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ABSTRACT We present experimental results on the bacterium Salmonella typhimurium which show that cells of chemotactic
strains aggregate in response to gradients of amino acids, attractants that they themselves excrete. Depending on the conditions
under which cells are cultured, they form periodic arrays of continuous or perforated rings, which arise sequentially within a
spreading bacterial lawn. Based on these experiments, we develop a biologically realistic cell-chemotaxis model to describe
the self-organization of bacteria. Numerical and analytical investigations of the model mechanism show how the two types of
observed geometric patterns can be generated by the interaction of the cells with chemoattractant they produce.

INTRODUCTION

Conditions have been found under which chemotactic strains
of the bacterium Escherichia coli aggregate to form stable
macroscopic patterns of surprising complexity. These pat-
terns form when cells, inoculated on semisolid agar, respond
to gradients of chemical attractants that they themselves ex-
crete (Budrene and Berg, 1991). We consider here patterns
formed by a closely related species, Salmonella typhi-
murium, that are less complex and, thus, more amenable to
mathematical analysis. Experiments with S. typhimurium are
described, and a mathematical model is proposed to explain
the observed self-organization of bacteria.

Patterns for S. typhimurium differ from those of E. coli in
two important respects. First, in E. coli a swarm ring appears
at the periphery of the growing colony, and elements of the
pattern assemble in its wake. In S. typhimurium, under the
conditions described here, the bacteria spread out in an un-
structured lawn within which elements of the pattern later
appear. Second, the patterns formed by S. typhimurium are
less symmetrical; elements in adjacent perforated rings are
not spatially correlated. However, both E. coli and S. typhi-
murium produce chemoattractant that causes cells to aggre-
gate. Moreover, both sets of patterns are far more elaborate
than those observed when chemotactic strains grow on media
containing nutrients that are attractants (Adler, 1966; Nossal,
1972; Budrene, 1988; Wolfe and Berg, 1989; Agladze et al.,
1993). They also differ from the well known traveling waves
of aggregating cells of the slime mold Dictyostelium discoi-
deum (Bonner, 1967) in that the structures formed by E. coli
and S. typhimurium are temporally stable.
The spatial pattern potential of chemotaxis has been ex-

ploited in a variety of different biological contexts. Math-
ematical models of chemotaxis (along with reaction-

Receivedfor publication 23 May 1994 and in finalform 19 January 1995.
Address reprint requests to Dr. Howard C. Berg, Department of Molecular
and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge,
MA 02138-2020. Tel.: 617-495-0924; Fax: 617-495-9300; E-mail:
hberg@biosun.harvard.edu.
C) 1995 by the Biophysical Society
0006-3495/95/05/2181/09 $2.00

diffusion and mechanochemical models) are part of the
general area of integro-differential equation models for the
development of spatial patterns (see Murray, 1989). Ex-
amples include pattern formation among cells of aggregating
slime molds (Keller and Segel, 1970; Nanjundiah, 1973),
clumps or traveling bands of bacteria (Keller and Segel,
1971; Keller and Odell, 1975; Kennedy and Aris, 1980;
Lauffenburger et al., 1984), and the localization of leuko-
cytes moving in response to bacterial inflammation (Lauffen-
burger and Kennedy, 1983; Alt and Lauffenburger, 1987).
Most of these models for chemotactic systems have focused
on aggregating D. discoideum cells at the stage where they
do not divide, or on chemotactic bacteria whose population
is assumed constant. Relatively little work has been done
where cell populations are not constant. One exception is the
traveling wave model of Kennedy and Aris (1980) where the
bacteria reproduce and die as well as migrate. More recently,
Oster and Murray (1989) proposed a cell-chemotaxis model
mechanism, based on Keller and Segel (1970), for pattern
generation during embryogenesis. This has been used suc-
cessfully to describe pigmentation patterns in alligators
(Murray et al., 1990) and in snakes (Murray and Myer-
scough, 1991). These studies showed that a variety of pat-
terns can be generated from chemotaxis when significant
growth occurs during the patterning process.
The outline of this paper is as follows. First, we report

experimental results which show that chemotactic strains
of S. typhimurium produce amino acids, attractants that
cause cells to aggregate. When grown on succinate as a
single carbon and energy source, S. typhimurium forms
periodic arrays of continuous or perforated rings. Our
goal is to explain how the cells generate these geometric
patterns, rather than random aggregates. So, we develop
a mathematical model based on the known biology that
incorporates a nonconstant population of chemotactically
driven cells that both produce and consume chemoattrac-
tant; the cells and chemoattractant both diffuse. Next we
present numerical simulations which show that the model
reproduces the observed complex biological patterns, and
is thus a plausible mechanism for the self-organization of
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S. typhimurium. Finally, we discuss implications of the
model and its significance for future experimental and
theoretical work.

EXPERIMENTAL RESULTS

Formation of geometric patterns in soft agar

Formation of geometric patterns takes place in cultures of S.
typhimurium growing in soft agar on intermediates of the
tricarboxylic acid cycle, such as succinate. Periodic struc-
tures comprised of continuous or perforated rings, corre-
sponding to regions of high cell density, form as shown in
Fig. 1. Here, the agar serves as an inert gel-like matrix that
suppresses convection. At low concentrations, it is readily
penetrated by motile bacteria.

The time evolution of the patterns is shown in Fig. 2. After
about 24 h of growth at the region of inoculation, the bacteria
start to spread radially, forming an unstructured lawn with
the highest cell density at the point of inoculation. This lawn
expands in radius at the rate of about 1 mm/h, as shown in
Fig. 2A. The cell density is higher near the center of this lawn
than at its periphery. Unlike the case for E. coli, a traveling
band does not form at the outer boundary of the lawn; nor
does aggregation occur in the wake of such a band. Instead,
after about 40 h of growth, pattern formation begins in the
central part of the colony and spreads sequentially outwards.
A structured phase propagates into a nonstructured one.
Rings or perforated rings, both of which span the full thick-
ness of the agar, form at a fixed distance from one another
(about 2 mm). Once the first three rings have formed, the
others appear with a fixed temporal periodicity (about 2.5 h).
The spatial and the final temporal periodicities do not depend
on succinate concentration. However, the time intervals for
formation of the first three rings are substantially shorter than
2.5 h for growth on 5 mM succinate and longer than 2.5 h
for growth on 10 mM succinate. A new ring begins at one
or several points at a given radius and propagates circum-
ferentially, both clockwise and counterclockwise. Depend-
ing upon the concentration of the substrate, the time required
for the completion of a ring varies from about 70 min (5 mM
succinate) to about 40 min (10 mM succinate). At lower
concentrations of succinate, the ring breaks into discrete arcs
or spots immediately after it forms, as shown in Fig. 2, B and
C. However, the positions of spots in successive rings are not
correlated. At higher concentrations, the ring remains intact
but thickens somewhat until the next ring begins to form.
When this happens, the cell density decreases sharply be-
tween the new ring and the previous one. Once formed, the
rings (or perforated rings) remain stationary.

Microscopic observations reveal that cells are fully motile
in the unstructured lawn and in newly formed rings. How-
ever, they are nonmotile in older rings. The final cell density
increases with succinate concentration, but the cell doubling
time remains constant over the range of concentrations that
generate patterns (about 2 h for 5-15 mM succinate at 25°C).
Pattern formation does not occur with strains defective for
chemotaxis toward aspartate, and ring formation can be sup-

FIGURE 1 Patterns formed by S. typhimurium strain LT-2, visualized by
scattered light: (A) perforated rings (spots), (B) rings. A 1-mm grid appears
at the left edge of each picture. About 104 bacteria, grown on M9 glycerol
medium (Miller, 1972), were inoculated at the center of an 8.5-cm-diameter
petri plate containing 10 ml of soft agar (0.24%, Difco Laboratories, Inc.,
Detroit, MI) in M9 succinate (5 mM potassium succinate in A, 10 mM in
B). The vital dye tetrazolium violet (50 ,jg/ml, Sigma Chemical Co., St.
Louis, MO) was added to enhance image contrast. The plates were incubated
at 25°C (for 48 h in A, 70 h in B). Each figure is a single frame from a
time-lapse recording made with a Hamamatsu model XC-77 CCD camera
on a JVC model BR-900OU cassette recorder and printed with a Sony model
UP-870 MD video printer. The recording was made against a flat-black
background with illumination slantwise from below (see Budrene and Berg,
1991).

pressed by addition of saturating amounts of chemicals that
are sensed by the aspartate receptor. Therefore, chemotaxis
toward aspartate or at least one of its analogs is required.

Aggregation in liquid media

More can be learned about the relevant biological parameters
by generating patterns in liquid media. If a suspension of S.
typhimurium (about 108 cells/ml in M9 glycerol medium or
in tryptone broth at 25°C) is poured into a petri plate and
succinate is added (to a final concentration of 5 mM), an
initially uniform suspension of bacteria transforms into a
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conditions. The cells in the aggregates are highly motile, and
relatively few cells are found between aggregates. After
about 30-45 min, the aggregates gradually disperse and the
suspension becomes uniform. Amino acid analyses of su-

pernatant fractions obtained from such experiments show
that cells excrete large amounts of aspartate and glutamate.
Both of these amino acids are known to bind to the same site
on the aspartate receptor; however, aspartate has a much
higher affinity. Therefore, it is the dominant species. After
about 30-45 min, the concentration of aspartate is high
enough to saturate the chemotactic response. As found with
experiments in soft agar, aggregation in liquid requires a

functioning aspartate receptor and can be suppressed by ad-
dition of aspartate or its analogs.
From these experiments, we conclude that patterns, albeit

of low symmetry, can be formed over a time span in which
changes in cell number and in concentration of substrate are

small. Pattern formation requires redistribution of cell den-
sity. We believe that this occurs by the following mechanism.
Addition of succinate causes the cells to excrete attractants,
and fluctuations in local cell density lead to formation of
gradients of these attractants. The cells, guided by chemo-
taxis, drift toward sites of higher cell density. As a conse-

quence, the intervening regions are depleted of cells and,
thus, of the source of attractant; therefore, initially small
inhomogeneities in concentrations of cells and attractants are

amplified. Presumably, the same mechanisms also play an

important role for pattern formation in soft agar. It remains
to be explained how, in this case, the cells form geometric
patterns, rather than random aggregates.

FIGURE 2 Time-evolution of the pattern shown in Fig. 1 A. Time after
inoculation: (A) 38 h, (B) 40 h, (C) 46 h. A 1-mm grid appears at the left
edge of each picture. Other conditions were as in Fig. 1 A. Note in C that
the ring that first appeared in B has now broken up more completely, whereas
the outermost ring is still partially intact.

field of aggregates of high cell density within 3-5 min. The
distribution of these aggregates has no apparent symmetry.
When fully developed, the aggregates are about 0.5 mm in
diameter and are spaced irregularly over distances ranging

from a fraction of a mm to 1-2 mm, depending on specific

CELL-CHEMOATTRACTANT MODEL MECHANISM

Given the detailed biological experiments described in the
previous section, we hypothesize that it is the interaction
between the cells and chemoattractant that causes self-
organization into the observed patterns. The cells proliferate
and produce chemoattractant; they only sense this chemoat-
tractant not the substrate. In semi-solid medium, given pos-
sible long term changes in metabolic state, the cells also
consume attractant. The cells and chemoattractant are both
diffusive. In this section, it is our goal to give a biologically
based mathematical description of the way in which these
processes combine to produce regular patterns in growing
cultures.
We denote the density of the (motile) cells by n, the con-

centration of chemoattractant by c,' and the concentration of
the substrate by s. In the S. typhimurium experiments (de-
scribed in Experimental Results), the consumption of sub-
strate is negligible. Therefore, we assume that the substrate
concentration is constant, thus s is just a parameter. Since
there is no variation of the patterns through the thickness of
the agar, the system described above can be formulated in

1 In the model, we do not distinguish between aspartate and glutamate;
instead, we consider a single attractant, sensed by the aspartate receptor.
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where Dn and DC are the diffusion coefficients of the cells and
chemoattractant, respectively.

Chemotaxis drift rates are known to be proportional to the
time rate of change in receptor occupancy; thus, the func-
tional form for the chemotactic response is the one deter-
mined experimentally, with k2 the receptor dissociation con-

stant (Brown and Berg, 1974; Lapidus and Schiller, 1976;
Weis and Koshland, 1988). For low levels of chemoattractant
concentration, c << k2, the chemotactic response of the cells
is directly proportional to the gradient of c, with the param-

eter k1 the constant of proportionality. As c increases, how-
ever, sensitivity to gradients of c decreases. Experimentally,
steep gradients in c are not observed without large values
of c.

For most substrates, the growth rate of bacteria is inde-
pendent of substrate concentration, when the concentration
is in the millimolar range (Neidhardt et al., 1990). The sub-
strate, s, lies in this range during pattern generation in S.
typhimurium. It is also known that the growth rate is inde-
pendent of the chemoattractant concentration, c, and is con-

stant with respect to cell density, n, except at extremely high
cell densities when the rate of cell division drops to zero. This
higher value of n is thought to be attained in the experiments.
Hence, we use the following logistic form for the growth rate:

f(n,c,s) = k3n (I s) (3)

The intrinsic linear growth rate is k3, and k4 is the carrying
capacity of the substrate.

Less is known about the functional forms for the produc-
tion and consumption of chemoattractant. We choose the
simplest forms possible that are consistent with the experi-
mental observations. The production of chemoattractant by
the cells is zero for substrate concentration, s, below a certain
threshold and constant for s above a certain threshold. In the
range of the S. typhimurium experiments, which is between
these two limits, the rate of production of chemoattractant is
approximately linear in s. The production of chemoattractant
is also linear in the cell density, n, until n becomes extremely
large when it saturates. This suggests the following func-

(4)

(1) Here k5 is the maximum production rate of chemoattractant
by the cells and k6 is the concentration of cells required for
half-maximal production.
We expect consumption of chemoattractant to be governed

by Michaelis-Menten kinetics. However, in the appendix we
show that given (4) it is necessary to choose

k7cnr
h(n,c,s) = k +

k8+ C

where r < 1 for patterns to propagate from an initial distur-
bance. Here k7 is the maximum consumption rate of the che-
moattractant by the cells, and k8 is the equivalent Michaelis
(or half-saturation) constant.

It is convenient to cast the model in nondimensional terms
(see Murray (1989) for a general discussion), because it re-

duces the number of relevant parameters by combining them
into meaningful groups. So we introduce the following di-
mensionless quantities:

x n c t k8 Tk4k5
x n t*= T C D*=

L' k4' c* T krk7' k6 n

~~~~~~~~(6)

TDn TDc TklC C k4 C

F IDC L = L2k2' 3 k2 ' k6 kg

Here the length scale L is yet to be determined; but note that
we have L2/T = Dn=D*D=/D*.
With (6) the nondimensional model equations become, on

dropping the asterisks,

an nn

aD= LnV 2-aV* (l + pC,2 Vc) + pn --

dc sn cnr
-= DC V2C + +
at l+ ynI+ 8c '

(7)

(8)

where Dn and DC are the diffusion coefficients of the cells and
chemoattractant, respectively. The parameter a measures the
strength of chemotaxis, p the rate of proliferation, and s (as-
sumed constant) the substrate concentration. The parameters
(, -y, and 8 measure the saturation of the chemoattractant
sensitivity (at high levels of chemoattractant), production (at
high levels of cells), and consumption(at high levels of che-
moattractant).
The relative magnitudes of the model parameters deter-

mine which processes dominate the solution to these equa-

tions. With mutant cells that do not produce chemoattractant
(c = 0) or are not sensitive to the chemoattractant (a = 0),
Eq. 7 reduces to Fisher's equation (see Murray, 1989). In this
case, the cells simply spread out from the initial inoculum,
and no patterns occur, as noted in Experimental Results. Nor-
mal strains produce chemoattractant to which they respond
to form aggregates. It is the interplay between spreading (dif-
fusion and proliferation) and aggregation that causes the
propagating pattern, as we demonstrate in the next section.

two dimensions as:

an
at

rate of change of cell density

Biophysical Journal2184

(5)



Spatio-Temporal Pattems in S. typhimurium

PROPAGATING PATTERNS

In this section, in our investigation of the model mechanism
(Eqs. 7 and 8), we assume for simplicity that r = 0 and 8 =
0, so that the chemoattractant is linearly degraded. Patterns
are certain to form when all spatially constant solutions are
unstable, since then the initial inoculum must evolve to a
heterogeneous state. Equations 7-8 have one positive ho-
mogeneous steady state, fi = s, e = s2 / (1 + ys), in addition
to the trivial steady state, n = 0, c = 0. The trivial steady state
is always unstable. The positive homogeneous steady state,
however, is only unstable when the parameters satisfy certain
conditions, as shown in the appendix. In particular, increas-
ing the chemotactic strength a tends to destabilize the con-
stant steady state, whereas it is stabilized by increasing the
diffusion coefficients Dn and Dc, the proliferation rate p, or
the saturation parameters c and y. As the roles of these pa-
rameters are clear, we assign them fixed values (a = 3.0,
B = 2.0, y = 0.2, p = 0.03, Dn = 0.1, and DC = 0.3) and
examine the patterns that form at different values of substrate
concentration s.

Equations 7-8 are solved numerically on a two-
dimensional rectangular grid using a forward Euler scheme
(see, e.g., Smith, 1985). The experimental patterns are gen-
erated from an initial inoculum at the center of the petri plate,
so we choose as our initial conditions a lOX 10 mesh point
area at the center of the domain in which the cell density n =
1.0, with n = 0 elsewhere. Initially c = 0 everywhere. These
conditions are then perturbed with ±1% random noise to
break the symmetry. Since experimentally the cells are con-
fined to a dish, we impose zero flux boundary conditions.
However, pattern formation (in both the experiments and the
simulations) takes place well before the leading edge of the
perturbation reaches the domain boundary, so the boundary
conditions are not really relevant; nor is the shape of the
mesh, which is a square of size 301 X301 grid points. The
time step used in the integrations is 0.005. The reliability of
this numerical method was monitored by doubling the mesh
size and halving the time-step, which produced qualitatively
similar results.
With the given choice of parameters, (a = 3.0, (3 = 2.0,

,y = 0.2, p = 0.03, Dn = 0.1, and DC = 0.3), the constant
steady state is stable when s < smin = 0.292 (see appendix),
and we find that no patterns occur for these low values of s.
As s increases beyond sn,,,, the steady state becomes unstable
via a supercritical bifurcation (see Murray, 1989). At these
levels of s, chemoattractant is produced rapidly enough that
the chemotactic response causes shallow gradients in che-
moattractant to stimulate the recruitment of cells into clus-
ters. Consequently, we observe pattern spreading sequen-
tially outward with rings forming at a fixed distance from one
another, and then breaking up into spots, as shown in Fig. 3
A for s = 1.0. At higher values of s, the chemoattractant
production is strong enough to saturate the chemotactic re-
sponse and the rings do not perforate, as shown in Fig. 3 B
for s = 2.0. It is interesting to note that at this level of s the
constant steady state has regained stability via a subcritical

FIGURE 3 Numerical solutions of the model Eqs. 11-12 on a 3 cmX3
cm domain at time t = 36 h. In each case, we show only the cell density,
n. The chemoattractant concentration, c, is qualitatively similar in behavior.
By varying the substrate concentration, s, we can generate different patterns.
For example, A shows perforated rings (spots) when s = 1.0; whereas in B
for larger s, s = 2.0, we see (solid) rings. In both cases, the other parameters
are a = 3.0, Dn = 0.1, DC = 0.3, p = 0.03,13 = 2.0, and y = 0.2.

bifurcation (see Murray, 1989). This means that heteroge-
neous solutions and the constant steady-state solution coex-
ist; however, the initial inoculum always evolves into the
spreading pattern of concentric rings. At still higher values
of s, the chemotactic response is completely saturated. In this
case, the only stable solution is the constant steady state, and
no patterns are observed.
The time evolution of the patterns is shown in Fig. 4. Here,

as in Fig. 3 A, we choose s = 1.0, a = 3.0, ( = 2.0, y =
0.2, p = 0.03, Dn = 0.1, and Dc = 0.3. By comparing the
numerical simulations with the biological experiments, we
estimate the length scale L = 1.0 mm, and the time scale
T = 360 s. This gives a good correspondence with the dis-
tance between rings (20 grid points or 2 mm), and the time
taken between formation of successive rings (4000 time steps
or approximately 2 h). However, the initial ring evolves more
quickly in the simulations than in the experiments (see Figs.
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FIGURE 4 A time sequence of computed solutions of the model Eqs.
11-12: (A) 25 h, (B) 27 h, (C) 33 h. The domain size is 3 cmX3 cm. The
parameters are as in Fig. 3 A.

2 B and 4 B). In the experiments, there is a substantial time
lag between inoculation and formation of the bacterial lawn.
The cells first grow in a compact mass and later spread out.

The biological reasons for this are not known, so this stage
of the process is not included in the model. Using (6), we
calculate a cell diffusion coefficient of 2.8 X 10-6 cm2/s and
a chemoattractant diffusion coefficient of 8.4 X 10-6 cm2/s.
These values of the diffusion coefficients are consistent with
the biological observation that Dn and DC are the same order
of magnitude, and D, > D., with the diffusion coefficient of
S. typhimurium depending on the manner in which cells are
grown and the temperature and viscosity of the surrounding
medium (Berg, 1983; Lowe et al., 1987; Berg and Turner,
1990). Furthermore, we have a cell doubling time of (ln 2)/
k3 -2.3 h, which is also consistent with experiment (see
Experimental Results).
We therefore suggest that the cell-chemoattractant mecha-

nism (7) and (8) is a likely candidate for generating the pat-
terns found in the S. typhimurium experiments. Although we
assumed here, for simplicity, that the chemoattractant is lin-
early degraded (r = 0, 8 = 0) numerical simulations with
parameter values other than those reported show that cells
also self-organize into patterns when chemoattractant is con-
sumed. For a range of substrate concentrations, the cells self-
organize into rings, which are perforated at lower concen-
trations, but remain solid at higher concentrations, as
observed experimentally. However, if the substrate concen-
tration is too low or too high, cells spread out from the initial
inoculum and no patterns are observed.

DISCUSSION

In this paper, we reported: (i) new experimental observations
of complex patterns formed by chemotactic strains of S. ty-
phimurium, when they aggregate in response to gradients of
chemical attractant that they themselves excrete; and, (ii)
based on these results, we developed a cell-chemoattractant
model mechanism that enabled us to highlight, from the ac-
tual biological processes and the detailed experiments, the
crucial factors involved in the self-organitzation of bacteria.
Although we formulated our mathematical model as simply
as possible, but based on the solid biological evidence for
chemotaxis, we were able to verify that it is the interaction
between the proliferating cells and chemoattractant they pro-
duce that is crucial to the formation of the observed geo-
metric patterns. Response to an attractant is sufficient; re-
pellants are not required. The similarities between the
experimental patterns and the patterns from numerical so-
lution of the model mechanism are remarkable (see Figs. 1
and 3). Moreover, estimates from the model of the cell dou-
bling time, and of the diffusion coefficients, Dn and Dc, are
consistent with experiment. Unlike in reaction-diffusion
models of pattern formation, the relative role of the diffusion
coefficients is not crucial mathematically. In reaction-
diffusion-chemotaxis models, such as the one described here,
it is the interplay between diffusion, which is stabilizing, and
chemotaxis, which is destabilizing, that leads to spatially
heterogeneous solutions.
The basic idea of spatial pattern formation by cells that

secrete chemoattractant can easily be understood intuitively.
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Fluctuations, or small perturbations, in local cell density (or
alternatively in the chemoattractant concentration, or both)
give rise to a greater production in chemoattractant, thereby
creating local gradients in chemoattractant. The cells respond
by moving up concentration gradients in chemoattractant,
toward the local aggregation of cells, thus enhancing the
spatial heterogeneity in the cell density. This aggregative
effect, reflected in the chemotactic coefficient (a), however,
is countered by the dispersal effect of random motion of the
cells (D.) and the diffusion of chemoattractant (Dc), which
tend to smooth out any spatial heterogeneities. (We are not
involved here with Turing structures in which diffusion is
destabilizing; see, e.g., the pedagogical discussion in Mur-
ray, 1989.) The interplay between a stabilizing diffusive ef-
fect and a destabilizing chemotactic effect is crucial in the
formation of spatially heterogeneous patterns. Intuitively, if
the dissipative diffusion effect is too strong relative to the
aggregative chemotactic effect no pattern will obtain. In the
"classical" chemotaxis system (see, e.g., Oster and Murray,
1989) this gives rise to dimensionless parameters and bifur-
cation values for pattern to form. These bifurcation values
simply give the values when the aggregative effect is bal-
anced by the dispersal effect.

In the experiments, and the cell-chemoattractant model
mechanism described in this paper, the patterning scenario
is more subtle. Here the chemotactic response depends on the
concentration of chemoattractant: as the concentration, c,
rises, sensitivity to gradients of c decreases, and the che-
moattractant response is diminished. More importantly, the
substrate concentration, s, is involved in the level of pro-
duction of attractant. If s is too low, the cells do not produce
enough chemoattractant, on the appropriate time scale, to
generate sufficiently steep gradients, and the response of the
cells is too weak for the creation of local aggregations. On
the other hand, if s is too high, the production of chemoat-
tractant is so large, or so rapid, that the resulting high con-
centration of the attractant, c, reduces the chemotactic re-
sponse and, again, the cells are not recruited into clusters.
There is in fact a parameter hyperspace with bifurcation
boundaries that separate pattern formation from nonpattern
formation.

Unfortunately, it is not clear from these verbal descriptions
that the bacteria will form anything other than random ag-
gregates. To appreciate the fact that these processes can give
rise to geometric patterns one must do a mathematical analy-
sis. In the experiments, patterns are formed from an initial
inoculum of cells at the center of the dish, with no cells
elsewhere. These cells then diffuse and proliferate, and thus
spread out radially. At the same time, they produce che-
moattractant that causes them to aggregate. Thus, there is a
growing peak of cells at the center of the dish, and a cor-
responding peak in chemoattractant concentration. This con-
centration gradient acts on the cells, inhibiting them from
moving forward, and they remain in the original cluster, with
the cell density highest at the point of inoculation. However,
after a while, the concentration of chemoattractant, c, is suf-

cells at the leading edge of the peak move forward into a ring
that is developing at the leading edge. The process then re-

peats itself, and a "wave of aggregation" spreads out to form
regular geometric patterns. The substrate concentration, s,

plays a key role in the production of chemoattractant and,
thus, dictates the time for the next ring to form and the dis-
tance between rings. A procedure for determining the pattern
wavelength and the speed of spread analytically is given by
Myerscough and Murray (1992). The substrate concentra-
tion, s, also determines the role of local fluctuations in cell
density, as described above, and hence whether the ring is
solid or perforated.
By varying the amount of substrate, s, in the experiments

and in the model simulations, we were able to show the
spatially heterogeneous solutions include both the solid and
perforated rings (compare Figs. 1 and 3). The preliminary
analysis is given in the appendix, and the detailed analysis,
although not trivial, we believe to be possible based on pro-
cedures already in place (Murray, 1982). There is much to
be discovered from further investigation of the parameter
domain of the model, using both analytical and numerical
techniques. Of particular interest is the change in the model
patterns from spots to rings to no pattern as chemotactic
sensitivity a is decreased. This has also been experimentally
observed in E. coli (see Budrene and Berg, 1991), where a

decreasing sequence in a was achieved by adding increasing
amounts of an inhibitor to the medium.

Chemotactic models are highly nonlinear, and the pattern
potential is not restricted to simple elements such as stripes
and regular spots (see Murray and Myerscough, 1991). How-
ever, it is not easy to predict the type of complex patterns that
can be obtained because they depend intimately on the non-

linear interaction of the cells and the chemoattractant. Ex-
perimental results of Budrene and Berg (1991) showed that
chemotactic strains of E. coli self-organize into a variety of
highly regular arrays of stripes or spots. Although this paper
is primarily concerned with the simple periodic patterns
formed by S. typhimurium, there are some similarities, as

well as some fundamental differences, with the complex
symmetrical patterns formed by E. coli. A comparison of
different bacterial types would be interesting, but this re-

quires a similarly detailed modeling of E. coli based on the
experiments. In E. coli, as in S. typhimurium, it is the in-
teraction between proliferating cells and chemoattractant
they produce that is crucial to the formation of pattern. Thus,
we hypothesize that a cell-chemoattractant mechanism simi-
lar to the one described here will also be able to explain these
complex patterns. However, in E. coli, the substrate, s, is a

crucial factor in controlling pattern formation because deple-
tion of substrate is significant: among other things, this will
augment the system with another equation for the substrate
concentration. Further extensive theoretical and experimen-
tal studies of patterns generated by E. coli, already underway,
will thus be considerably more complex.

Although it is very much in its infancy even only at the
idea stage we believe this area of pattern formation by

ficiently high that the chemotactic response saturates, and the
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bacterial populations could be extremely important in, for
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example, detection of pollutants at low levels because in
many situations small changes in the conditions of the ex-
periments can be detected in the different patterns that are
obtained. It is also a very rich field from a truly interdisci-
plinary viewpoint because, with the refinement of both ex-
periments and modeling that has resulted from this study on
S. typhimurium, we have gained insight into both the biology
of bacterial pattern formation and its realistic modeling. Al-
though there are certain gross similarities among different
bacterial patterning situations, we feel that progress in un-
derstanding the basic mechanisms involved with a specific
bacterial population is a prerequisite to making reliable com-
parisons between populations: this paper is concerned with
the former.
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MATHEMATICAL APPENDIX

Cell-chemotaxis model
We consider the following nondimensionalized system:

an / n
-= DnV2n - aV (+ Vc +pn(l n) (Al)at \( + ) 1 SJ

ac snP cnr
-= DCV2C + 1 + ynq 1 + SC (A2)

where n denotes cell density and c denotes concentration of chemoattractant.
The parameter a measures the strength of chemotaxis, p the rate of pro-
liferation, and s (assumed constant) the substrate concentration. Here we
have introduced a more general functional form for the production and
consumption of chemoattractant than that used in the text. It is worth noting,
if r = 0 and p = q = 1, we have linear degradation and Michaelis-Menten
production of chemoattractant by cells, whereas if r = 1 and p = q = 2,
we have linear consumption and sigmoidal production. In either case, 'y and
8 measure the saturation in chemoattractant production and consumption (or
degradation), respectively, whereas 03 measures the saturation in sensitivity
(at high levels of chemoattractant).

Linear analysis
Equations Al-A2 have a positive steady-state solution:

Sp+l
n S C = Sr(l + ySq) - sP+ (A3)

For the linear stability analysis we set n = ni + u = s + u, and c = c +
v, where u and v are small. Substituting for n and c into (Al)-(A2)
and ignoring higher order terms, we get the linear equations:

Au /V2( as \
a = Dn (1 + 13c)2)Vvpu (A4)

-v = DcIV2V +
SpyS -r

sr

at =+ySV2 + y/(1+eSq 1ru + )2 v (A5)

We now look for solutions of the form (u,v) ca exp[ik.x + At], where k is
the wave number, which measures the size of the patterns, and A is the

dimensionless growth rate. The growth rate A(k2) is the appropriate solution
of the dispersion relation

A2 + A(k2(Dn + D,) + p + (1 ) + (A6)

DnDCk4 + Mk2 + PSr =0(1+ W)2

where

M=(1 + &W)2 + pDc - (7D s' ~~~~~~~~~~~(A7)
( asP+ ( yzqs+-rS
k(1 + W)2(1 + ySq)) P 1 + ysq /

Because the experimental patterns only occur when the bacteria are both
motile and chemotactic, we require the positive steady-state (flc) to be
stable in the absence of spatial effects (Dn = 0, a = 0). This is easily verified:
Re(A(k2 = 0)) < 0. The homogeneous solution is unstable to spatial dis-
turbances if Re(A(k2)) > 0 for some wave number k # 0. When A = 0, k2
satisfies

DnDCk4 + Mk2 + ( ) = 0° (A8)

For unstable modes to exist we require that at least one root of (A8) is real
and non-negative, namely,

M < 0, (A9)

and

4psrD.4 (AIO)
(1 + &W)2' AO

In particular, from (A7) and (A9), for heterogeneous solutions, we re-
quire a > 0, and

-yqsq
+ ys r>0. (All)

First, note that we are not involved here with Turing structures in which
diffusion is destabilizing: (A9) cannot be satisfied by increasing Dn, or Dc.
Furthermore, as remarked in the text, if the production of the chemoattrac-
tant by the cells is assumed to be a Michaelis-Menten function (p = q =

1) then we must have r < 1, that is, the cells cannot linearly consume the
chemoattractant.
We choose to investigate the simplest case, namely, p = 1, q = 1, r =

0, and 8 = 0. Then from (A9) and (AIO), we have the condition for het-
erogeneous solutions:

Ap3s2 + (A y - §) s + A <0,

where (A12)

A2 = Dn + pDc +2 .

From this we see that increasing a has a destabilizing effect, whereas in-
creasing (3, y, p, Dn, or Dc has a stabilizing effect. The role of s when it is
a parameter is less clear: it can be both stabilizing and destabilizing. With
the given choice of parameters, (a = 3.0, ,B = 2.0, y = 0.2, p = 0.03,
Dn = 0.1, and Dc = 0.3), the constant steady state is unstable for 0.292 <
s < 1.715.
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