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Abstract

Consider a self map T defined on the union of two subsets A and B of a metric space and satisfying
T (A) ⊆ B and T (B) ⊆ A. We give some contraction type existence results for a best proximity point, that
is, a point x such that d(x,T x) = dist(A,B). We also give an algorithm to find a best proximity point for
the map T in the setting of a uniformly convex Banach space.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Best proximity point; Uniformly convex Banach space; Contraction; Strict convexity

1. Introduction

Let A and B be nonempty closed subsets of a complete metric space X. A generalized version
of mappings T :A ∪ B → X satisfying

T (A) ⊆ B and T (B) ⊆ A (1.1)

were the subject of [2]. The results were motivated by the observation that if for some k in (0,1),
the mapping T also satisfied,

d(T x,T y) � kd(x, y) for all x ∈ A, y ∈ B, (1.2)

then A ∩ B �= ∅ and so T has a unique fixed point in A ∩ B .
In order to extend this to the case when A ∩ B = ∅, we introduce a generalization of (1.2)

which does not entail A ∩ B to be nonempty and ask, not for the existence of a fixed point of T ,
but for a best proximity point; that is, a point x in A ∪ B such that d(x,T x) = dist(A,B).
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2. Preliminaries

In this section we give some basic definitions and concepts which are useful and related to the
context of our results.

Define

PA(x) = {
y ∈ X: d(x, y) = d(x,A)

};
dist(A,B) = inf

{
d(x, y): x ∈ A,y ∈ B

};
A0 = {

x ∈ A: d(x, y′) = dist(A,B) for some y′ ∈ B
};

B0 = {
y ∈ B: d(x′, y) = dist(A,B) for some x′ ∈ A

}
.

There are some sufficient conditions which guarantee the nonemptiness of A0 and B0. One such
simple condition is that A is compact and B is approximatively compact with respect to A (every
sequence {xn} of B such that d(y, xn) → d(y,B) for some y in A should have a convergent
subsequence).

The following lemma gives another set of sufficient conditions in reflexive Banach spaces.

Lemma 2.1. [1] Let X be a reflexive Banach space, let A be a nonempty closed, bounded and
convex subset of X and let B be a nonempty closed, convex subset of X. Then A0 and B0 are
nonempty and satisfy PB(A0) ⊆ B0 and PA(B0) ⊆ A0.

Definition 2.2. A subset K of a metric space X is boundedly compact if each bounded sequence
in K has a subsequence converging to a point in K .

Suppose X is a uniformly convex (and hence reflexive) Banach space with modulus of con-
vexity δ. Then δ(ε) > 0 for ε > 0, and δ(.) is strictly increasing. Moreover, if x, y,p ∈ X, R > 0,

and r ∈ [0,2R],
‖x − p‖ � R

‖y − p‖ � R

‖x − y‖ � r

⎫⎬
⎭ ⇒

∥∥∥∥x + y

2
− p

∥∥∥∥ �
(

1 − δ

(
r

R

))
R.

Definition 2.3. Let A and B be nonempty subsets of a metric space X. A map T :A∪B → A∪B

is a cyclic contraction map if it satisfies:

(1) T (A) ⊆ B and T (B) ⊆ A.
(2) For some k ∈ (0,1) we have d(T x,T y) � kd(x, y)+(1−k)dist(A,B), for all x ∈ A, y ∈ B .

Note that (2) implies that T satisfies d(T x,T y) � d(x, y), for all x ∈ A, y ∈ B , also (2) can
be rewritten as (d(T x,T y) − dist(A,B)) � k(d(x, y) − dist(A,B)), for all x ∈ A, y ∈ B .

3. Main results

First we give a simple but very useful approximation result.

Proposition 3.1. Let A and B be nonempty subsets of a metric space X. Suppose T :A ∪ B →
A ∪ B is a cyclic contraction map. Then starting with any x0 in A ∪ B we have d(xn,T xn) →
dist(A,B), where xn+1 = T xn, n = 0,1,2, . . . .
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Proof. Now

d(xn, xn+1) � kd(xn−1, xn) + (1 − k)dist(A,B)

� k
(
d(xn−1, xn−2) + (1 − k)dist(A,B)

) + (1 − k)dist(A,B)

= k2d(xn−1, xn−2) + (
1 − k2)dist(A,B).

Inductively, we have

d(xn, xn+1) � knd(x1, x0) + (
1 − kn

)
dist(A,B).

Therefore, d(xn, xn+1) → dist(A,B). �
Next, we give a simple existence result for a best proximity point.

Proposition 3.2. Let A and B be nonempty closed subsets of a complete metric space X. Let
T :A∪B → A∪B be a cyclic contraction map, let x0 ∈ A and define xn+1 = T xn. Suppose {x2n}
has a convergent subsequence in A. Then there exists x in A such that d(x,T x) = dist(A,B).

Proof. Let {x2nk
} be a subsequence of {x2n} converging to some x ∈ A. Now

dist(A,B) � d(x, x2nk−1) � d(x, x2nk
) + d(x2nk

, x2nk−1).

Thus d(x, x2nk−1) converges to dist(A,B). Since

dist(A,B) � d(x2nk
, T x) � d(x2nk−1, x),

d(x,T x) = dist(A,B). �
The following proposition leads us to an existence result when one of the sets is boundedly

compact.

Proposition 3.3. Let A and B be nonempty subsets of a metric space X, let T :A ∪ B → A ∪ B

be a cyclic contraction map. Then for x0 ∈ A∪B and xn+1 = T xn, n = 0,1,2, . . . , the sequences
{x2n} and {x2n+1} are bounded.

Proof. Suppose x0 ∈ A (the proof when x0 in B is similar), then, since by Proposition 3.1
d(x2n, x2n+1) converges to dist(A,B), it is enough to prove that {x2n+1} is bounded.

Suppose {x2n+1} is not bounded, then there exists N0 such that

d
(
T 2x0, T

2N0+1x0
)
> M and d

(
T 2x0, T

2N0−1x0
)
� M,

where M > max(
2d(x0,T x0)

1/k2−1
+dist(A,B), d(T 2x0, T x0)). By the cyclic contraction property of T ,

M − dist(A,B)

k2
+ dist(A,B) < d

(
x0, T

2N0−1x0
)

� d
(
x0, T

2x0
) + d

(
T 2x0, T

2N0−1x0
)

� 2d(x0, T x0) + M.

Thus, M <
2d(x0,T x0)

1/k2−1
+ dist(A,B), which is a contradiction. �
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Theorem 3.4. Let A and B be nonempty closed subsets of a metric space (X,d) and let T :
A∪ B → A∪ B be a cyclic contraction. If either A or B is boundedly compact, then there exists
x in A ∪ B with d(x,T x) = dist(A,B).

Proof. It follows directly from Propositions 3.2 and 3.3. �
Corollary 3.5. Let A and B be nonempty closed subsets of a normed linear space X and let
T :A ∪ B → A ∪ B be a cyclic contraction. If either the span of A or the span of B is a finite
dimensional subspace of X, then there exists x in A ∪ B with d(x,T x) = dist(A,B).

Corollary 3.5 need not hold when both A and B span infinite dimensional subspaces.

Example 3.6. Given k in (0,1), let A and B be subsets of lp,1 � p � ∞, defined by A =
{((1 + k2n)e2n): n ∈ N} and B = {((1 + k2m−1)e2m−1): m ∈ N}. Suppose

T
((

1 + k2n
)
e2n

) = (
1 + k2n+1)e2n+1 and T

((
1 + k2m−1)e2m−1

) = (
1 + k2m

)
e2m.

Then T is a cyclic contraction on A ∪ B .

Proof. The case when p = ∞ is easy to check, so we consider 1 � p < ∞. Here dist(A,B) =
21/p . Now, by the triangle inequality for the lp norm on R

2,

((
1 + k2n+1)p + (

1 + k2m
)p)1/p

= ((
k + k2n+1 + (1 − k)

)p + (
k + k2m + (1 − k)

)p)1/p

�
((

k + k2n+1)p + (
k + k2m

)p)1/p + 21/p(1 − k)

� k
((

1 + k2n
)p + (

1 + k2m−1)p)1/p + 21/p(1 − k). �
Note that A and B defined above are closed sets but A0 = B0 = ∅, so there does not exist a

best proximity point.
Next we proceed to our main result of this paper which gives existence, uniqueness and con-

vergence for best proximity points. The following convergence lemma forms the basis for our
result.

Lemma 3.7. Let A be a nonempty closed and convex subset and B be a nonempty closed subset
of a uniformly convex Banach space. Let {xn} and {zn} be sequences in A and {yn} be a sequence
in B satisfying:

(i) ‖zn − yn‖ → dist(A,B).
(ii) For every ε > 0 there exists N0 such that for all m > n � N0, ‖xm − yn‖ � dist(A,B) + ε.

Then, for every ε > 0 there exists N1 such that for all m > n � N1, ‖xm − zn‖ � ε.

Proof. Assume the contrary, then there exists ε0 > 0 such that for every k ∈ N, there exists
mk > nk � k, for which ‖xmk

− znk
‖ � ε0.

Choose 0 < γ < 1 such that ε0/γ > dist(A,B) and choose ε such that 0 < ε <

min(
ε0 − dist(A,B),

dist(A,B)δ(γ )
).
γ 1−δ(γ )
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For this ε > 0 there exists N0 such that for all mk > nk � N0, ‖xmk
− ynk

‖ � dist(A,B) + ε.
Also, there exists N2 such that ‖znk

− ynk
‖ � dist(A,B) + ε for all nk � N2. Choose N1 =

max(N0,N2).
By uniform convexity, for all mk > nk � N1,∥∥∥∥xmk

+ znk

2
− y

∥∥∥∥ �
(

1 − δ

(
ε0

dist(A,B) + ε

))(
dist(A,B) + ε

)
.

Using the fact that δ is strictly increasing and by the choice of ε, we have ‖ znk
+xmk

2 − y‖ <

dist(A,B), for all mk > nk � N1, which is a contradiction, hence the lemma. �
In a similar way we can prove the following lemma.

Lemma 3.8. Let A be a nonempty closed and convex subset and B be nonempty closed subset of
a uniformly convex Banach space. Let {xn} and {zn} be sequences in A and {yn} be a sequence
in B satisfying:

(i) ‖xn − yn‖ → dist(A,B).
(ii) ‖zn − yn‖ → dist(A,B).

Then ‖xn − zn‖ converges to zero.

Corollary 3.9. Let A be a nonempty closed and convex subset and B be nonempty closed sub-
set of a uniformly convex Banach space. Let {xn} be a sequence in A and y0 ∈ B such that
‖xn − y0‖ → dist(A,B). Then xn converges to PA(y0).

Proof. Since dist(A,B) � ‖y0 − PA(y0)‖ � ‖y0 − xn‖, we have ‖y0 − PA(y0)‖ = dist(A,B).
Now put yn = y0 and zn = PA(y0) in Lemma 3.8. �
Theorem 3.10. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space. Suppose T :A ∪ B → A ∪ B is a cyclic contraction map, then there exists a
unique best proximity point x in A (that is with ‖x − T x‖ = dist(A,B)). Further, if x0 ∈ A and
xn+1 = T xn, then {x2n} converges to the best proximity point.

Proof. Suppose dist(A,B) = 0, then A ∩ B �= ∅ and the theorem follows from Banach contrac-
tion theorem, as T is a contraction map on A ∩ B . Therefore assume dist(A,B) �= 0.

Since

‖x2n − T x2n‖ → dist(A,B) and
∥∥T 2x2n − T x2n

∥∥ → dist(A,B).

By Lemma 3.8, ‖x2n − x2(n+1)‖ → 0. Similarly we can show that ‖T x2n − T x2(n+1)‖ → 0. We
now show that for every ε > 0 there exists N0 such that for all m > n � N0, ‖x2m − T x2n‖ �
dist(A,B) + ε.

Suppose not, then there exists ε > 0 such that for all k ∈ N there exists mk > nk � k for which

‖x2mk
− T x2nk

‖ � dist(A,B) + ε

this mk can be chosen such that it is the least integer greater than nk to satisfy the above inequal-
ity. Now
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dist(A,B) + ε � ‖x2mk
− T x2nk

‖
� ‖x2mk

− x2(mk−1)‖ + ‖x2(mk−1) − T x2nk
‖.

Hence limk→∞ ‖x2mk
− T x2nk

‖ = dist(A,B) + ε. Consequently,

‖x2mk
− T x2nk

‖ � ‖x2mk
− x2(mk+1)‖ + ‖x2(mk+1) − T x2(nk+1)‖

+ ‖T x2(nk+1) − T x2nk
‖

� ‖x2mk
− x2(mk+1)‖ + k2‖x2mk

− T x2nk
‖

+ (
1 − k2)dist(A,B) + ‖T x2(nk+1) − T x2nk

‖.
Hence

dist(A,B) + ε � k2(dist(A,B) + ε
) + (

1 − k2)dist(A,B) = dist(A,B) + k2ε,

which is a contradiction. Therefore {x2n} is a Cauchy sequence by Lemma 3.7 and hence con-
verges to some x ∈ A. From Proposition 3.2, it follows that ‖x − T x‖ = dist(A,B).

Suppose x, y ∈ A and x �= y such that ‖x − T x‖ = dist(A,B) and ‖y − Ty‖ = dist(A,B)

where necessarily, T 2x = x and T 2y = y. Therefore

‖T x − y‖ = ∥∥T x − T 2y
∥∥ � ‖x − Ty‖,

‖Ty − x‖ = ∥∥Ty − T 2x
∥∥ � ‖y − T x‖,

which implies ‖Ty − x‖ = ‖y − T x‖. But, since ‖y − T x‖ > dist(A,B), it follows that
‖Ty − x‖ < ‖y − T x‖, a contradiction. Therefore x = y. Hence the theorem. �
Remark 3.11. If the convexity assumption is dropped from Theorem 3.10, then the convergence
and uniqueness is not guaranteed even in finite dimensional spaces. Consider X = R4, A =
{e1, e3} and B = {e2, e4}. Define T (ei) = ei+1, where e4+i = ei .

It is also interesting to ask whether a best proximity point exists when A and B are nonempty
closed and convex subsets of a reflexive Banach space.
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