expanding, where pub s qub(pn + pa), as claimed. 0 

3. Some examples 

Here are just a few examples of how Corollary 3 may be used to check the 

expansion properties of a graph. 

(1) Let G be a random bipartite graph, with edge probability nP6 where 6 < 4. 

Standard estimates for the binomial distribution show that G satisfies the 

conditions of the corollary with p = ne6(1 + o(1)) and p = nt-“(1 + o(1)). So G is 
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(n, a, n - [n’+‘/u + ni+‘](l + o(l)))-expanding. Of course, in this case it would 
be better to use the usual methods of random graph theory. 

(2) Take a projective geometry of dimension d over the finite field of order q. 

Let X be the points and Y the hyperplanes of the geometry. Form G by joining 
x E X to y E Y if x E y. Then it is straightforward to compute n = (qd+’ - l)/ 
(q - l), that G is (qd - l)/(q - 1)-regular, and every two points lie in (qdP1 - l)/ 
(q - 1) hyperplanes. Calculation then reveals that G satisfies the condition of the 
corollary with p = n-$(1 + o(l)) and p = 0, so G is (n, u, n - (1 + o(l))n’+l’d/a)- 
expanding. The o(1) term can be removed by following through the proof of 
Theorem 2 for this particular graph and being less wasteful. This is the graph 
mentioned earlier, used by Alon [2]. 

(3) Take a symmetric block design with parameters Y, k, A. Let X be the set of 
‘u objects and Y the set of v blocks, and join x E X to y E Y if x E y. This gives us a 
pn-regular graph, where n = ‘u and pn = k. Since each pair of objects occurs 
together in A blocks, we have )3. = k(k - l)/(v - l)<p%, so we obtain a 
(n, a, n - n/pa)-expanding graph. The previous example is a special case of this 
one. 

(4) Let X and Y be two copies of an orthogonal geometry of dimension 2d over 
the field of order q, equipped with a quadratic form of minimal Witt index (see 
Artin [3] for definitions). Form G by joining x E X to y E Y if g(x + y) = 0. It can 

be shown that G is q2d-’ - qd + qd-’ -regular, and no pair of vertices has more 
than q2d-2 _ qd-’ neighbours in common. On choosing appropriate p and p, 

Corollary 3 implies G is (n, a, n - [n1+1’d + nt+“d]/u - nt+‘ld - 2n11d)-expanding. 
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