Idempotent lattices, Renner monoids and cross section lattices of the special orthogonal algebraic monoids

Zhenheng Li 1

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

Received 7 September 2001
Communicated by T.E. Hall

Abstract

Let $M_{SO}(n)$ be the special orthogonal algebraic monoid, T a maximal torus of the unit group, and \bar{T} the Zariski closure of T in the whole matrix monoid M_n. In this paper we explicitly determine the idempotent lattice $E(\bar{T})$, the Renner monoid R, and the cross section lattice Λ of M_{SO} in terms of the Weyl group and the concept of admissible sets (see Definition 3.1). It turns out that there is a one-to-one relationship between $E(\bar{T})$ and the admissible subsets, and that R is a submonoid of R_n, the Renner monoid M_n. Also Λ is a sublattice of Λ_n, the cross section lattice of M_n.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to give an explicit description of the idempotent lattices, the Renner monoids and the cross section lattices of the special orthogonal algebraic monoids.

(∗) Throughout this paper, K is an algebraically closed field.

E-mail address: zli3@uwo.ca.

1 Supported by Lex Renner’s grant from NSERC.

0021-8693/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2002.08.001
1.1. Idempotent lattices

Idempotents are very fundamental in the theory of a reductive algebraic monoid \(M \) [3, 4, 17]. In fact, \(M \) is pieced together from its unit group \(G \) and the set of idempotents \(E(M) \), since \(M = GE(M) = E(M)G \) [12, 15]. Let \(T \) be a maximal torus of \(G \) and \(\overline{T} \) the Zariski closure of \(T \) in \(M \). Let \(E(\overline{T}) \) be the set of idempotents in \(\overline{T} \). Then \(E(\overline{T}) \) is a lattice, called the idempotent lattice (of \(\overline{T} \)), and

\[
E(M) = \bigcup_{g \in G} g E(\overline{T}) g^{-1}
\]

[13, Corollary 1.6], [16, Corollary 6.10]. So, finding \(E(M) \) can be reduced to find \(E(\overline{T}) \). Using torus embeddings [2], Putcha has found that there is a lattice anti-isomorphism from the face lattice of a convex polyhedral cone to the idempotent lattice \(E(\overline{T}) \) in [13]. A detailed approach to finding \(E(\overline{T}) \) has been given by Solomon in [20, Section 5]. As an example, the idempotent lattice of the symplectic monoid was obtained by using the concept of admissible subsets [20, p. 336].

Inspired by Solomon’s work, we explicitly determine the idempotent lattice of the special orthogonal monoid \(MSO_n \) using the concept of admissible subsets in Section 3. The main result of this section is as follows (Theorem 3.2).

Theorem A. Let \(E_{ij} \) (\(i, j = 1, \ldots, n \)) be an elementary matrix. Then

(a) The map

\[I \mapsto e_I = \sum_{j \in I} E_{jj} \]

is bijective from the admissible subsets of \(\{1, \ldots, n\} \) to \(E(\overline{T}) \), where \(e_I = 0 \) if \(I = \emptyset \).

(b) The set \(E(\overline{T}) \) of idempotents in \(\overline{T} \) is

\[E(\overline{T}) = \{ e_I \mid I \subseteq \{1, \ldots, n\} \text{ is admissible} \}. \]

(c) \(e_{I_1} \cdot e_{I_2} = e_{I_1 \cup I_2} \) for any \(e_{I_1}, e_{I_2} \in E(\overline{T}) \).

1.2. Cross section lattices

The cross section lattice \(\Lambda \) of \(M \) was first introduced by M. Putcha [14]. Let \(B \subseteq G \) be a Borel subgroup with \(T \subseteq B \). The the cross section lattice is defined as follows:

\[
\Lambda = \Lambda(B) = \{ e \in E(\overline{T}) \mid Be = eBe \}.
\]

This is not the usual definition, but is equivalent to it for reductive algebraic monoids [16, p. 94], [18, p. 310]. It is a key concept. For example, \(M = \bigsqcup_{e \in \Lambda} GeG \) and \(R = \bigsqcup_{e \in \Lambda} WeW \).
We describe the cross section lattices of the special orthogonal monoids in Section 4. The following theorem is the main result (Proposition 4.2).

Theorem B. The cross section lattice of \(MSO_n \) is

\[
A = \left\{ I_n, \begin{pmatrix} I_l & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 \\ \ddots \\ 0 \end{pmatrix}, \begin{pmatrix} I_{l-1} & 0 \\ 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}, 0 \right\}
\]

\[= \{ e_I \in E(T) \mid I \text{ is a standard admissible subset of } \{1, \ldots, n\} \} \]

1.3. The Renner monoids

The Renner monoid \(R \) plays the same role for \(M \) that the Weyl group does for a reductive algebraic group. The Renner decomposition and Renner system in \(M \) are now central ideas in the structure theory. Many questions about \(M \) may be reduced to questions about \(R \) [8–11,20]. Let \(B \subseteq G \) a Borel subgroup with \(T \subseteq B \), \(N \) the normalizer of \(T \) in \(G \), \(\overline{N} \) the Zariski closure of \(N \) in \(M \). Then \(\overline{N} \) is a unit regular inverse monoid which normalizes \(T \). So, \(R = \overline{N}/T \) is a monoid (the so-called Renner monoid now) which contains the Weyl group \(W = N/T \) as its unit group. Renner [18] defined this concept, and found an analogue of the Bruhat decomposition for reductive algebraic monoids. Also he obtained a monoid version of the Tits System.

Let \(M = M_n \). Then the Renner monoid \(R_n \) of \(M \) may be identified with the monoid of all zero–one matrices which have at most one entry equal to one in each row and column, i.e., \(R_n \) consists of all injective, partial maps on a set of \(n \) elements. The cardinality of \(R_n \) is \(|R_n| = \sum_{r=0}^n \binom{n}{r}^2 r! \). The unit group of \(R_n \) is the group \(P_n \) of permutation matrices.

Let \(SO_n (n = 2l) \) be the special orthogonal algebraic group over \(K \) (\(\text{char } K \neq 2 \)) (see Humphreys [5]), and let \(G = K^* SO_n \subseteq GL_n \). Then \(G \) is a connected reductive group and \(MSO_n = \overline{G} \), the Zariski closure of \(G \) in \(M_n \), is a reductive algebraic monoid called the special orthogonal monoid (see Definition 2.1). We determine the Renner monoid \(R \) of \(MSO_n \) and the cardinality of \(R \) in Section 5. It turns out that \(R \) is a submonoid of \(R_n \). The following theorem is a summary of Theorems 5.7 and 5.9 and Corollary 5.12.

Theorem C. Keeping the same notations above. Then

\[
(\text{a) } R = \left\{ \sum_{i \in I, w \in W} E_{i,w} \in R_n \mid I \subseteq \{1, \ldots, n\} \text{ is admissible} \right\}
\]

\[= \left\{ x \in R_n \mid x \text{ is singular, } D(x) \text{ and } R(x) \text{ are admissible, and of the same type if } |D(x)| = |R(x)| = l \right\} \cup W,
\]

where \(D(x) \) is the domain of \(x \) and \(R(x) \) is the range of \(x \);
\[(b) \quad |\mathcal{R}| = \sum_{i=0}^{l-1} \left(\left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i} \right) ! \right) + (2^l + 1) 2^{l-1} ! \quad \text{for } l \geq 1. \]

2. Preliminaries and basic concepts

The whole matrix monoid \(M_n \) is an algebraic monoid with the general linear group \(GL_n \) as its unit group, and \(GL_n = M_n \), the Zariski closure of \(GL_n \) in \(M_n \). Let
\[B_n = B_n(K) = \{(a_{ij}) \in M_n \mid a_{ij} = 0 \text{ if } i < j \} \]
be a Borel subgroup of \(GL_n \). The monoid \(D_n = D_n(K) \) consists of diagonal matrices in \(M_n \). The subgroup \(T_n = T_n(K) \) of \(D_n \) consisting of all invertible diagonal matrices is a maximal torus of \(GL_n \), and \(T_n \) is the Zariski closure of \(T_n \) in \(M_n \). We use \(\mathcal{R}_n \) to denote the Renner monoid of \(M_n \). Then (see [18, p. 327])
\[\mathcal{R}_n = \{(a_{ij}) \in M_n \mid a_{ij} \text{ is 0 or 1 and has at most one non-zero entry in each row and column} \}. \]
The set of the idempotents of \(\mathcal{R}_n \) is
\[E(\mathcal{R}_n) = \{(a_{ij}) \in D_n \mid a_{ij} = 0 \text{ or 1 for all } i, j \}. \]
The cross section lattice of \(M_n \) is
\[A_n = A(B_n) = \{ e \in E(\mathcal{T}_n) \mid B_n e = e B_n e \} = \left\{ \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix}, (0) \right\}. \]

It is well known that the unit group of \(\mathcal{R}_n \) is the Weyl group of \(GL_n \), which is isomorphic to the symmetric group \(S_n \) on \(n \) letters [6,7]. Let \(P_n \subseteq GL_n \) be the group of permutation matrices. Then \(S_n \) is isomorphic to \(P_n \) by the mapping \(\pi \mapsto \sum_{j=1}^{n} E_{\pi j, j} \), where \(\pi \in S_n \) and \(E_{\pi j, j} \) is an elementary matrix.

From now on, let \(n = 2l \) be even and \(J_l = \begin{pmatrix} 0 & J_l \\ J_l & 0 \end{pmatrix} \in M_n \) be the symmetric matrix, where
\[J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \]
is an \(l \times l \) matrix. The special orthogonal group is by definition
\[G_0 = SO_n = \{ g \in SL_n \mid g^T J_l g = J_l \}, \]
which is connected and reductive.
Remark 1. The definition of \(\text{SO}_n \) here is from Humphreys [5, pp. 52–53].

Let \(G = K^*G_0 \subseteq \text{GL}_n \). Then \(G \) is a connected reductive group with rank \(r = l + 1 \) and semisimple rank \(l \) [19, 20].

Definition 2.1. The monoid \(\overline{G} \) (Zariski closure of \(G \) in \(\text{M}_n \)) is called the special orthogonal monoid and will be denoted by \(\text{MSO}_n \), where \(n = 2l \).

Let \(T_0 = G_0 \cap T_n \). Elements in \(T_0 \) have the shape

\[
t = \text{diag}(t_1, \ldots, t_l, t_1^{-1}, \ldots, t_l^{-1})
\]

where \(t_1, \ldots, t_l \) are arbitrary in \(K^* \). Thus \(T_0 \) is a maximal torus of dimension \(l \). Let us recall some facts about the Weyl group \(W(G, T) \). If \(\pi \in S_n \), let \(p_{\pi} = \sum_{i=1}^{n} E_{\pi,i,i} \in P_n \) be the corresponding permutation matrix. Then \(p_{\pi}(a_{ij})(a_{ij})^{-1}p_{\pi}^{-1} = (a_{\pi(i),\pi(j)}) \) where \((a_{ij}) \) is any \(n \times n \) matrix. It follows that \(p_{\pi}^{-1}(a_{ij})p_{\pi} = p_{\pi^{-1}}(a_{ij})p_{\pi} = (a_{\pi(i),\pi(j)}) \).

Define an involution \(\theta : i \mapsto l + 1 - i \) of \(\{1, 2, \ldots, n\} \) by

\[
\theta(i) = n + 1 - i \quad \text{for} \quad 1 \leq i \leq n.
\]

Let \(C \) denote the centralizer of \(\theta \) in \(S_n \). Then \(p_{\pi} \) normalizes \(T_0 \) if and only if \(\pi \in C \). The group \(C \) is a semidirect product \(C = C_1C_2 \) where \(C_1 \) is a normal abelian subgroup of order \(2^l \) generated by the transpositions \((11), \ldots, (l l)\) and \(C_2 \simeq S_l \) consists of all permutations \(\pi \in S_n \) which stabilize \(\{1, \ldots, l\} \) and act on the complement \(\{l + 1, \ldots, n\} \) in the unique manner consistent with the assertion that \(\pi \in C \). Note that permutation matrices in \(C \) need not be in \(\text{SO}_n \). So, let \(C'_1 \) be a subgroup of \(C_1 \) generated by \((11)(22), (22)(33), \ldots, (l - 1 l - 1)\). Then \(C'_1 \) consists of even permutations in \(C_1 \). Let \(C'_2 \simeq C_2 \) and \(C' = C'_1C'_2 \). It follows that \(C' \subseteq \text{SO}_n \) and \(|C'| = 2^{l-1}l! \). But \(\omega_1T_0 = \omega_2T_0 \) if and only if \(\omega_1 = \omega_2 \) for any \(\omega_1, \omega_2 \in C' \). Thus \(W \) is isomorphic to \(C' \subseteq S_n \). Also, \(W \) is isomorphic to \((Z_2)^{l-1} \rtimes S_l \).

Let \(T = K^*T_0 \). Then \(T \) is a maximal torus of \(G \) and the Weyl group \(W(G, T) \) is isomorphic to \(W(G_0, T_0) \). We let \(W \) denote either of them in what follows. If \(n = 4 \), then \(\theta = (11)(22) = (14)(23) \), and \(C'_1 \) is a subgroup of \(C_{S_4}(\theta) \) generated by \((14)(23) \). So

\[
C'_1 = \{1, (14)(23)\}.
\]

Taking \(\pi = (12)(34) \), we see that \(\theta\pi = \pi\theta \) which means that \(\pi \in C_{S_4}(\theta) \). It is clear that \(\pi \) stabilizes \(\{1, \ldots, l\} = \{1, 2\} \) and \(\pi \not\in C_1 \). Let \(C'_2 \) be a subgroup of \(C_{S_4}(\theta) \) generated by \(\pi \). Then

\[
C'_2 = \{1, (12)(34)\}.
\]
Thus the Weyl group $W = C'_1C'_2 = \{1, (14)(23), (12)(34), (13)(24)\}$. The corresponding matrix form of the Weyl group is

$$W = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \right\}.$$

3. Idempotent lattice $E(\mathcal{T})$ of MSO_n

Just as is used in the case of symplectic monoid, we need the following definition due to [20, p. 336] to determine the idempotent lattice $E(\mathcal{T})$ of MSO_n.

Definition 3.1. A subset $I \subseteq \{1, \ldots, n\}$ is called admissible if $j \in I$ implies $\bar{j} \notin I$, where $\bar{j} = \theta(j)$ as above; the empty set ϕ and $\{1, \ldots, n\}$ are also considered to be admissible.

Notice that W maps admissible sets to admissible sets and $w^{-1}e_w = e_{wI}$ for any $w \in W$.

If $n = 4$, then the admissible subsets of $\{1, 2, 3, 4\}$ are

$\phi, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{1, 2, 3, 4\}$.

A similar discussion to [20, p. 336] gives the following theorem describing the relationship between admissible subsets and idempotent lattice $E(\mathcal{T})$ of MSO_n. We omit the similar argument to that of [20].

Theorem 3.2. (a) The map

$$I \mapsto e_I = \sum_{j \in I} E_{jj}$$

is bijective from the admissible subsets of $\{1, \ldots, n\}$ to $E(\mathcal{T})$, where $e_I = 0$, if $I = \phi$.

(b) The idempotent lattice $E(\mathcal{T})$ is

$$E(\mathcal{T}) = \{ e_I \mid I \text{ is admissible} \}.$$

(c) $e_{I_1} \cdot e_{I_2} = e_{I_1 \cup I_2}$ for any $e_{I_1}, e_{I_2} \in E(\mathcal{T})$.

If $n = 4$, the set of idempotent lattice $E(\mathcal{T})$ of MSO_4 is

$$E(\mathcal{T}) = \{ 0, 1, E_{11}, E_{22}, E_{33}, E_{44}, E_{11} + E_{22}, E_{33} + E_{44}, E_{11} + E_{33}, E_{22} + E_{44} \}.$$

Let $E_i(\mathcal{T}) \subseteq E(\mathcal{T})$ denote the set of rank i idempotent elements in \mathcal{T}, where $i = 0, 1, \ldots, l, n$. Then by Theorem 3.2 we have the following corollary.
Corollary 3.3. For $i = 0, 1, \ldots, l, n$,

(a) $E_i(T) = \{ e_I \mid I \subseteq \{1, \ldots, n\} \text{ is admissible and } |I| = i \}$;

(b) $|E_i(T)| = \left\{ \sum_{j=0}^{i} \binom{l}{j} \binom{l-j}{i-j} \right\} 1$, if $i = 0, 1, \ldots, l$,

$\sum_{j=0}^{i} \binom{l-j}{i-j}$, if $i = n$.

Corollary 3.4. (a) $E_1(T) = \{ E_{ii} \mid i = 1, \ldots, n \}$.

(b) $|E_1(T)| = n$.

Remark 2. There are no admissible subsets with size k ($l < k < n$). The rank one elements in $E(T)$ are in one-to-one correspondence with the admissible subsets containing exactly one element of $\{1, \ldots, n\}$.

Corollary 3.5.

$|E(T)| = \sum_{i=0}^{l} \sum_{j=0}^{i} \binom{l}{j} \binom{l-j}{i-j} + 1$.

Proof. By Corollary 3.3 and $|E(T)| = \sum_{i=0}^{l} |E_i(T)| + 1$. \hfill \Box

4. The cross section lattice of MSO_n

An admissible subset I is referred to as standard if there is an integer $i \in \{1, \ldots, l, n\}$ such that $I = \{1, \ldots, i\}$; the empty set and the set $\{1, \ldots, l-1, l+1\}$ are also considered to be standard. For example, the standard admissible subsets of $\{1, 2, 3, 4\}$ are $\emptyset, \{1\}, \{2\}, \{1, 3\}, \{1, 2, 3, 4\}$.

To define the cross section lattice, we need some notations: M is a reductive monoid, G is its unit group, T is a maximal torus of G, and $B \subseteq G$ is a Borel subgroup with $T \subseteq B$.

Definition 4.1. The cross section lattice Λ of M is defined by

$\Lambda = \Lambda(B) = \{ e \in E(T) \mid Be = e Be \}$.

In case $M = MSO_n$, it follows that $G = K^*SO_n$ and that $B = G \cap B_n$ is a Borel subgroup of G.

Remark 3. If G is any algebraic group, then it is not always the case that $G \cap B_n$ is a Borel subgroup of G [1,21].
Proposition 4.2. The cross section lattice of MSO_n is

$$\Lambda = \{ e_I \in E(\mathcal{T}) \mid I \text{ is a standard admissible subset of } \{1, \ldots, n\} \}$$

$$= \left\{ I_n, \left(\begin{array}{c} I_l \ 0 \end{array} \right), \left(\begin{array}{cccc} 0 & 1 & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{array} \right), \left(\begin{array}{c} I_{l-1} \ 0 \end{array} \right), \ldots, \left(\begin{array}{c} I_1 \ 0 \end{array} \right), 0 \right\}.$$

Proof. It is true that Λ is as stated by calculating directly from the definition. \(\square\)

We now consider some examples. If $n = 2$, then all the admissible subsets of $\{1, 2\}$ are \emptyset, $\{1\}$, $\{2\}$, $\{1, 2\}$. They are all standard. So, the cross section lattice of MSO_2 is

$$\Lambda = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \right\}.$$

The cross section lattice of MSO_4 is given by

$$\Lambda = \left\{ (0), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \right\}.$$

5. The Renner monoid of MSO_n

The main purpose of this section is to determine the Renner monoid of the special orthogonal algebraic monoid MSO_n, even case. We get some by-products as well, such as the cardinalities of the Renner monoids.

Let $R(i)$ be the set of rank i elements, where $i = 0, 1, \ldots, n$. Then we have

Lemma 5.1. $R(1) = \{ E_{ij} \mid i, j = 1, \ldots, n \}$ and $|R(1)| = n^2$.

Proof. It suffices to show that $\{ E_{ij} \mid i, j = 1, \ldots, n \} \subseteq R(1)$.

Firstly, we prove that $\{ E_{1,j} \mid j = 1, \ldots, n \} \subseteq R(1)$. There are three cases:

(a) If $j \in \{1, \ldots, l\}$, let $w = (1j)(\bar{j} \bar{l})$. Then w stabilizes $\{1, \ldots, l\}$ and $w\theta = \theta w$. It follows that $w \in W_2 \subseteq W$ and $w(j) = 1$.

(b) If $j = \bar{l} = n \in \{l + 1, \ldots, n\}$, let $w = (1j)(\bar{j} \bar{l}) = (1\bar{l})(\bar{j} \bar{l})$. Then $w \in W_1 \subseteq W$ and $w(j) = 1$.

(c) If $j \in \{l + 1, \ldots, n\}$ but $j \neq \bar{l} = n$, let $w_2 = (j \bar{l})(\bar{j} \bar{l})$. Then w_2 stabilizes $\{1, \ldots, l\}$ and $w_2\theta = \theta w_2$. So $w_2 \in W_2 \subseteq W$ and $w_2(j) = 1$. Let $w_1 = (1\bar{l})(\bar{j} \bar{l}) \in W_1$ and $w = w_1w_2$. Then $w \in W$ and $w(j) = w_1(w_2(j)) = w_1(\bar{1}) = 1$.

So, $E_{ij} = E_{i,w_1} = E_{11} w \in E_{11} W$ for $j = 1, \ldots, n$. Thus $\{E_{ij} \mid j = 1, \ldots, n\} = E_{11} W$, which is a subset of $\mathcal{R}(1)$.

Similarly, $\{E_{ij} \mid j = 1, \ldots, n\} = E_{ii} W \subseteq \mathcal{R}(1)$ for $i = 2, \ldots, n$.

Therefore, $\mathcal{R}(1) = \{E_{ij} \mid i, j = 1, \ldots, n\}$ with size n^2. □

Remark 4. Lemma 5.1 shows that $\mathcal{R}(1) = \mathcal{R}_n(1)$, the set of rank one elements in \mathcal{R}_n.

However, $\mathcal{R}(2) \neq \mathcal{R}_n(2)$ since $[1, n]$ is not an admissible subset of $\{1, \ldots, n\}$, and so $E_{11} + E_{n,n} \notin \mathcal{R}(2)$, but $E_{11} + E_{n,n} \in \mathcal{R}_n(2)$. For the same reason, we know that $\mathcal{R}(i) \neq \mathcal{R}_n(i)$, for $i = 3, \ldots, n$.

Lemma 5.2. For any admissible subset $I \subseteq \{1, \ldots, n\}$ with $|I| = i$, where $i = 1, \ldots, l - 1, n$, there exist $w \in W$ and a unique standard admissible subset $I_0 = \{1, \ldots, i\}$ such that $wI = I_0$.

Proof. If $I = \{1, \ldots, n\}$, then $I_0 = I$ and $w = 1 \in W$, and we are done. Now let I be admissible and $I \neq \emptyset$. Use induction on the size i of the admissible subset I. If $i = 1$, then $I = \{j\}$ for some $j \in \{1, \ldots, n\}$ and $I_0 = \emptyset$. By Lemma 5.1, we know there exists $w \in W$ such that $w(I) = I_0$.

Now suppose that $I \subseteq \{1, \ldots, n\}$ is any admissible subset with $1 < |I| = i \leq l - 1$. Let $I = J \cup \{k\}$ where J is a subset of I with $|J| = i - 1$ and $k \in I \setminus J$. It follows that J is admissible. By the induction hypothesis, there exist $w' \in W$ and a unique standard admissible subset $I' = \{1, \ldots, i - 1\}$ such that $w'J = I'$. Then $wI = I' \cup \{p\}$ where $p = w'(k) \notin I'$. There are four cases for p:

1. If $p = i$, then $I_0 = I' \cup \{i\}$ and $w = w'$ are what we want.
2. If $p \in \{1, \ldots, l\}$, and $p \neq i$, let $w_1 = (p)(\tilde{p}i)$. Then $w_1 \theta = \theta w_1$ and w_1 stabilizes $\{1, \ldots, l\}$. Thus, $w_1 \in W_2 \subseteq W$. Note that $w_1(j) = j$ for $j \in I'$. Taking $w = w_1 w'$, we obtain that $w \in W$ and $w(I) = w_1(I') = I' \cup \{w_1(p)\} = I_0$.
3. If $p = i = n + 1 - i$, then $w_1 = (i)(\tilde{i}l)$ with $i \leq l - 1$. Then $w_1 \in W_1 \subseteq W$ and $w_1I' = 1$. Let $w = w_1 w'$. We obtain that $w \in W$ and $w(I) = w_1(I') = I_0$.
4. If $p \in \{l + 1, \ldots, n\}$ but $p \neq i = n + 1 - i$, Let $w_1 = (p)(\tilde{p}i)$. Then $w_1 \in W_2 \subseteq W$ and $w_1(j) = j$ for $j \in I'$. Taking $w = (i)(\tilde{i}l)w_1 w'$, we get $w \in W$ and $w(I) = (i)(\tilde{i}l)w_1(I' \cup \{p\}) = (i)(\tilde{i}l)(I' \cup \{i\}) = I' \cup \{i\} = I_0$.

This proves the theorem. □

Corollary 5.3. The Weyl group W acts transitively on $E_1(\overline{T})$ by $w^{-1} e_i w = e_{w_i}$ for $i = 1, \ldots, l - 1$.

Lemma 5.4. Let $I \subseteq \{1, \ldots, n\}$ be admissible with $|I| = l$. Then there exists $w \in W$ such that either $w(I) = \{1, \ldots, l\}$ or $w(I) = \{1, \ldots, l - 1, l + 1\}$.

Proof. Since $I \subseteq \{1, \ldots, n\}$ is an admissible subset with $|I| = l$, then $I = J \cup \{k\}$ where J is a subset of I with $|J| = l - 1$ and $k \in I \setminus J$. It follows that J is admissible. By
Lemma 5.2, there exist \(w \in W \) and a unique standard admissible subset \(I' = \{1, \ldots, l - 1\} \) such that \(wJ = I' \). Then \(wI = I' \cup \{p\} \) where \(p = w(k) \notin I' \). We claim that \(p = l \) or \(l + 1 \). Otherwise, \(p \in \{l + 2, l + 3, \ldots, n\} \). It follows that \(\theta(p) = \bar{p} = n + 1 - p \in I' \subseteq w'(I) \), i.e., \(p \) and \(\bar{p} \) are both in \(w'(I) \), which is impossible since \(w'(I) \) is admissible. This proves the theorem. \(\Box \)

Corollary 5.5. Under the action, by conjugation, of \(W \) on \(E_1(\mathcal{T}) \), there are exactly two orbits. One is \(WE_1W \) and the other is \(WE_2W \), where \(J_1 = \{1, \ldots, l\} \) and \(J_2 = \{1, \ldots, l - 1, l + 1\} \).

We will use the following definition soon.

Definition 5.6. An admissible subset \(I \) of size \(l \) is called type I if there exists \(w \in W \) such that \(wI = J_1 = \{1, \ldots, l - 1, l\} \); type II if \(wI = J_2 = \{1, \ldots, l - 1, l + 1\} \).

Theorem 5.7. With the notation above, the Renner monoid of the special orthogonal monoid \(MSO_n \) is as follows:

\[
\mathcal{R} = \left\{ \sum_{i \in I, w \in W} E_{i,wi} \in \mathcal{R}_n \ \middle| \ I \subseteq \{1, \ldots, n\} \text{ is admissible} \right\}.
\]

Proof. Since \(\mathcal{R} = E(\mathcal{T})W \) by [20, Proposition 3.2.1], it suffices to compute \(e_Iw \) for every \(e_I \in E(\mathcal{T}) \), \(w \in W \), where \(I \) is admissible. From Theorem 4.2(a) we know that \(e_I = \sum_{i \in I} E_{ii} \). Thus \(e_Iw = \sum_{i \in I} E_{ii}w = \sum_{i \in I} E_{i,wi} \), and so the theorem follows. \(\Box \)

Corollary 5.8.

\[
\mathcal{R} = \left\{ \sum_{i \in I, w \in W} E_{wi,i} \in \mathcal{R}_n \ \middle| \ I \subseteq \{1, \ldots, n\} \text{ is admissible} \right\}.
\]

Proof. This result comes from the fact that \(\mathcal{R} = WE(\mathcal{T}) \), and \(w^{-1}e_j = \sum_{i \in I} E_{wi,j} \). \(\Box \)

Theorem 5.9.

\[
\mathcal{R} = \left\{ x \in \mathcal{R}_n \ \middle| \ x \text{ is singular}, D(x) \text{ and } R(x) \text{ are admissible} \right. \\
\left. \text{and of the same type if } |D(x)| = |R(x)| = l \right\} \cup W,
\]

where \(D(x) \) is the domain of \(x \) and \(R(x) \) is the range of \(x \).

Proof. Let \(\mathcal{R}' \) denote the set of the right-hand side in the theorem. It follows from Theorem 5.7 that \(\mathcal{R} \subseteq \mathcal{R}' \) since \(W \) maps admissible sets to admissible sets and both \(wI \) and \(I \) are of the same type if \(|I| = l \).

We now prove the other inclusion. For any \(x \in \mathcal{R}' \), if \(x \in W \), then \(x \in \mathcal{R} \) since \(W \subseteq \mathcal{R} \). If \(x \notin W \), then \(x \) is singular and both \(D(x) \) and \(R(x) \) are admissible. So, \(|D(x)| = |R(x)| \), denoted by \(i \). Then \(i \leq l \).
(a) If \(i \neq l \), it follows from Lemma 5.2 that there exist \(w_1, w_2 \in W \) and a unique standard admissible set \(I_0 = \{1, \ldots, i \} \) (\(i \leq l - 1 \)) such that

\[
D(x) = w_2 R(x) = w_1 D(x) = w_2 R(x) = I_0.
\]

Thus \(w_1^{-1}xw_2 = e_{I_0} \in A \subseteq \mathcal{R} \), and hence \(x = w_1 e_{I_0}w_2^{-1} \in \mathcal{R} \setminus W \), since \(\mathcal{R} = WE(\mathcal{T}) = E(\mathcal{T})W \) and \(x \) is singular.

(b) If \(i = l \), then \(D(x) \) and \(R(x) \) are of the same type because of \(x \in \mathcal{R}' \). By Lemma 5.4, there are \(w_1 \) and \(w_2 \) in \(W \) such that

\[
w_1 D(x) = w_2 R(x) = \begin{cases} J_1, & \text{if } D(x) \text{ and } R(x) \text{ are of type I}, \\ J_2, & \text{if } D(x) \text{ and } R(x) \text{ are of type II}, \end{cases}
\]

where \(J_1 = \{1, \ldots, l - 1, l\} \) and \(J_2 = \{1, \ldots, l - 1, l + 1\} \). It follows that \(w_1^{-1}xw_2 = e_{J_1} \in A \subseteq E(\mathcal{T}) \) or \(w_1^{-1}xw_2 = e_{J_2} \in A \subseteq E(\mathcal{T}) \). That is, \(x = w_1 e_{J_1}w_2^{-1} \) or \(x = w_1 e_{J_2}w_2^{-1} \). Hence \(x \in \mathcal{R} \) since \(\mathcal{R} = WE(\mathcal{T}) = E(\mathcal{T})W \).

Therefore \(\mathcal{R} = \mathcal{R}' \), i.e., the theorem is true. \(\square \)

Remark 5. In the proof above, we obtained \(\mathcal{R} = W Aw \) as well.

The Renner monoid of \(MSO_2 \) is

\[
\mathcal{R} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.
\]

Let us now consider the Renner monoid of \(MSO_4 \). The idempotent set \(E(\mathcal{R}) = E(\mathcal{T}) \) of \(MSO_4 \) is a union of sets of rank \(i \) idempotent elements in \(\mathcal{T} \), for \(i = 0, 1, 2, 4 \):

\[
E(\mathcal{T}) = E_0(\mathcal{T}) \cup E_1(\mathcal{T}) \cup E_2(\mathcal{T}) \cup E_4(\mathcal{T}),
\]

where

\[
E_0(\mathcal{T}) = \{0\}, \quad E_1(\mathcal{T}) = \{E_{11}, E_{22}, E_{33}, E_{44}\},
\]

\[
E_2(\mathcal{T}) = \{E_{11} + E_{22}, E_{33} + E_{44}, E_{11} + E_{33}, E_{22} + E_{44}\},
\]

\[
E_4(\mathcal{T}) = \{E_{11} + E_{22} + E_{33} + E_{44}\}.
\]

Since \(\mathcal{R} = E_0(\mathcal{T})W \cup E_1(\mathcal{T})W \cup E_2(\mathcal{T})W \cup E_4(\mathcal{T})W \), we get

\[
\mathcal{R} = \{0, E_{11}, E_{12}, E_{13}, E_{14}, E_{21}, E_{22}, E_{23}, E_{24}, E_{31}, E_{32}, E_{33}, E_{34}, E_{41}, E_{42}, E_{43}, E_{44}, E_{41} + E_{42}, E_{41} + E_{43}, E_{42} + E_{43}, E_{11} + E_{22}, E_{14} + E_{23}, E_{12} + E_{21}, E_{13} + E_{24}, E_{33} + E_{44}, E_{32} + E_{41}, E_{34} + E_{43}, E_{31} + E_{42}, E_{11} + E_{33}, E_{14} + E_{32}, E_{12} + E_{34}, E_{13} + E_{31}, E_{22} + E_{44}\},
\]
\[E_{23} + E_{41}, E_{21} + E_{43}, E_{24} + E_{42}, E_{11} + E_{22} + E_{33} + E_{44}, E_{14} + E_{23} + E_{32} + E_{41}, E_{12} + E_{21} + E_{34} + E_{43}, E_{13} + E_{24} + E_{31} + E_{42} \].

The following result is an analogue of [18, Proposition 7.3].

Proposition 5.10. For any \(e_I \in A \) with \(|I| = i \), where \(i = 0, 1, \ldots, l - 1 \),

\[W_{e_I} W = \{ x \in \mathcal{R} \mid \text{rank}(x) = i \} = \{ x \in \mathcal{R} \mid x \text{ has } i \text{ nonzero rows} \} = \{ x \in \mathcal{R}_n \mid \text{D}(x) \text{ and } R(x) \text{ are admissible with } |D(x)| = |R(x)| = i \} \].

Furthermore,

\[|W_{e_I} W| = \left[\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right]^{2} i! \],

where \(D(x) \) is the domain of \(x \) and \(R(x) \) the range of \(x \).

Proof. Observe that \(Ge_I G = \bigsqcup_{x \in W_{e_I} W} \text{BxB} \) consists of \(n \times n \) matrices of rank \(i \) in \(MSO_n \) where \(i = |I| = 0, 1, \ldots, l - 1 \). One gets the first part of the proposition.

Now, there are \(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \) ways to choose \(i \) of the \(n \) rows making \(D(x) \) admissible. There are the same number of ways to choose \(i \) of the \(n \) columns such that \(R(x) \) is admissible. For each pair of the choices of the rows and columns, there are \(i! \) elements of \(\mathcal{R} \) of rank \(i \) with a nonzero entry in each of the \(i \) rows and each of the \(i \) columns chosen. Thus, there are \(\left[\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right]^{2} i! \) possibilities. \(\square \)

Similarly, we get the following

Proposition 5.11. Let \(J_1 = \{1, \ldots, l\} \) and \(J_2 = \{1, \ldots, l - 1, l + 1\} \). Then

\[W_{e_{J_1}} W \cup W_{e_{J_2}} W = \{ x \in \mathcal{R} \mid \text{rank}(x) = l \} = \{ x \in \mathcal{R} \mid x \text{ has } l \text{ nonzero rows} \} = \{ x \in \mathcal{R}_n \mid \text{D}(x) \text{ and } R(x) \text{ are admissible and of the same type with } |D(x)| = |R(x)| = l \} \].

Furthermore,

\[|W_{e_{J_1}} W \cup W_{e_{J_2}} W| = \frac{1}{2} \left[\sum_{j=0}^{l} \binom{l}{j} \right]^{2} l! \],

where \(D(x) \) is the domain of \(x \) and \(R(x) \) the range of \(x \).
Proof. The first part follows from Theorem 7.15 above.

Now, there are \(\frac{1}{2} \sum_{j=0}^{l} \binom{l}{j} \) ways to choose \(l \) of the \(n \) rows such that the resulting subsets are of type I (respectively II). There are the same number of ways to choose \(l \) of the \(n \) columns. For each pair of the choices of the rows and columns there are \(l! \) elements of \(R \) of rank \(l \) with a nonzero entry in each of the \(l \) rows and each of the \(l \) columns chosen. Thus there are \(\frac{1}{4} \left[\sum_{j=0}^{l} \binom{l}{j} \right]^2 l! \) possibilities for elements on \(W e_{\lambda_1} W \) (respectively \(W e_{\lambda_2} W \)). Hence, the number of elements in \(W e_{\lambda_1} W \cup W e_{\lambda_2} W \) is as stated. \(\square \)

Corollary 5.12. \(|R| = \sum_{i=0}^{l-1} \left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right)^2 i! \) for \(l \geq 1 \).

Proof. It is clear that

\[
|R| = \sum_{i=0}^{l-1} \left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right)^2 i! + |W e_{\lambda_1} W \cup W e_{\lambda_2} W| + |W|
\]

\[
= \sum_{i=0}^{l-1} \left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right)^2 i! + \frac{1}{2} \left[\sum_{j=0}^{l} \binom{l}{j} \right]^2 l! + 2^{l-1} l!
\]

\[
= \sum_{i=0}^{l-1} \left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right)^2 i! + \frac{1}{2} 2^i l! + 2^{l-1} l!
\]

\[
= \sum_{i=0}^{l-1} \left(\sum_{j=0}^{i} \binom{i}{j} \binom{l-j}{i-j} \right)^2 i! + (2^i + 1) 2^{l-1} l!.
\]

For instance, the Renner monoid of \(MSO_4 \) has 37 elements. \(\square \)

Acknowledgment

The author thanks Professor Lex Renner for his supervision.

References