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Abstract

Consider a self map T defined on the union of two subsets A and B of a metric space and satisfying
T(A) C B and T(B) € A. We give some contraction type existence results for a best proximity point, that
is, a point x such that d(x, Tx) = dist(A, B). We also give an algorithm to find a best proximity point for
the map T in the setting of a uniformly convex Banach space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let A and B be nonempty closed subsets of a complete metric space X. A generalized version
of mappings T : AU B — X satisfying
T(A)CB and T(B)CA (1.1
were the subject of [2]. The results were motivated by the observation that if for some k in (0, 1),
the mapping T also satisfied,
d(Tx,Ty)<kd(x,y) forallxe A, yeB, (1.2)

then AN B # @ and so T has a unique fixed pointin AN B.

In order to extend this to the case when A N B = {J, we introduce a generalization of (1.2)
which does not entail A N B to be nonempty and ask, not for the existence of a fixed point of T,
but for a best proximity point; that is, a point x in A U B such that d(x, Tx) = dist(A, B).
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2. Preliminaries

In this section we give some basic definitions and concepts which are useful and related to the
context of our results.
Define

PA(x)={y€X: d(x,y):d(x,A)};

dist(A, B) :inf{d(x,y): xeA,ye B};

Ao ={x € A: d(x, y') = dist(A, B) for some y’ € B};
Bo={ye B: d(x',y)=dist(A, B) for some x" € A}.

There are some sufficient conditions which guarantee the nonemptiness of Ag and By. One such
simple condition is that A is compact and B is approximatively compact with respect to A (every
sequence {x,} of B such that d(y, x,) — d(y, B) for some y in A should have a convergent
subsequence).

The following lemma gives another set of sufficient conditions in reflexive Banach spaces.

Lemma 2.1. [1] Let X be a reflexive Banach space, let A be a nonempty closed, bounded and
convex subset of X and let B be a nonempty closed, convex subset of X. Then Ay and By are
nonempty and satisfy Pp(Ao) C Bg and PA(By) C Ao.

Definition 2.2. A subset K of a metric space X is boundedly compact if each bounded sequence
in K has a subsequence converging to a pointin K.

Suppose X is a uniformly convex (and hence reflexive) Banach space with modulus of con-
vexity 6. Then é(¢) > O for ¢ > 0, and §(.) is strictly increasing. Moreover, if x, y, p € X, R > 0,
and r € [0, 2R],

Ix—pll <R
X+ r
ly—pl<R} = y—pH<(1—a<—>>R.
2 R
e =yl >r

Definition 2.3. Let A and B be nonempty subsets of a metric space X. AmapT:AUB — AUB
is a cyclic contraction map if it satisfies:

(1) T(A)CBand T(B) C A.
(2) Forsomek € (0, 1) wehave d(Tx, Ty) < kd(x,y)+(1—k)dist(A, B),forallx € A,y € B.

Note that (2) implies that T satisfies d(Tx, Ty) < d(x,y), forall x € A, y € B, also (2) can
be rewritten as (d(Tx, Ty) — dist(A, B)) < k(d(x, y) — dist(A, B)),forallx € A, y € B.

3. Main results
First we give a simple but very useful approximation result.
Proposition 3.1. Let A and B be nonempty subsets of a metric space X. Suppose T :AU B —

A U B is a cyclic contraction map. Then starting with any xo in AU B we have d(x,, Tx,) —
dist(A, B), where x,41 =Tx,, n=0,1,2,....
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Proof. Now
d(xp, xp41) < kd(xp—1,x,) + (1 — k) dist(A, B)
< k(d(xn—1,x4—2) + (1 — k) dist(A, B)) + (1 — k) dist(A, B)
=k%d(xn—1, Xn—2) + (1 — k*) dist(A, B).
Inductively, we have
d(xp, Xpt1) < k"d(x1,x0) + (1 — k") dist(A, B).

Therefore, d(x,, x,+1) — dist(A, B). O
Next, we give a simple existence result for a best proximity point.

Proposition 3.2. Let A and B be nonempty closed subsets of a complete metric space X. Let
T:AUB — AUB be a cyclic contraction map, let xo € A and define x,+1 = T x,,. Suppose {x2,}
has a convergent subsequence in A. Then there exists x in A such that d(x, Tx) = dist(A, B).
Proof. Let {x,, } be a subsequence of {x,} converging to some x € A. Now

diSt(A, B) < d()C, x2nk—l) < d()C, x2nk) + d(-Xanv x2nk—1)-
Thus d(x, x2,,—1) converges to dist(A, B). Since

dist(A, B) < d(xan, Tx) <d(xop -1, X),
d(x,Tx)=dist(A,B). O

The following proposition leads us to an existence result when one of the sets is boundedly
compact.

Proposition 3.3. Let A and B be nonempty subsets of a metric space X, let T:AUB — AUB
be a cyclic contraction map. Then for xo € AUB and x;,11 =Tx,,n=0,1,2, ..., the sequences
{xon} and {x2,41} are bounded.

Proof. Suppose xo € A (the proof when x¢ in B is similar), then, since by Proposition 3.1
d(x2n, X2n+1) converges to dist(A, B), it is enough to prove that {x3,+1} is bounded.
Suppose {x2,+1} is not bounded, then there exists Ng such that

d(szo, T2N"+1x0) > M and d(szo, T2N0_1x0) <M,

where M > max(% +dist(A, B), d(T?xg, Txp)). By the cyclic contraction property of T,
M — dist(A, B)

= +dist(A, B) < d(xo, T*N0™ ! xg)

< d(X(), szo) + d(T2x0, T2N0—le)
< 2d(xg, Txo) + M.

Thus, M < % + dist(A, B), which is a contradiction. O
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Theorem 3.4. Let A and B be nonempty closed subsets of a metric space (X,d) and let T:
AU B — AU B be a cyclic contraction. If either A or B is boundedly compact, then there exists
x in AU B with d(x, Tx) =dist(A, B).

Proof. It follows directly from Propositions 3.2 and 3.3. O

Corollary 3.5. Let A and B be nonempty closed subsets of a normed linear space X and let
T:AUB — AU B be a cyclic contraction. If either the span of A or the span of B is a finite
dimensional subspace of X, then there exists x in AU B with d(x, Tx) =dist(A, B).

Corollary 3.5 need not hold when both A and B span infinite dimensional subspaces.
Example 3.6. Given k in (0, 1), let A and B be subsets of /7,1 < p < 0o, defined by A =
{((1 4+ k*)ez,): n e Nyand B = {((1 + k¥ VYeyu_1): m e N}. Suppose

T((1+k")ewm) = (1 + k" ezur and  T((1+&""ern—1) = (1 +k*")eam.
Then T is a cyclic contraction on A U B.

Proof. The case when p = oo is easy to check, so we consider 1 < p < oo. Here dist(A, B) =
21/P_ Now, by the triangle inequality for the /, norm on R2,

((1+k2n+l)P+(l+k2m)p)l/p
= ((k+ K (1 =)+ (k+ 2" 4 (1 — k))") /7
(k+k2n+1)P+(k+k2m)p)1/p+21/p(l_k)

<(
gk((l+k2n)P_’_(l_’_kmel)P)l/p_i_zl/p(l_k) 0

Note that A and B defined above are closed sets but Ag = By = ¥, so there does not exist a
best proximity point.

Next we proceed to our main result of this paper which gives existence, uniqueness and con-
vergence for best proximity points. The following convergence lemma forms the basis for our
result.

Lemma 3.7. Let A be a nonempty closed and convex subset and B be a nonempty closed subset
of a uniformly convex Banach space. Let {x,} and {z,} be sequences in A and {y,} be a sequence
in B satisfying:

(1) llzn — yull — dist(A, B).
(i1) For every € > 0 there exists Nq such that for allm > n > Ny, ||x, — yull < dist(A, B) + €.

Then, for every € > O there exists Ny such that for allm >n > Ny, ||x, — za|| < €.

Proof. Assume the contrary, then there exists €y > O such that for every k € N, there exists
my > ny 2 k, for which ||x,,, — z,, | = €o.
Choose 0 < y < 1 such that ¢y/y > dist(A, B) and choose € such that 0 < € <

min($ — dist(A, B), ${A50507),
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For this € > 0 there exists No such that for all my > ng > No, ||xm, — yn, |l < dist(A, B) +e€.
Also, there exists N, such that ||z, — yu, |l < dist(A, B) + € for all ny > N>. Choose Ni =
max(Ng, N»).

By uniform convexity, for all my > nx > Ny,

€0 .
<(1-8(—2  ))(dist(A, B) +e).
( (dist(A,B)—f-e))(ls( )+e)
an+xmk

Using the fact that § is strictly increasing and by the choice of €, we have ||[=5—* — y|| <
dist(A, B), for all my > ny > N1, which is a contradiction, hence the lemma. O

Xmy + Zn
2

In a similar way we can prove the following lemma.

Lemma 3.8. Ler A be a nonempty closed and convex subset and B be nonempty closed subset of
a uniformly convex Banach space. Let {x,} and {z,} be sequences in A and {y,} be a sequence
in B satisfying:

@) [lxn = yull — dist(A, B).
(i) llzn — yall — dist(A, B).

Then ||x, — zn|| converges to zero.

Corollary 3.9. Let A be a nonempty closed and convex subset and B be nonempty closed sub-
set of a uniformly convex Banach space. Let {x,} be a sequence in A and yy € B such that
lx, — yoll = dist(A, B). Then x, converges to P4(yp).

Proof. Since dist(A, B) < [lyo — Pa(yo)ll < llyo — xull, we have [|lyo — Pa(yo)|l = dist(A, B).
Now put y, = yo and z,, = P4(yo) in Lemma 3.8. O

Theorem 3.10. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space. Suppose T:A U B — A U B is a cyclic contraction map, then there exists a
unique best proximity point x in A (that is with |x — Tx|| = dist(A, B)). Further, if xo € A and
Xn+1 = Txp, then {x2,} converges to the best proximity point.

Proof. Suppose dist(A, B) =0, then A N B # (J and the theorem follows from Banach contrac-
tion theorem, as 7 is a contraction map on A N B. Therefore assume dist(A, B) # 0.
Since

Ix2n — Txo |l — dist(A, B) and | T2x2, — Txa,| — dist(A, B).

By Lemma 3.8, [lx2, — x2(z+1) | = 0. Similarly we can show that ||Tx2, — Tx2¢,+1)ll — 0. We
now show that for every € > O there exists Ng such that for all m > n > Ny, ||x2, — Tx2,| <
dist(A, B) + €.

Suppose not, then there exists € > 0 such that for all k € N there exists my > ny > k for which

”x2mk - Tx2n1< | > dist(A, B) + €

this my can be chosen such that it is the least integer greater than ny to satisfy the above inequal-
ity. Now
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dist(A, B) + € < [lx2m, — Txon, |l
< x2my, — X20me—) | + 1x20m—1) — T X200 |l

Hence limg_; o0 |X2m;, — Tx2,, || = dist(A, B) + €. Consequently,

lx2m;, — Txon | < Nx2my — X20m+0) 1| + X200 +1) — T X200 4+1)
+ 1T x2mp+1) — TX2n |l
< x2me = X2 )|+ K2 x2me — Tz |
+ (1= k) dist(A, B) + I Tx20n,+1) — TX2n |l
Hence
dist(A, B) + € < k*(dist(A, B) +€) + (1 — k%) dist(A, B) = dist(A, B) + k’e,
which is a contradiction. Therefore {x»,} is a Cauchy sequence by Lemma 3.7 and hence con-
verges to some x € A. From Proposition 3.2, it follows that ||x — Tx|| = dist(A, B).
Suppose x,y € A and x # y such that ||[x — Tx| =dist(A, B) and ||y — Ty| = dist(A, B)
where necessarily, 72x = x and T2y = y. Therefore
ITx =yl = |Tx = T?y| <lx = Tyl,
1Ty —xl =Ty = T°x| < lly = Txl,
which implies ||Ty — x|| = ||y — Tx||. But, since ||y — Tx| > dist(A, B), it follows that
ITy — x|l < |ly — Tx]||, a contradiction. Therefore x = y. Hence the theorem. 0O

Remark 3.11. If the convexity assumption is dropped from Theorem 3.10, then the convergence
and uniqueness is not guaranteed even in finite dimensional spaces. Consider X = R*, A =
{e1,e3} and B = {ey, eq}. Define T (e;) = e;j+1, where eat; =e;.

It is also interesting to ask whether a best proximity point exists when A and B are nonempty
closed and convex subsets of a reflexive Banach space.
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