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Abstract

We generalise the theory of Cuntz—Krieger families and graph algebras to the class of
finitely aligned k-graphs. This class contains in particular all row-finite k-graphs. The Cuntz—
Krieger relations for non-row-finite k-graphs look significantly different from the usual ones,
and this substantially complicates the analysis of the graph algebra. We prove a gauge-
invariant uniqueness theorem and a Cuntz—Krieger uniqueness theorem for the C*-algebras of
finitely aligned k-graphs.
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1. Introduction

It has been known for many years that the Cuntz—Krieger algebras of (0,1)-
matrices [3] can be viewed as the C*-algebras of directed graphs [4]. More recently,
the construction has been extended to cover infinite directed graphs [10,6] and
higher-rank analogues, known as k-graphs [9]. The resulting classes of graph algebras
contain many interesting examples, and have in particular provided a rich
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supply of models for the classification theory of simple purely infinite nuclear C*-
algebras [15].

Graph algebras have now been associated to all infinite graphs, and an eclegant
structure theory relates the behaviour of loops in a graph to the properties of its
graph algebra. For k-graphs, the current state of affairs is less satisfactory. The
object of this paper is to associate graph algebras to a wide class of infinite k-graphs,
and to prove versions of the gauge-invariant uniqueness theorem and the Cuntz—
Krieger uniqueness theorem for these graph algebras.

Before describing our approach, we recall how the theory of graph algebras
developed. A directed graph E consists of a countable vertex set E°, a countable edge
set E!, and range and source maps r,s : E' - E°. When each vertex receives at most
finitely many edges (E is row-finite) the graph algebra C*(E) is the universal
C*-algebra generated by mutually orthogonal projections {p, : ve E°} and partial
isometries {s. : e E'} satisfying s}s. = py( for all ee E' and

Do = Z ses: when r~!(v) is nonempty. (L.1)

r(e)=v

When r~!(v) is infinite, the sum on the right-hand side of (1.1) cannot converge
in a C*-algebra, and hence the relation must be adjusted. The appropriate
adjustment was suggested by the analysis of the Toeplitz algebras of Hilbert
bimodules in [7]: impose relation (1.1) only where r~!(v) is finite, and add the
requirement that the s, have orthogonal range projections dominated by p,)
(which in the row-finite case follows from (1.1)). The resulting family of graph
algebras was studied in [6]. That these are the appropriate relations was
confirmed when other authors with different points of view arrived at the same
conclusion [11,14].

The first work on higher-rank graphs concerned row-finite k-graphs without
sources [9]. For directed graphs (that is, when k= 1), there is a constructive
procedure for extending results to graphs with sources [2, Lemma 1.2]. However
when k> 1, there are many different kinds of sources, and there is as yet no
analogous procedure for dealing with them. In [13], we considered a class of row-
finite k-graphs which may have sources provided a local convexity condition is
satisfied. In [12], Raecburn and Sims studied infinite k-graphs by viewing them as
product systems of graphs, as in [8], and applying the techniques of [5] to the
Toeplitz algebras of the associated product system of Hilbert bimodules. The
analysis in [12] led to two conclusions. First, it identified an extra Cuntz—Krieger
relation which is automatic for row-finite k-graphs, but is not in general. This extra
relation is needed to ensure that the algebras generated by Cuntz—Krieger families
are spanned by partial isometries of the usual form. Unfortunately, the new relation
can involve infinite sums of projections (see [12, Remark 7.2]); the second conclusion
of [12] was that we should restrict attention to the finitely aligned k-graphs for which
the new relation is C*-algebraic rather than spatial.

In this paper, we introduce Cuntz—Krieger relations which are appropriate for
arbitrary finitely aligned k-graphs. We do not assume that our k-graphs are locally
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convex or row-finite, and we do allow them to have sources. When k=1 or
the k-graph is row-finite and locally convex, our new Cuntz—Krieger relations
are equivalent to the usual ones. We show that for every finitely aligned k-graph A,
there is a family of nonzero partial isometries which satisfies the new relations,
and we define C*(A) to be the universal C*-algebra generated by such a family.
We then prove versions of the gauge-invariant uniqueness theorem and the
Cuntz—Krieger uniqueness theorem for C*(A). Our analysis is elementary in the
sense that we do not use groupoids, partial actions or Hilbert bimodules, though
we cheerfully acknowledge that we have gained insight from the models these
theories provide.

The results in this paper extend the existing theory of graph algebras in several
directions. Since 1-graphs are always finitely aligned, and our new relations are then
equivalent to the usual ones (Proposition B.1), our approach provides the first
elementary analysis of the C*-algebra of an arbitrary directed graph. Our results are
also new for finitely aligned k-graphs without sources; those interested primarily in
this situation may mentally replace all the symbols 45" by A", and thereby avoid
several technical complications. Even for row-finite k-graphs we make significant
improvements on the existing theory: for non-locally-convex row-finite k-graphs, our
Cuntz—Krieger families may have every vertex projection nonzero, unlike those in
[13] (see Example A.1).

In Section 2, we describe our new Cuntz—Krieger relations for a finitely aligned k-
graph A, define C*(A) to be the universal C*-algebra generated by a Cuntz—Krieger
family, and investigate some of its basic properties. We discuss a notion of boundary
paths which we use to construct a Cuntz—Krieger family in which every vertex
projection is nonzero.

The core in C*(A) is the fixed-point algebra C*(A)’ for the gauge action y of TX. In
Section 3, we show that the core is AF, and deduce that a homomorphism 7 of C*(A)
which is nonzero at each vertex projection is injective on the core.

Our proof that C*(A)” is AF is quite different from the argument which we gave
for row-finite k-graphs in [13] in that we do not describe C*(A)” as a direct limit over
NK. Instead, we describe C*(A)" as the increasing union of finite-dimensional
algebras indexed by finite sets of paths, and produce families of matrix units which
span these algebras. In addition to showing that C*(A) is AF, this formulation is a
key ingredient in our proof of the Cuntz—Krieger uniqueness theorem. The
uniqueness theorems themselves are proved in Section 4.

We conclude with three appendices in which we discuss various aspects of
our new Cuntz—Krieger relations. In Appendix A, we explain our motivation for
introducing these new and apparently substantially different relations; we
describe examples illustrating the other possibilities we considered, and their
failings. In Appendix B, we show that for ordinary directed graphs (that
is, for k = 1) and for locally convex row-finite k-graphs, our new Cuntz—Krieger
relations are equivalent to the usual ones. Appendix C gives an equivalent
formulation of our Cuntz—Krieger relations using only the edges in the 1-skeleton
of the k-graph.
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2. k-Graphs and Cuntz—Krieger families

We regard N¥ as a semigroup with identity 0. For 1<i<k, we write ¢; for the ith
generator of N¥, and for ne N¥ we write n; for the ith coordinate of n. We use < for
the partial order on N¥ given by m<n if m; <n; for all i. The expression m <n means
m<n and m#n, and does not necessarily indicate that m; <n; for all i. For m,ne N¥,
we write mvn for their coordinate-wise maximum and mAn for their coordinate-
wise minimum.

A k-graph is a pair (A, d) consisting of a countable small category A and a degree
functor d : A—N¥ which satisfy the factorisation property: for every ieA and
m,neNF with d(1) = m + n there exist unique y, o€ A such that d(u) = m, d(¢) =n
and A = uo.

Since we are regarding A as a type of graph, we refer to the morphisms of A as
paths and to the objects of A as vertices, and write s and r for the domain and
codomain maps. For a thorough introduction to the structure of k-graphs, see [13,
Section 2].

Notation 2.1. We use lower-case Greek letters to denote paths in k-graphs. However,
we reserve 0 for the Kronecker delta, and y for the gauge action (see Section 3).

Given k-graphs (A,d4) and (I',dr), a graph morphism from A to I' is a functor
x : A—T such that dr(x(1)) = d4(2) for all e A. For ne N¥, A" is the collection of
all paths of degree #n; that is

A" ={AeA :d(A) =n}.

The factorisation property ensures that associated to each vertex ve Obj(A) there
is a unique element of A° whose range (and hence source) is v; we call this morphism
v as well, identifying Obj(A) with A°. For Ec A and Je A, we define

LE = {Au:peEr(u) =s(4)}
and
EA={ul:peE, s(n) =r()}.

Hence, for ve A° and Ec A, vE = {uecE : r(u) = v} and Ev = {uckE : s(u) = v}.
For ne N, we define

AS" = {JeA:d(i)<n, and d(}),<n; = s(2)A% = 0}.

For /e A and m<n<d(/), the factorisation property gives unique paths A'e A",
A'eA™ and 1" e AT~ such that 2 = 2'2"2". We denote 2" by A(m,n), so 2 =
A(0,m) and 1" = A(n,d(2)). More generally, for all m<neNK A(m,n) =
iAmad(l),nad(1)).
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Definition 2.2. For A, ueA, we write
A G pt) = {(o, B) ¢ 2 = pf. d(hr) = d(2) v d ()}

for the collection of pairs which give minimal common extensions of . and pu.
We say that A is finitely aligned if A™" (1, u) is finite (possibly empty) for all
A, ueA.

Remark 2.3. For 1, ueA, the map, (o, f)— A« is a bijection between A™"(/, u) and
the set MCE(4, u) defined in [12, Definition 5.3]. Hence our definition of a finitely
aligned k-graph agrees with that of [12].

Definition 2.4. Let (A,d) be a k-graph, let ve A’ and EcovA. We say that E is
exhaustive if for every uevA there exists /€ E such that A™"(1, u) #0.

Definition 2.5. Let (A, d) be a finitely aligned k-graph. A Cuntz—Krieger A-family is a
collection {z, : Ae A} of partial isometries in a C*-algebra satisfying

() {t,: ve A} is a collection of mutually orthogonal projections;
(i) t;t, = t;, whenever s(1) = r(u);
(ill) 73ty = 325 p)e amins o laty Tor all 4, peA; and
(V) [, cz(t, — t:¢7) = 0 for all ve A° and finite exhaustive E<vA.

Remark 2.6. A number of aspects of these Cuntz—Krieger relations are worth
commenting on.

® As seen in [12], the restriction to finitely aligned k-graphs is necessary for the sum
in relation (iii) to make sense.

® Relation (iii) implies that £}z, = ), and that #;7, = 0 if A () ) = 0.

® Relations (iii) and (iv) have been significantly changed from their usual form (see
[2, Section 1, 13, Definition 3.3]), and we feel they require explanation. The short
explanation is that they are the right relations for generating tractable Cuntz—
Krieger algebras for which a homomorphism is injective on the core if and only if
it is nonzero at each vertex projection (Theorem 3.1). A much more detailed
explanation is contained in Appendix A.

® In Appendix B, we prove that for 1-graphs and for locally convex row-finite k-
graphs, our relations are equivalent to those set forth in [6,13] respectively.

® Previous treatments of k-graph C*-algebras have shown that the Cuntz—Krieger
relations can be formulated in terms of the I-skeleton of A; that is in terms of
vertices and paths of degree e¢;. We show in Appendix C that the same is true for
our relations.

Given a finitely aligned k-graph (A4, d), there exists a C*-algebra C*(A) generated
by a Cuntz—Krieger A-family {s; : 2€ A} which is universal in the following sense:
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given a Cuntz—Krieger A-family {z; : 1€ A}, there exists a unique homomorphism 7,
of C*(A) such that 7,(s;) = ¢, for all 1€ A.
The following lemma sets forth some useful consequences of Definition 2.5(1)—(iii).

Lemma 2.7. Let (A,d) be a finitely aligned k-graph and let {t, : A€ A} be a family of
partial isometries satisfying Definition 2.5(1)—(ii1). Then

1) 1151, w = Z(a,/})eA“‘i“(}“y)tmlja Sor all i,ueA. In particular, {t;t;: L€ A} is a
family of commuting projections.
(i) For A,pue A", we have r;t, = 8; ;).
(iii) If EcvAS" is finite, then 2>, plith.
(iv) C*({t;: AeA}) =span{t;t; : A, ue A} =span{y;t}, : 2, pe A, s(4) = s(u)}.

Proof. Part (i) is obtained by multiplying both sides of the equation in Definition
2.5(iii) on the left by #;, and on the right by 7.

For (ii), suppose that ;¢,#0. Then Definition 2.5(iii) ensures that there exists
(o, B) €A™ (1, 1), so Ao = uf and d(a) <n. Since A, ue AS", it follows that o = f§ =
s(A),so0 A=pu

For (iii), note that if Z, ue E and A+ p, then #;¢,¢, = 0 by (i1), and #,1,1; = 1,; for
all e E by Definition 2.5(i1).

For part (iv), note that spﬁ{tit: : A,peA} is clearly closed under adjoints
and contains {¢, : Ale A}. Furthermore, span{z,: Ale A} is closed under multi-
plication by Definition 2.5(iii). To see that Span{z;f, :4,ueA} =span{sf :
Z,ned,s(A) =s(u)}, note that if s(4)7#s(u) then 16,6, = 1,1yt =0 by
Definition 2.5(1). O

* *
s(p) Ly

We define our prototypical Cuntz—Krieger A-family using a boundary-path space

associated to A. Forme (N u {0 })k, recall from [13, Examples 2.2(ii)] the definition
of the k-graph Qy,,

Obj(‘Qk,m) = {Pe Nk ¢P<m}>
Hom(Qk n) = {(p, ¢) €Obj(2s.m) X Obj(Qim) : p<q},

r(p,q) =p, sp.q)=gq, dp,q)=q—p.

If x:Q,,— A is a graph morphism and AeA with s(1) = x(0), then there is a
unique graph morphism Ax : Q.4 —A such that (Ax)(0,d(4)) =4, and
(Ax)(d(A),n) = x(0,n — d(A)) for all n=d(2). If x: Q,,— A is a graph morphism
and neN* with n<m, then there is a unique graph morphism x(n,m): Qpmn—A
such that (x(n,m))(0,1) = x(n,n + 1) for all /e N*. Notice that these two construc-
tions are inverse in the sense that (Ax)(d(4),d(2x)) and x(0,n)x(n,m) are both
equal to x.



212 L Raeburn et al. | Journal of Functional Analysis 213 (2004) 206-240

Definition 2.8. Let (A, d) be a k-graph, let me (Nu{oo })k7 and let x : Q4 ,> A bea

graph morphism. We call x a boundary path if there exists n, e N¥ such that ny<m
and

neN* n.<n<m and n; = m; imply that x(n)A% = 0. (2.1)

We extend the range and degree maps to boundary paths x : €, — A by setting
r(x) = x(0) and d(x) == m. We write AS™ for the collection of all boundary paths of
A, and vAS” for {xeAS™ :r(x) = v}.

< oo

Remark 2.9. If A has no sources, then the boundary path space A is the usual
infinite path space A® of [9, Definitions 2.1] consisting of all graph morphisms

Lemma 2.10. Let (A,d) be a k-graph, and let xe AS*.

() If Ae A with s(2) = r(x), then Jxe AS™.
(i) If neN* with n<d(x), then x(n,d(x))eAS™.

Proof. We need only show that there exist n;, and ny(, q(y)) satisfying (2.1). This
works with n;, == n, 4+ d(4) and ny;, 4(v)) = (ne —n)v0. 0O

Lemma 2.11. Let (A,d) be a k-graph. Then vAS® is nonempty for all ve A°.

Proof. For ieN write [i] for the element of {l,...,k} which is congruent to

i (mod k). Fix ve A°. Construct a sequence of paths with range v as follows: 1o == v,
and given 4;_j,

Ji = Ji_1v for some ves(i;_1)ASE,

so at the ith step, we append a segment of degree ¢|; if possible, and append nothing
otherwise.

Define m = lim,_, , d(%;) e (N U{co})¥. Then there is a unique graph morphism
X : Qgm— A such that x(0,d(4;)) = 4; for all ieN. To show that x is a boundary

path, we need only produce n, e N* with n, <m which satisfies (2.1).
For each je{l, ...,k} such that s(4;_1)A% = 0 for some i, let

i(j) = min{ieN : [i] =j and s(4;_1)49 = 0}.

Let I == max{i(j) : mj< oo}, and let n, = d(4;).

Suppose that ne N with n,<n<m, and that n; = m;. Then m;<co so i(j) is
defined and 7>i(j) by definition. Since n>n, = d(4r), it follows that n>d(Z;;)-1).
But s(4;;)-1)A4% = 0, which implies x(n)49 = @ by the factorisation property. [
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Proposition 2.12. Let (A,d) be a finitely aligned k-graph. For J.€ A, define

Sie, = {elx if S()”) = r(x),

0 otherwise.

Then {S; : e A} is a Cuntz—Krieger A-family on /*(AS™) called the boundary-path
representation. Furthermore, every S, is nonzero.

Proof. It follows from Lemma 2.11 that each S, is nonzero.
A simple calculation using inner products in /*(A<%) shows that

. { exdyde) i x(0,d(2)) = 4,
S;Lex = .
0 otherwise.

We need to check (i)—(iv) of Definition 2.5.

Relation (i) holds since S, is the projection onto span{e, : xevAS™}.

Checking (ii)) amounts to showing that the boundary path A(ux) is equal to
the boundary path (Au)x. This follows from associativity of composition in the
category A.

Relation (iii) follows from a simple calculation involving inner products (see
[12, Example 7.4]).

To check that (iv) holds, let EcvA be finite and exhaustive and let xevAS<®. It
suffices to show that [, _.(S, — S;S;)e. = 0. Let

N = (\/ d(i)) Vi,

L€E

in particular, N>n, so (2.1) implies that x(N)A9 =@ whenever m;<co. Since
E is exhaustive, there exists A,€E such that A™"(x(0,N),1,)#0; let
(o, B)e A™™(x(0,N), ). We claim that o= x(N). Suppose for contradiction
d(o);>0 for some i. Then d(x(0,N));<d(Ay);. But N;>d(4,); by definition, and
hence we must have d(x);<N;, so m;<oo. Hence x(N)A“ =@ contradicting
d(o);>0. This establishes the claim, giving x(0, N) = Af8, and hence x(0,d(1y)) =
Ay. But then

<H(Sv - SgS}‘)) ee=| [ (So—S:8) |(Sy—5.58; )ex=0

A€eE Le E\{ix}

because S,e, = ¢, = 8,87 ex. U
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3. Analysis of the core

Given a finitely aligned k-graph (A, d), there is a strongly continuous gauge action
7: T" > Aut(C*(A4)) determined by 7.(s;) = z/%s; where z" =z{"---Z{" e T. The
fixed-point algebra C*(A)" is equal to span{s;s; : d(4) = d(u)} and is called the core
of C*(A).

N

Theorem 3.1. Let (A, d) be a finitely aligned k-graph. Then C*(A)" is AF. If {1, :
/€ A} is a Cuntz—Krieger A-family with t,#0 for all veA°, then the homomorphism m,
of C*(A) such that m,(s;) = t; is injective on C*(A)".

The remainder of this section is devoted to proving Theorem 3.1. We therefore fix
a finitely aligned k-graph (4,d) and a Cuntz—Krieger A-family {¢; : Ae A}. We also
fix a finite set £ A. We want to identify a finite set ITE containing £ such that
span {s;s, : A, uellE,d(1) = d(u)}

is closed under multiplication, and hence is a finite-dimensional subalgebra of
C*(A)’. The next lemma implies that such sets exist.

Lemma 3.2. There exists a finite set F'< A which contains E and satisfies
Auo,teF, d(A)=d(w), do)=d(z), s(A)=s(u)
and
s(o) =s(t) imply {da,tf: (o, f)eA™ (u,0)} < F. (3.1)
Moreover, for any finite F which contains E and satisfies (3.1),
My = span{t;t, : 2, peF,d(2) = d(u)}
is a finite-dimensional C*-subalgebra of C*({t,t, : d(2) = d(u)}).

Before proving Lemma 3.2, we recall from [12, Definition 8.3] that for Fc 4,

MCE(F) = {)veA cd(A) = \/ d(a) and A(0,d()) = o for all oceF}

aeF

and that vF =Jz.r MCE(G). Lemma 8.4 of [12] shows that v F contains F, is
finite whenever F is, and is closed under taking minimal common extensions.

Proof of Lemma 3.2. To begin with, notice that (3.1) is equivalent to

AuoeF, d(2)=d(u), s(A)=s(u) and (a,)eA™(u,¢) imply lueF.
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Let N =\, d(A). Let Ey = E, and let

Ey :={1(0,d(41))72(d(41),d(22)) - 2(d(%j-1),d(4;)) : di€ Vv Ey,
d(il)sd(im),s(/l;) = T()vprl(d()v]%d(iHl))) for ISISJ}

The set E; is finite because v Ej is finite. Furthermore E; contains E = E; by
definition. Suppose that A€ E;. Then d(1) = d(/;) for some J;e v Ey, so d(A)<N. If
Jou,0€Ey with d(J)=d(u) and s() =s(u), and if (o,f)eA™"(u,0), then
A, uoce v Ey and hence lae Ej.

Iteratively construct sets E; < A,i>=2 by

E[ = {il(o7d(/bl))A](d(i]71)7d(ij)) : /1[6 \/E',j,17
d(2) <d(111),8(h) = r(Zin(d(4), d(2111))) for 1<I<j}.

We claim that for all i>2,

(a) E; is finite,

(b) Ei < E;,

(c) d(2)<N for all AeE;,

(d) if A, u,0€E; satisfy d(1) = d(u), s(2) = s(u), and if (o, f) e A™"(u, ), then
Aoe E;, and

(e) If E;_ #E;, then min;cg,g, | |d(A)|>min,cg, \g ,|d(1)].

Once we have established (a)—(e), conditions (b), (¢) and (e) combine to ensure that
E\nj+1 = Ejy). With F = E|y,, it then follows that E < F by (b), F is finite by (a), and
F satisfies (3.1) by (d).

Let 7>1 and suppose that (a)—(d) hold for i = 4. We will show that (a)—(d) hold
for i = h+ 1. Since we have already established (a)—(d) for i = 1, (a)-(d) will then
follow for all i>=1 by induction. We have Ej,.; finite because A is finitely aligned and
E;, is finite, giving (a). The inclusion E,c v E,cEj, gives (b). If A€ Ejq, then
d(A) = d(4;) for some J;e vV E), so d(4)<N by definition of v Ej, and by (c) for
i = h. Now suppose that 4, u, ¢ and (o, ) are as in (d) for i = A+ 1. Then uae v Ej,
and Aa = A(0,d (1)) (uo)(d(p), d(ue)) € Epy, giving (d) for i = h+ 1.

To establish (e), suppose that i>2 and /e E\E;_;. Then

A= 21(0,d(20)) - 2y(d(4-1), d (%)),
where each 1;e VE; . If every ;€ E;_;, then each /; may be written as
1 =20100,d (A1) 2ap,(d(Apy—1), d(Aip,)),
where each 4;,,€ v E;_,, and then
A= 21,100,d(Z11))212(d(21,1),d(Z12)) =+ 2y (d (A 1), d (A1)

belongs to E;_; contradicting A€ E)\E;_,. Hence there must be some / such that
J1€(VEi_1)\Ei_;. By definition of VE; |, there exists G<FE;; such that



216 L Raeburn et al. | Journal of Functional Analysis 213 (2004) 206-240

41 MCE(G). Furthermore, d(4;) >d(o) for all 6 € G, for if not we have ;e G E;_;.
If GeE;, then AjeE;;, so there exists oe(G\E;_p)<(Ei—1\E;—2). Hence
|d(2)|=|d(%1)|>|d(e)| >min,eg, \g ,|d(u1)|, proving the claim.

Now suppose that F is any finite set containing E and satisfying (3.1).
Then MY is a finite-dimensional subspace of C*(A)” which is closed under taking
adjoints.

Hence we need only check that My is closed under multiplication. But if 7;7; and
tst: are generators of M, then 4,u, 0,7 are as in (3.1). Since

Gt = Z Ll
(.8) €A™ (11,0)

and since each 4o and each tf8 belong to F by (3.1), it follows that 7,¢,z,¢; eM, O

The intersection of a family of sets satisfying (3.1) also satisfies (3.1), so we can
make the following definition.

Definition 3.3. For any A and E, we define I1E to be the smallest set containing £
which satisfies (3.1); that is

IE = ﬂ{FcA : EcF and F satisfies (3.1)}.

Remark 3.4. The following consequences of Lemma 3.2 will prove useful:

(1) IIE is finite.
(ii) For p,ellE with d(p) = d(¢) and s(p) = s(&), and for all ves(p)4,

pvellE if and only if ¢&évellE:

the “if”” direction follows from (3.1) with A = p, u = &, and 0 = 7 = {v, and the
“only if”” direction follows from (3.1) A =u = pv, 6 = p, and 7 = £.

(iii) If p, e I1E and (o, f) € A™"(p, &), then (3.1) with 4 = u = p and o = 7 = ¢ gives
po = EFeIIE; that is to say, ITE is closed under taking minimal common
extensions, so ITE = v (IIE).

The next step is to find a family of matrix units for M. The trick is first

to express each ¢, as a sum of orthogonalised range projections associated to paths
in ITE.

Proposition 3.5. For each A€IlE, define

00 = ut; T (g3 —tat).
MWellE
d(v)>0
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Then {Q(t)fE : AeIIE} is a family of mutually orthogonal projections such that

I w-u)+ > 0w, = (3.2)

AevllE uevllE

for all ver(IIE).

Proof. Fix ver(IIE). Any G <A satisfies (3.1) if and only if Gu{v} satisfies (3.1).
Hence, by Definition 3.3, (ITE)u {v} = II(E v {v}).

If vellE, then [],_ ;x(ts — t:t]) =0, so setting F = vIIE, the left-hand side of
(3.2) is equal to Z;veFQ(t)f.

On the other hand, if v¢ I[1E, then with F := v((IIE)u {v}), we have

o(nf = 0™ = o()E

for all Aev(IIE). Furthermore,

o = T[ (- us).

AevllE

So the left-hand side of (3.2) is once again equal to 3, O(1)}.
In either case, F = vVF and AeF = r(4)eF. Under the identification of finitely
aligned product systems of graphs over N¥ with finitely aligned k-graphs (see [12,

Example 3.5]), the proof of [12, Proposition 8.6] with its first sentence removed now
proves our result. [

Remark 3.6. For AcIIE, we have

o =ut T (e —0))

WellE
d(v)>0

=1 H (s — &1y) | 2 (3:3)
WellE
d(v)>0
because £t = fy(;)-

Corollary 3.7. Let pellE. Then t,t;, =3, g Q(t)f‘E

Proof. First notice that

* * IE
Lty = tulytey = tut), H (tr — 1287) + Z (1),
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IE
w oo

IE

by Proposition 3.5. By definition of Q(¢) o

suffices to show that

we have 17,6, > Q(¢),,,” for all v, so it

O 2ty [ Tierqome(trw — 1227) = 0; and
(ii) for oellE with ¢(0,d(u))#u, we have 1,25 0(1),;* = 0.

Claim (i) is straightforward because per(u)IIE, and hence

nty [T (g — 023) <ttty — tt) = 0.
Jer()IE

It remains to prove Claim (ii). But for ¢ as in Claim (ii), (, ) € A™" (1, ¢) implies
d(f)>0, and the definition of ITE ensures that ¢feITE. Hence

1E
[Hl;Q(l)o’
=ttty [[ oty — tanty)
ovellE
d(v)>0
- Z loplyp H (tols — toyll))
(2,8) € A™" (11,5 ovellE

d(v)>0

Z ZGﬁZZﬂ(ZGZ:; - laﬁt;/}) H (toly = lovlyy)
(.)€ A™" (1,0) ovellE\{of}
d(v)>0

=0
establishing Claim (ii)). O

Definition 3.8. For A,uellE with d(1) =d(u) and s(1) = s(u), define @(t)?f =

NE,
Q([)Z L t,u'
Proposition 3.9. The set

{007, : 2 pellE,d(i) = d(n),s(2) = s(u)}

is a collection of partial isometries which span M}, and satisfy

O (@05 =0, ;; and

WA

(i) o)1) = 5,,0()!".

To prove Proposition 3.9 we need to establish two lemmas.
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Lemma 3.10. Let A, pellE with d(1) = d(p) and s(A) = s(p). Then

1E 1E
(), =t HE (s — 0y) | 1, = 6:2,0(1), "
Avell
d‘(v)>0

Proof. We begin by calculating

oI =0,

A

=1 H (ts) — tty) | 308, by (3.3)
MWellE
d(v)>0

=u| II (o —n8)|s (3.4)

MWellE
d(v)>0

which establishes the first equality. For the second equality, we continue the
calculation as follows:

HE * *
@(Z)L’M = [)v /1 HHE (ZSU.) - tvtv) [N by (34)
d‘(»G) >0

=1 H (ty) — tuty) | t, by Remark 3.4(ii)
wellE
d(v)>0

=il I (w—oi)i,
wellE
d(v)>0

=060(1,F by (33). O

Lemma 3.11. Let /, ueIIE with d(2) = d(u) and s(2) = s(p). Then

nHE
1 = Z oO(n)hh,-

WellE
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Proof. Just calculate

* * *
Ll = LT,

wellE

=t t;< Z Q(t)ﬁ,E by Corollary 3.7

= > utitw| ] (G —twis)i by (3.3)

wellE wv' ellE
d(v')>0

= Z ty H (ls(v) —l‘,/lt/) l‘:w

WwellE W ellE
d(v')>0

by two applications of Remark 3.4(ii)

=Y 65, byLemma3.lo. O

AvellE

Proof of Proposition 3.9. The O(t ) are clearly partial isometries. It follows from

Lemma 3.11 that they span M. It remains to show that the @(z ) o satisfy (1)
and (ii).

Let A, ueIlE with d(A) = d(u) and s(A) = s(u). Since the Q(Z)IZE are projections
by Proposition 3.5, we can and use Lemma 3.10 to calculate

(©()7) = () 1) = 1.1;0(0)]" = O(1),.5

Furthermore, if ¢, 7 also belong to ITE with d(c¢) = d(t) and s(¢) = s(t), then
@(Z)ﬁ@(t)gf :“vt;Q(t)gEQ(f)fElali‘ by Lemma 3.10
:5M-UU~ZZQ(Z),7EZ,J;‘ by Proposition 3.5
:5H¢GQ(0?EUIZ@I’; by Lemma 3.10
=5M,5Q(l)ﬁ75[21j since s(1) = s(u)

=8,,0(nIF. O

We now need to say which pairs A, u satisfy @(l)Zf;éO.
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Notation 3.12. For A, uellE with s(1) =s(u) =v and d(1) = d(u) = n, Remark
3.4(i1) ensures that

{vevAd :d(v)>0,lveIE} = {vevA : d(v)>0,uve [IE}.

We denote this set by T7E(n,v). For convenience, for 1ellE, we write T(1) for

TE(d(2),5(2)).
Proposition 3.13. Suppose that t,#0 for all ve A°. Then

@(t)ff =0 if and only if T(X) is exhaustive.

To prove Proposition 3.13, we need a definition and two lemmas.

Definition 3.14. For each neN* and veA’ with T"F(n,v) nonexhaustive, fix
E"E(n,v)evA such that A™"(E"E(n v),v) =0 for all ve T"F(n,v). Again for
convenience, we will write &; in place of ¢ (d(1),s(1)) for AellE.

Lemma 3.15. For each € I1E such that T(Z) is not exhaustive, t;¢, 1. < o(E.
Proof. Set & = ¢;, and calculate

e300 =vetient [ (6t — i)

ellE
d(v)>0
= H (tj-é tjf(titj - tb’[jv))
WellE
d(v)>0
= I {wetie - > Ui livg
JvellE o, B) € AMN(AE Iy
)20 () €A™ (28,2v)
= I were
WellE
d(v)>0
since each A™M (L&, iv) = A™M(E v) =0
by choice of & =¢;
= l;élj{é. O

Lemma 3.16. Let A€ I1E and suppose that T (1) is not exhaustive. Let a, t€ IIE with
d(o) = d(z) and s(o) = s(t). Then

IE
1, 06,0(0) g = Oi0lic; lre, -
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Proof. Set & = ¢&; and calculate

1:65:0(0) 57 = el 0(1); 1ol

g T

=150 0()) t,t; by Lemma 3.15

:517gtigljéQ(z)?Etit* by Proposition 3.5

T

:5,1‘,7145!;‘5 by Lemma 3.15. O

Proof of Proposition 3.13. For the “if” direction, note that 7'(1) is certainly finite
and if it is also exhaustive then

@(Z)?f =1 r([) (ZS(;') - tvtt) I, = 0
veT(A

by Definition 2.5(iv). For the “only if ” direction, suppose that ., ue [1E with d(1) =
d(p) and s(1) = s(u), and suppose that 7T(4) is not exhaustive. Then Lemma 3.16
ensures that

HHE
lig, [j.f;_@(t)i.y =L, tr*ng“,;v

which is nonzero because each 7,#0. Hence @(t)ff #0. O
Corollary 3.17. Suppose that t,#0 for all ve A°. Suppose ), ueIlE with d(1) = d(u)
and s(A) = s(y). Then @(Z){Yf = 0 if and only if@(s)gf =0.

2y 4

Proof. We know from the boundary path representation that each s, is nonzero. The
result then follows from Proposition 3.13 applied to both {s;} and {#,}. O

Proof of Theorem 3.1. Since
C*(A)" =span{s;s; : A,ueA,d(2) = d(w)},

we have

cuwy= |J M
Ec A finite
Since each M3, is finite-dimensional, it follows that C*(A4)” is AF. Furthermore,
since n,(@(s)ﬁf) = @(t)ff for all finite EcA and @(t)ﬂfeMﬁE, Corollary 3.17
ensures that 7, maps nonzero matrix units @(s)lff to nonzero matrix units @(l)?f ,
and hence is faithful on each M7}, ;. The result now follows from [1, Lemma 1.3]. [
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4. The uniqueness theorems

Write @ for the linear map from C*(A) to C*(A)” obtained by averaging over the
gauge action; that is, ®(a) = [1« 7.(a) dz. The map @ is faithful on positive elements
and satisfies @(5,5}) = S4(2).a(u) 575

Proposition 4.1. Let (A,d) be a finitely aligned k-graph. Suppose that © is a
homomorphism of C*(A) such that n(s,)#0 for all ve A° and

|n(@(a)l|<[n(@)|| for all aeC"(A). (4.1)

Then 7 is injective.

Proof. Eq. (4.1), Theorem 3.1, and the properties of & show that n(a*a) =
0=aa=0. 0O

4.1. The gauge-invariant uniqueness theorem

Theorem 4.2. Let (A, d) be a finitely aligned k-graph, and let & be a homomorphism of
C*(A). Suppose that there is a  strongly continuous  action
0:T* - Aut(C*({n(s;) : A€ A})) such that 0.om = moy, for all ze T*. If n(s,)#0 for
all ve A°, then m is injective.

Proof. Averaging over 0 is norm-decreasing and implements n(a) > n(®(a)). Hence
Eq. (4.1) holds, and the result follows from Proposition 4.1. [

Corollary 4.3. (The gauge-invariant uniqueness theorem). Let (A,d) be a finitely
aligned k-graph. There exists a Cuntz—Krieger A-family {t; : A€ A} such that t,#0 for
every veA®, and such that there exists a strongly continuous action
0: T Aut(C*({t, : Le AY)) satisfying 0-(1;) = z*Pt; for all e A. Furthermore,
any two such families generate canonically isomorphic C*-algebras.

Proof. Proposition 2.12 shows that there is a Cuntz—Krieger A-family consisting of
nonzero partial isometries. It follows that each s,e C*(A) is nonzero, so ¢, = s; and
0 .=y gives existence. The last statement follows from Theorem 4.2. [

Recall from [9] that if (A}, d)) is a kj-graph and (A, d») is a kp-graph, then the pair
(A} X Az, dy x db) is a (k; + ky)-graph. It is easy to check that if A; and A, are
finitely aligned, then so is A; x A,.

Corollary 4.4. Let Ay be finitely aligned k-graph and let A, be a finitely aligned k-
graph. Then C*(A; x Ay) is canonically isomorphic to C*(A,) ® C*(Ay).
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Proof. Implicit in the statement of the corollary is that all tensor products of C*(A4;)
and C*(A4;) coincide. The bilinearity of tensor products ensures that
{s), ®s,,: (A1, 42) €A1 x Az} is a Cuntz—Krieger (A, X Ay)-family regardless of the
tensor product in question. Separate arguments for the spatial tensor product and
the universal tensor product show that for either one, the formula

o d(y), Ak, _d(%a), d(A2)y, )
0-(s;, ®s;,) = (2, SRR R )$1, @5,

extends to a strongly continuous action 6 of T¥*% on C*({s), ®ss, : (A1, 42) €A} X
Ay}) which is equivariant with the gauge action on C*(A; x A;). The vertex
projections s, ®s,,, are all nonzero because each s, is nonzero and each s,, is
nonzero. Corollary 4.3 shows that the two tensor products coincide, and Theorem
4.2 shows they are canonically isomorphic to C*(A4; x 4y). O

4.2. The Cuntz—Krieger uniqueness theorem

Theorem 4.5. Let (A,d) be a finitely aligned k-graph, and suppose that

for each ve A° there exists xevAS™ such that
A, e Av and A% imply Ax+# ux. (B)

Suppose that 7 is a homomorphism of C*(A) such that n(s,) #0 for all ve A°. Then m is
injective.

Corollary 4.6. (The Cuntz—Krieger uniqueness theorem). Let (A,d) be a finitely
aligned k-graph which satisfies (B). There exists a Cuntz—Krieger A-family {t): /.€ A}
such that t,#0 for all ve A°. Furthermore, any two such families generate canonically
isomorphic C*-algebras.

Proof. The existence of a nonzero Cuntz—Krieger A-family follows from Proposition
2.12. The last statement of the corollary follows from Theorem 4.5. [

The rest of this section is devoted to proving Theorem 4.5. For the remainder
of this section, let (A4,d) and 7 be as in Theorem 4.5 and fix a finite set E<A
and a linear combination a=3}, _pa;.s;s,€C*(4). Notice that &(a)=
D i e Ed(i)=d(u) uSiS,- Since a is arbitrary in a dense subset of C*(4), if we
show that

|ln(@(a))[[ <= (a)]l;

then Theorem 4.5 will follow from Proposition 4.1.
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For neNF, define %, to be the C*-subalgebra of C*(A),
T =span{s;s, : A, ueAS",d(2) = d(n)}
= P A (A AT,

veAU, m<n

where the isomorphism follows from Lemma 2.7(ii).

Proposition 4.7. There exists NpeN* and a projection P such that b Pgb is an
isomorphism of My, into F y,,.

Proof. Recalling Notation 3.12 and Definition 3.14, let
Ng = \/{d(ig) : AellE, T(A) nonexhaustive}.

Whenever T"(n,v) is nonexhaustive, d(¢"%(n,v))<Ng—n, so let v£(n,v)e
ASNET" be an extension of E"E(n,v). That is, for AellE, v; = v'E(d(1),s(A))
belongs to ASVe=4%) and v,(0,d(¢&))) = &,.

Let

*
P = g 70,87y, -
LellE
T () nonexh.

For all 2e [IE with T(2) nonexhaustive,

nE
S/lv/'. Sj\’/i Ssié}.sj.é;h < Q(S)ll

by Lemma 3.16. Since all the Q(t)fE are mutually orthogonal by Proposition 3.5, it
follows that the s;yézsjé) are mutually orthogonal, as are the s,;v;_sjv;. Hence, for all

AeIIE with T(2) nonexhaustive,
PES;,@'SXQ = Siv,:szv;j (4.2)

If 2, pe IE with d(2) = d(u), s(1) = s(u) and T(4) nonexhaustive, then

PeO(s))y =Pe| > sezsie |@)) by (4.2)
HHE
T(Ua)enonexh

= Pgs;¢,s,:, by Lemma 3.16

=Sjy,8 by (4.2). (4.3)

"
vy
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Lemma 3.6 of [13] says that if Ae AS" and ue AS™ then Aue AS™". Hence for all
JeIIE such that T'(2) is nonexhaustive, Av; € ASVE_ It follows from Proposition 3.13
that b+— Pgb sends nonzero matrix units in Mj;, to nonzero matrix units in % y,,

proving that b+ Pgb is an isomorphism. [J

For ves({v;: AellE, T(A) nonexhaustive}), define

*
P, = E 70,87y,
A€IIE,T(2) nonexh.
s(vy)=v

so Pp = Zvex({v;_:).eHE,T(i) nonexh})Pl" In particular P, = P,Pg, so Eq. (4.3) gives
PU@(S)?'E = PUPE@(S){[f = PUS,QV)'SZVZ = 51,,‘9(\,0‘5‘)."2;5‘;”_‘.

for all A, uelE with d(1) =d(u), s(2) =s(u), and T(1) = T(u) nonexhaustive.
Hence

IE THE\* O\ *
@(S)/l,y P'—" = (PL‘@(S);l,/l) = (51),-?(";4)‘9!”’/15}»%)

= Ops(v,) 70,8y, = PU@(S)HE

22U, NI

so each P, is in the commutant of My, . It follows that there exists a vertex vy
such that

1Py @(a)l| = [|PEP(a)|| = || D(a)l| (4.4)

where the second equality follows from Proposition 4.7.

Lemma 4.8. Let A, ucllE, suppose that T(A) is not exhaustive, and suppose that
AduA. Then A™™(Jv,, 1) = 0.

Proof. Suppose for contradiction that (17,{) € A™"(Av;, u). Then n = s(v;) and Av; =
ul because Av; e ASVE and Np>d(u) by definition. But then with

o :=v;(0,(d(A) vd(u) —d(2)) and f:={(0,(d(2)vd(n) —d(u)),

we have (a, f)eA™™ (1, 1), and 1% uu', so d(«)>0; hence oe T(2). Furthermore,

A" (o, v;) #0 by definition of «, and hence A™"(¢;, )0, which contradicts the
definition of ;. [
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Corollary 4.9. If /., u, 6 €IlE and T(c) is nonexhaustive, then

% . Y

. . Sove Sy, U 0 =24

Sgy S5 85,87 = Ha Vs
VD grg Do

0 otherwise.

Proof. The corollary follows from a straightforward calculation using Lemma 4.8
and Definition 2.5(iii). [

Lemma 4.10. We have

1) P

and
(2) @(Pya) = P,,P(a).

% . Y / . _ .
maespan{swwsﬂ,w A ueE 2N elIE, T(A)) nonexhaustive, s(v;;) = vo};

In particular,

Py @(a) espanisyy,s,, : 4, uellE,d(A) = d(n), s(2) = s(w), T(2) nonexhaustive}.

Proof. First we use Corollary 4.9 to calculate

_ k
Py a = Z a;, Z Sitv, S, | (4.5)
IueE 2! e IE,T(7.2") nonexh.
s(v;,1)=vo

which proves (1). Furthermore, applying @ to (4.5), we have

©(Pvi)a) = Z Ajp Z SUIV)./Z’SIIM/V;;’
ApeE 22 eNE,T(/2") nonexh. -
d(22v,)=d (v, ;)
s(v;,0)=vo

*
g A E Sailv,Suily,,

AUEE 72! e ME,T(27!) nonexh.
d(A)=d(n) s(v)=t0
=P, P(a).

The last statement of the lemma follows from (1) and (2) together with
Remark 3.43i1)). O

We now modify the proof of [13, Theorem 4.3] to obtain a norm-decreasing map
O which will take n(Py,a) into n(C*(A)").
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Lemma 4.11. There exists a norm-decreasing map Q : n(C*(A)) - n(C*(A)") such that

1Q(=(@(Pyya)))| = |In(@(Pyya))l|  and  Q(r(P(Pya))) = Q(n(Pya)).

Proof. We follow the latter part of the proof of [13, Theorem 4.3] quite closely.
Since A satisfies (B), there exists xevoAS® such that A#u and A, ueAvy imply
Ax#ux. Hence, for each A#u in Avy, there exists MLHGNk such that
(Ax)(0,m)# (ux)(0,m) whenever m>= M, ,; assume without loss of generality that
M;,=>d(A)vd(p). Let

H = {(Av,,ulv,;) : A, pu, A e NE, T(22") nonexhaustive, s(v,;) = vo}.

By Lemma 4.10(1), Py aespan{s,s; : (o,7)e H}. Let

T :={peASVe . p=¢ or p =1 for some (s,7)eH}.

Define

M = \/{MW :peT,(o,71)eH for some o, and p#1} + ny.

The idea is that M is “far enough out” along x to distinguish any pair of paths in H.
By definition of M we have

(x)(0, M) # (px)(0, M) (4.6)

when 7 is the second coordinate of an element of H, p belongs to T, and t#p. Write
xuy for x(0, M).
For n< N we set

On = Z n(stMS;xM)

peT, d(p)=n
and we define Q : n(C*(A)) »n(C*(A4)) by

Ob) =Y Qb0

n<Ng

As in [13], Q is norm-decreasing because the Q,, are mutually orthogonal projections.
Also as in [13], ||Q(=(@(Pya)))|| = ||n(P(Py,a))|| because Q maps the nonzero
matrix units in n(Py,M;;;) to nonzero matrix units in n(# y, ) (see the proof of
[13, Theorem 4.3] for details).

To establish that Q(n(Py,a)) = Q(n(P(Py,a))), let (o,7) e H with d(a) #d(t). Asin
the proof of [13, Theorem 4.3], O(n(s,s%)) is nonzero only if there exist pe TnAY
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and a, f such that

(txp0) (0, M) = (pxuB)(0, M). (4.7)

We claim that (tx2)(0, M) = (tx5)(0, M) for all e s(x)s)A: suppose otherwise for
contradiction. Then there exists i such that d(«),>0 and d(txy),<M; so
dxy);<(M —d(z));. But s((txpm)(0,M)) =s(xp(0,M —d(r))), and since
M >d(t) +ny, we have M —d(t)>n,. It follows that A%(x(M —d(z))) =0 by
(2.1). The factorisation property now gives s(xy)A% = @, contradicting d(x),>0.
The same argument gives (pxpf5)(0, M) = (pxp)(0, M) for all f. So (4.7) is
equivalent to (txy)(0, M) = (pxa)(0, M) which is impossible by (4.6). Hence
O(n(sss:)) = 0 as required. O

Proof of Theorem 4.5. By (4.4), we have ||@(a)|| = ||Py,,P(a)||, and Lemma 4.10
gives
Py, ®(a)e span{s;,s,, : 4, uellE,d(Z) = d(u), s(1) = s(u), T(4) nonexhaustive}.
Since = is injective on the core by Theorem 3.1, we therefore have
|ln(@(@))|| = [[@(a)]| = [|Po, @(@)|| = [|7(Pr, @(a))]l. (4.8)
Using (4.8), Lemma 4.10(2), and Lemma 4.11, we therefore have
|Im(@(a))|| = |[n(Pyy @(a))|| = ||n(P(Prya))|
=1Q(n(P(Pyya)))|| = [|Q(n(Pyya))]]
< (P )n(@)|| <[ (a)]]-

The result then follows from Proposition 4.1. [

Appendix A. The Cuntz—Krieger relations

The objective of the Cuntz—Krieger relations is to associate to each finitely aligned
k-graph A a universal C*-algebra C*(A) generated by partial isometries {s;: 1€ A}
which has the following properties:

(a) The partial isometries s, are all nonzero.

(b) Connectivity in A is modelled by multiplication in C*(A).

(¢) C*(4) is spanned by the elements {s;s, : 4, e A}.

(d) The core subalgebra span{s;s, : 4,ueA,d(4) = d(u)} is AF.

(e) A representation n of C*(A) is faithful on the core if and only if n(s,)#0 for
every vertex v.
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Relations (i) and (ii) of Definition 2.5 address property (b). Definition 2.5(iii)
ensures that property (c) is satisfied. Definition 2.5(iii) has not appeared
explicitly in previous analyses of Cuntz—Krieger algebras, but it has always
been a consequence of the Cuntz—Krieger relations (see, for example,
[13, Proposition 3.5]). Proposition 6.4 of [12] indicates why we have to impose
Definition 2.5(iii) explicitly to deal with k-graphs that are not row-finite. The
analysis of Section 3 shows that relations (i)—(iii) of Definition 2.5 also guarantee
property (d).

We must now produce a fourth Cuntz—Krieger relation which guarantees that
C*(A) satisfies (a) and (e); in the following discussion, therefore, we assume that
Definition 2.5(1)—(iii) hold. We describe examples of k-graphs using their 1-skeletons
as in [13, Section 2].

The analyses of [6,13] suggest that a suitable relation might be

ty= Y 4f; whenever vA<" is finite. (A1)

A

JevASt

However, this relation fails to guarantee (a), even for row-finite k-graphs, as can be
seen from the following example.

Example A.1. Consider the row-finite 2-graph A, with 1-skeleton

1

-

"1
A1

where d(Z1) = (1,0) and d(u;) = (0,1). The range projections s;,s; and s,,s;, are
orthogonal by (A.1) for n= (1,1), but must both be equal to s, by (A.l) with
n=(0,1) and n = (1,0). Consequently s, = 0, so (A.1) falls to ensure condition (a)
for C*(A,).

For the row-finite k-graphs of [13] (vA% is always finite), we avoided
the problem illustrated by this example by assuming that our k-graphs (A,d)
were locally convex: the k-graph (A,d) is locally convex if for all
ved®, i#j, levA% and uevA%, both s(1)A9 and s(u)A¢ are nonempty
[13, Definition 3.9].

For locally convex row-finite k-graphs, the Cuntz—Krieger relations
used in [13] are equivalent to Definition 2.5(1)—(iii) and (A.2). It is shown
in [13, Theorem 3.15] that these relations imply (a), and the discussion of
[13, page 109] shows that they imply (e). However, Example A.2 demonstrates that
for non-row-finite k-graphs, local convexity is not enough to ensure that (A.1)
implies (e).
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Example A.2. Consider the locally convex finitely aligned 2-graph A, with 1-skeleton

where solid edges have degree (1,0) and dashed edges have degree (0,1). Relation
(A.1) does not impose any equalities at v, because v245" is infinite for all n#0. The
Cuntz—Krieger family {S; : A€ A4,} provided by the boundary-path representation
satisfies Sy, — (55,87, +S,5,,) = 0. However, for any nontrivial projection P,
taking 7,, = S,,®P and T, =S, @0 for ceA\{v,} gives a Cuntz—Krieger A,-
family satisfying Definition 2.5(1)—(iii) and (A.l) in which T, — (7}, T;, +
T, T, )#0. In particular, {S; : L€ A,} satisfies Definition 2.5(1)—(iii) and (A.1), but
the representation determined by {S;:leA,} is not faithful on the core, even

though S,#0 for all ve A9.

The key property of A, which causes the problems with relation (A.1) is that
there exists a finite subset of vyA4, (namely {4, u,}) whose range projections
together dominate all the range projections associated to paths in vy4,\{v},

<n

but no such subset of the form v,A5". For a finitely aligned k-graph A and
veA®, we can use Definition 2.5(iii) to characterise the finite subsets of vA
whose range projections together dominate all the range projections associated to
nontrivial paths with range v: they are precisely the finite exhaustive sets of
Definition 2.4.

Example A.2 therefore suggests that Cuntz—Krieger relation (iv) should be

Ly = Z t;t; for every ve A° and finite exhaustive EcuvA\{v}.  (A.2)
L€E

Example (Example A.1 continued). The only finite exhaustive subset of v; 4, which
does not contain v; is the set {41, g, }. In particular, (A.2) does not insist that either
1,85, Or fyt, is equal to #,, and so replacing (A.1) with (A.2) eliminates the
pathology associated to the non-local-convexity of A;.
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The only problem with (A.2) is that it is predicated on the notion that the range
projections associated to paths in a finite exhaustive subset of vA\{v} are mutually
orthogonal. The following example shows that this is not true.

Example A.3. Consider the locally convex 2-graph A3 with 1-skeleton

/
/ /

¥ ﬂs}/

- — — — % — — — — —4

<
93

where solid edges have degree (1,0) and dashed edges have degree (0,1).
As in Example A.2, the fourth Cuntz—Krieger relation must insist that the
range projections associated to A3 and u; together fill up ¢,,, or else (e) will
fail because {13,u;} is finite and exhaustive. However, the range projections
1;,t;, and 1,1, are not orthogonal: by Lemma 2.7(), ;8] ty,1, = t730,,,..
Indeed there is no finite exhaustive subset of vA whose range projections are
orthogonal.

The solution to the problem illustrated in Example A.3 is to use products rather
than sums to express the fourth Cuntz—Krieger relation.

Example (Example A.3 continued). Lemma 2.7(i) says that in any family satisfying
Definition 2.5(i)—(iii), the projections 7,,#; and Iy3t,, commute. Consequently, it
makes sense to express the requirement that the range projections associated to A3

and ps fill up #,, with the formula
(toy = 3317, ) (ty — zmz;}) =0. (A.3)
Relation (iv) of Definition 2.5, namely

H (t, — t;65) =0 for every ve A" and finite exhaustive Ecod  (A.4)
LeE

is the generalisation of (A.3) to arbitrary finite exhaustive sets in an arbitrary finitely
aligned k-graph. Note that (A.4) reduces to (A.2) when the range projections
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associated to paths in E are mutually orthogonal (as in A,). Proposition 2.12
together with Theorem 3.1 show that (A.4) ensures (a) and (e).

Appendix B. 1-Graphs and locally convex row-finite k-graphs

Recall from [13] that a k-graph (A,d) is row-finite if vA“ is finite for all
ie{l,...,k} and ve A°. Recall also from [13] that (A,d) is locally convex if LevA®
and vA% #0 for i#j implies s(1)A9 #0.

Proposition B.1. For 1-graphs, the Cuntz—Krieger families of Definition 2.5 coincide
with those of [6]. For locally convex row-finite k-graphs, the Cuntz—Krieger families of
Definition 2.5 coincide with those of [13].

We prove Proposition B.1 with three lemmas.

Lemma B.2. Let (A,d) be a k-graph. If k> 1, suppose that A is locally convex and
row-finite. Let {t; : A€ A} be a Cuntz—Krieger A-family. Then {t; : 1€ A} is a Cuntz—
Krieger A-family in the sense of [0] if k = 1, and is a Cuntz—Krieger A-family in the
sense of [13] if k>1.

Proof. By Lemma 2.7(iii), we know that #,>3% ", _ t;¢; whenever E cvA“ is finite. By

[13, Proportion 3.11], it suffices to show that for every ve A° and 1<i<k such that
0<|vA%] < o0, we have

t, = Z 6t

LevACi

By Definition 2.5(iv), we need only show that vA% is exhaustive whenever
0<|vA%| < oo. This is trivial for k = 1: every path with range v is either equal to
v, in which case it is extended by every path in vA°', or has an initial segment of
length 1, and hence must extend an edge in A°'. Now suppose k> 1 and A is locally
convex and row-finite, fix v, i with v4% #0, and let AevA. We must show that there
exists uevA% such that A™ (4, 1) #0. If 2 = v, then A™™ (4, u) = {(1, s(u))} for all
pevA%. If d(J)=e;, then with u=(0,e;)evA% we have A™"(J,pu)=
{(s(%), Ale;,d(2)))} #0. Finally, if A#v and d(1); =0, then since vA“ is non-
empty, |d(1)| applications of the local convexity condition show that there exists
aes(A)A%. With u:= (1«)(0,¢;) and f = (do)(e;, d(2)) we have pevA® and
(aaﬁ)EAmm()‘hu)' U

Lemma B.3. Let A be a 1-graph and suppose that {t; : L€ A} is a Cuntz—Krieger A-
Sfamily in the sense of [6]. Then {t, : e A} satisfies (iv) of Definition 2.5.

Proof. Let veA° and let E be a finite exhaustive subset of vA. We proceed by
induction on L(E) = |[{ieN : EnA'+# 0}|. For a basis case, suppose that L(E) = 1,
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so Ec A’ for some i. Then {4(0,/) : A€ E} = vA’ for 1 <j<i, and then i applications
of [6, Eq. (1.3)] give

H(s — 5587) Zs,s =0.
L€E LeE
Now fix /=1 and suppose that Definition 2.5(iv) holds whenever L(E)</, and

suppose that L(E)=1+1. Let I =max{i: EnA'#0}. Since L(E)>2, {i€E:
d(2)<I} is nonempty, so let J == max{j<I: EnA #0}. Fix AeE with d(1) =1
Since E is exhaustive, we have either 1(0,j)eE for some j<J or {1(0,J)v
ves(A(0,)) A} < E.If 2(0,j) € E for some j<J, then 1, — 115> 1, — 130y} >
and E' = E\{/} is exhaustive with [[, .z (so —su5;) = [, (50 — su8;,). On the
other hand, if {1(0,J)v:ves(4(0,J))A/} < E, then

= (E\{A(0,J)v : ves(2(0,J)) AT} U {A(0,)}

is also exhaustive, and [],cp (sv — s8},) = [1,cp (s — sus;,). Repeating this process
for each Ae EnA’, we obtain a finite exhaustive E” evA which satisfies

(1) {ieN:E"nA"#0} = {ieN: EnA"#0)\{I}, so L(E") = L(E) — 1 = I; and
(2) Hp.eE” (Sl S.llsy) H;LEE (SU _SNSZ)'

The result now follows from the inductive hypothesis applied to E”. [

Lemma B.4. Let (A,d) be a locally convex row-finite k-graph and let {t; : 2e A} be a
Cuntz—Krieger A-family in the sense of [13, Definition 3.3]. Then {t, : Ae A} satisfies
(iv) of Definition 2.5.

Proof. Let ve A’ let E be a finite exhaustive subset of vA, and let N = \/,_, d(4).
Now let E' = {iv: ieE,ves(A)A<N=4"} By [13, Lemma 3.6], and since E is
exhaustive, we have E' = vASY. Hence relation (4) of [13, Definition 3.3] ensures
that s, = > g Sus),, SO

H —8587) < H - sus =5, — Z sﬂsz =0. O

L€eE uekE' uevAsN

Proof of Proposition B.1. Lemma B.2 shows that the Cuntz—Krieger families of
Definition 2.5 give Cuntz—Krieger families as defined in [6,13]. Relations (i) and (ii)
of Definition 2.5 are obviously satisfied by the Cuntz—Krieger families of both [6,13].
In a l-graph, A™"(4, u) equals {(',s(u))} if uw= 12", {(s(A), )} if 4= py', and 0
otherwise. It follows that relation (iii) of Definition 2.5 is satisfied by the Cuntz—
Krieger families of [6]. Proposition 3.5 of [13] shows that for locally convex row-
finite k-graphs, Relation (iii) of Definition 2.5 is satisfied by the Cuntz—Krieger
families of [13]. The result now follows from Lemmas B.3 and B.4. [
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Appendix C. Checking the relations in terms of generators

Theorem C.1. Let (A,d) be a finitely aligned k-graph. Let

el

be a family of partial isometries in a C*-algebra. Then there is at most one Cuntz—
Krieger A-family {t, : A€ A} such that t;, = t, for all L€ (Uf;] A0 A°. Furthermore,
such a Cuntz—Krieger A-family exists if and only if

(@) {t,: ve A} is a collection of mutually orthogonal projections.
(D) 7,1, = tutg when L, p, o, fe (Uf;l AU A° satisfy Jo = pp.
(i) 17, = D) e amin i Lty for all 2, e Uf;l A%,
(iv) for every ve A° and every finite exhaustive E < Uf;l vAY,

II (& —uzp) =o.

LeE
Before proving Theorem C.1, we establish a number of preliminary results.

Lemma C.2. Let (A,d) be a finitely aligned k-graph. Suppose that {t, : .e A} is a
collection of partial isometries satisfying Definition 2.5() and (ii). Then {t; : Ae A}
satisfies Definition 2.5(iii) if and only if

k
Giu= Y. iy forall i e U A6 (C.1)

(o,B) € A™I (A1) i=1

Proof. Since (C.1) is a special case of Definition 2.5(iii), we need only show the “if ”
direction. This in turn will follow from [12, Lemma 9.2] if we can show that
Definition 2.5(1) and (ii) together with (C.1) imply relations (3) and (4) of [12,
Definition 7.1], namely that

6t =ty for all AeA; and (C.2)
1,= Z t,t; whenever F < A"v is finite. (C.3)
reF

An inductive argument on the length of 4 establishes (C.2). With this in hand, (C.3)
then follows from (C.1) together with Definition 2.5(ii) as in Lemma 2.7(iii). [

Proposition C.3. Let (A,d) be a finitely aligned k-graph. A  family
{t, : Le A} of partial isometries satisfying Definition 2.5(1)—(iii) is a Cuntz—Krieger
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A-family if and only if for every veA® and every finite exhaustive subset
Ec Uf;l A%,

II (& —uzp) =o. (C.4)

LeE

Notation C.4. In this section, we make use of the following notation:

® Given a set Ec A, define I(E) = |-, {4(0,¢) : 1€ E,d(),>0}.
® Given Ec /A and peA, let Ext(; E) =, p {2: (2, ) €A™ (u,2)}.
® Given EcA, let L(E) = Zf;l maxeg d(4);.

Lemma C.5. Let (A,d) be a finitely aligned k-graph and let ve A°. Suppose EcvA is
finite and exhaustive, and let pevA. Then Ext(u; E) is a finite exhaustive subset of

s(u)A.

Proof. Since E is finite and A is finitely aligned we know that Ext(yu; E) is finite, so
we need only check that Ext(y; E) is exhaustive. Let g es(u)A. Since E is exhaustive,

there exists A€ E with A™"(), uo)#0, say (x, f)e A™" (1, us). So jo = ucf, and
hence

(2(0, (d(2) vd(n)) = d(2)), (aB)(0, (d(2) vd(w)) — d(n))) € A™ (4, ).
Hence 7 = (af)(0, (d(1)vd(n)) — d(n)) belongs to Ext(u; E), and then

(eB)(d(a),d(0) vd(2)), (ef)(d(r),d(0) vd(1)) €A™ (,7). O

Lemma C.6. Let (A,d) be a finitely aligned k-graph, let veA®, and
suppose that EcvA\{v} is finite and exhaustive. Then I(E) is also finite and
exhaustive.

Proof. We have I(E) is finite because E is finite, so we just need to show
that I(E) is exhaustive. Let puevA. Since E is exhaustive, there exists A€eE
such that A™"(1, u)#0, say («,f)eA™"(A, u). Since i€E, we have d(1)#0,
so fix i such that d(2);#0; then A(0,e;)eI(E). Let p = (10)(0,d(u)ve;),
let n=pled(p)), and let (:=p(d(n),d(p)). Then 2i(0,e)n=p=pl, so
(n,0)e A™™(1(0,e;),u). Since pevA was arbitrary, it follows that I(E) is
exhaustive. O
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Lemma C.7. Let (A,d) be a finitely aligned k-graph, and let {t; : 1€ A} be a family of
partial isometries satisfying Definition 2.5(1)(iii). Let ve A°, let J.evA and suppose
that E=s(2)A is finite and satisfies [], g (ty;) — tt;) = 0. Then

to—ut; =[] (= tat},).

veE
Proof. Since 1,17, <1,£; for all pes(4)A, we have
(ty — 1) (ty — tint),) = t, — 131
for all ve E. It follows that

(o — 1:8) [] (10 = tnnt,) = 1o — 120}, (C.5)

veE
On the other hand,

(tv = 1;17) (H (1o = livt%))

veE

=1 (H (tv - l/lvl;\,v)> - t/ltj (H (tv - ti\’l:"iv))

veE

= (H (t, — zb,z;;,)> — (H(m; —~ t;ﬂ,z;fv)>

veE

= ( (to — zm})) - u(H (152 — mif))tj
veE veE

because [[,.p (1) — &t;) = 0 by hypothesis. [

Lemma C.8. Let (A,d) be a finitely aligned k-graph. Let ve A° and suppose E cvA is
finite. Suppose L.€I(E). Then L(Ext(1;E))<L(E).

Proof. Since Zel(E), we have d() = ¢; and A4’ e E for some i,/'. For je{l, ..., k},
we have

max d(v), = max d(A)vd —e;);. C.6
,max (v); ren X ((d(2)vd(n)) — e); (C.6)
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If i#j, then (C.6) becomes

max d(v). = max d(u), <max d(u);.
veExt(ZE) ( )j weEA™M (7 1) £0 ('u)] nek (lu)j

On the other hand, if i =, then we use (C.6) to calculate

max d(v), = max dvd e,
ve Ext(4E) ( )] HEE"Amin(;L7u>#® (( ( ) (.u)) )
< max ((d(2) vd(w) - e),
ne

= (ng d(u)i) -1

since 14" € E so there exist ue E with d(p),>1.

We therefore have

L(Ext(i;E)):i max d(v);

= e Ext(LE)

< > maxd(u); |+ <max d(u)l) —1

E E
jellany H€ re
k

< ax d(u).
2 max (W)

—L(E). O

Proof of Proposition C.3. We must show that for every veA° and every finite
exhaustive F v/, we have

II (o=t =o. (C.7)

neF

We proceed by induction on L(F). If L(F) = 1, then Fc Uf;l vA%, and (C.7) is an
instance of (C.4).

Now suppose that (C.7) holds whenever L(F)<n, and fix ve A° and F cvA finite
exhaustive with L(F) = n + 1. If ve F, there is nothing to prove, so assume without
loss of generality that v¢ F. Then I(F) is finite and exhaustive by Lemma C.6. Fix
Jel(F). By Lemma C.5, we know that Ext(4; F) is finite and exhaustive. By Lemma
C.8, we know that L(Ext(4;F))<n, so the inductive hypothesis ensures that
[T cexsr (1) — tu2y) = 0. 1t then follows from Lemma C.7 that

I w-w)=t-us. (C.8)

ve Ext(4;F)
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For each veExt(4; F), there exists pe F with Av = py’, so 1,15, <t,f,, and hence

I[I -wg)=]I] (6-u). (C9)

ve Ext(4;F) uel

We can therefore calculate

H (o — luZ;)< H H (o = twt},) by (C.9)

ueF Lel(F) \veExt(LF)
= H (t, — 1;15) by (C.8)
Lel(F)

=0 by (C4). O

Proof of Theorem C.1. The factorisation property and Definition 2.5(ii) show that
any Cuntz—Krieger A-family {7, : Ae A} satisfying ¢, = ¢, for all },e(Ufle Ay 0 A°
must satisfy

/
0=ty iy (C.10)

for each e and each factorisation 4= /4;---44; where the 4; belong to

(Uf;l A%) U A°. This proves that there is at most one such Cuntz—Krieger A-family.
Suppose that such a Cuntz—Krieger A-family {7, : A€ A} exists. Then conditions
(1)—(iv) of Theorem C.1 are immediate consequences of the Cuntz—Krieger relations.
Now suppose that {z; : }he(Uf-‘;l A9) 0 A"} satisfy (i)—(iv) of Theorem C.1. An
inductive argument using condition (ii) of Theorem C.1 shows that (C.10) gives a
well-defined family of partial isometries {¢; : Ae A}.

We have that {#,:7AeA} satisfies Definition 2.5(1) because this is precisely
condition (i) of Theorem C.1. Eq. (C.10) and the factorisation property for A ensure
that {7, : le A} satisfies Definition 2.5(ii). Condition (iii) of Theorem C.l and
Lemma C.2 then imply that {7, : Ae A} satisfies Definition 2.5(iii). We can now use
Proposition C.3 and condition (iv) of Theorem C.1 to show that {#, : 1€ A} satisfies
Definition 2.5(v). O
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