Cryptanalysis of Liaw's Broadcasting Cryptosystem

YUH-MIN TSENG*
Department of Information Management
Nan-Kai College of Technology and Commerce
Nantou, Taiwan 542, R.O.C.
ty@bear.nkjc.edu.tw

JINN-KE JAN
Institute of Applied Mathematics, National Chung Hsing University
Taichung, Taiwan 402, R.O.C.
jkjan@amath.nchu.edu.tw

(Received August 1999; revised and accepted April 2000)

Abstract—In 1999, Liaw proposed a new broadcasting cryptosystem, which requires smaller bandwidth as compared to the previously proposed broadcasting cryptosystems. However, this article will show that the proposed system is insecure enough by presenting a conspiracy attack on it. We will also point out some ambiguous problems in Liaw's paper. Moreover, we propose an improved broadcasting cryptosystem, which is a slight modification of the proposed system to overcome the conspiracy attack. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords—Cryptography, Broadcasting cryptosystem, Cryptanalysis.

1. INTRODUCTION

Communication techniques have encouraged the distribution of information. How to establish secure and efficient communications among users over insecure computer networks is important. One of the important issues for achieving the aforementioned requirements is the development of the broadcasting cryptosystem. The broadcasting cryptosystem is that a sender can broadcast an encrypted message and only certain authorized subsets in the system can decrypt the message. Based upon cryptographic techniques, several broadcasting cryptosystems [1-3] have been proposed. However, the previously proposed cryptosystems [1,2] need many broadcasting messages, and it is hard to insert new users into the system. To remedy the drawbacks, Liaw [3] proposed a new broadcasting cryptosystem based on the RSA scheme [4] and a symmetric cryptosystem (e.g., DES [5]).

First, we will review and point out some ambiguous problems in Liaw's paper [3]. It is beneficial to read his paper. Moreover, one conspiracy attack is given in this paper to show that Liaw's
broadcasting cryptosystem is not secure enough. We are going to show that two users can collaborate to derive the secret key of the central authority server. In such cases, the secret keys of all users in the system will be also revealed. The two users can always decrypt any transmitted ciphertexts in the system, even though the transmitted messages are not authorized for them. Therefore, we also propose a slight modification of Liaw’s broadcasting cryptosystem to enhance the level of security.

2. REVIEW AND AMBIGUOUS PROBLEMS OF LIAW’S BROADCASTING SYSTEM

Here, we review briefly Liaw’s broadcasting cryptosystem. Meanwhile, we also point out some ambiguous problems in it. In the system, there is a central authority server (CAS for short). The CAS is responsible for generating the system parameters and the keys for all users U_i ($i = 1, 2, \ldots, n$). Initially, the CAS secretly chooses two large strong primes $p = 2p' + 1$ and $q = 2q' + 1$, where p' and q' are also primes [6,7], and then publishes $N = pq$. Define $\lambda(N) = \text{lcm}(p - 1, q - 1)$ and select a public key d such that $ed \equiv 1 \mod \lambda(N)$, where Φ denotes the Euler totient function [8] and e denotes the secret key of the system. Note that the above parameters have some slight modifications as compared to ones of the RSA system. Also, the CAS publishes a secure symmetric cryptosystem that $E(.)$ is the encryption algorithm and $D(.)$ is the corresponding decryption algorithm. Therefore, $M = D_{MK}(E_{MK}(M))$, where MK is the encryption/decryption key for the symmetric cryptosystem. Then, the CAS selects a secret key K_0 and computes each user U_i’s secret keys t_i and K_i, and the public key $f(t_i)$ as follows:

$$K_i = K_0^t_i \mod N, \quad \text{and} \quad f(t_i) = t_i^e,$$

where each t_i is a prime number selected by the CAS. Note that all t_i are distinct odd primes and different from p' and q'.

During the broadcasting encryption phase, without loss of generality, suppose that the sender U_1 wants to broadcast a message M to the legitimate receivers U_2, U_3, \ldots, U_a secretly, and $U_{a+1}, U_{a+2}, \ldots, U_n$ are illegitimate receivers. U_1 and CAS perform the following encryption steps to generate the ciphertext for M.

STEP 1. U_1 calls the CAS that he wants to broadcast a message to U_2, U_3, \ldots, U_a.

STEP 2. CAS computes two public keys $f(B_1)$ and PK_1 as follows:

$$B_1 = t_2 \times t_3 \times \cdots \times t_a, \quad f(B_1) = B_1^e, \quad MK_1 = K_0^{B_1} \mod N, \quad PK_1 = E_{t_1}(MK_1).$$

STEP 3. Upon receiving $f(B_1)$ and C, U_1 recovers $MK_1 = D_{t_1}(PK_1)$ and broadcasts the ciphertext $C = E_{MK_1}(M)$.

As mentioned above, there is a matter needs to be cleared up. Is the public key $f(t_i)$ equal to t_i^e as an integer or $t_i^e \mod \lambda(N)$? If t_i^e is computed in Z, the system is completely insecure for the following reason: An attacker can find the system’s secret key e and factor N, since d is public and he may find $de - 1$ which is multiple of $\lambda(N)$. Therefore, it must be $t_i^e \mod \lambda(N)$. For the same reason, B_1 and $f(B_1)$ are also to be reduced mod $\lambda(N)$.

During the decryption phase, only the legitimate receivers U_j ($j = 2, 3, \ldots, a$) may obtain the message M after receiving $f(B_1)$ and C. Each legitimate receiver U_j uses his own secret key K_j to obtain the encryption/decryption key MK_1 by computing $K_j^{(f(B_1)/f(t_j))^d} \mod N$.

Note that since U_j does not know $\lambda(N)$ and he must compute $K_j^{(f(B_1)/f(t_j))^d} \mod N$, this will force d to be short. Otherwise, it is time-consuming. We suggest that the size of d should be 16 bits. Thus, this will not impair the security of the system [9].
3. CRYPTANALYSIS

In this section, we will show that any two users in Liaw’s system can cooperatively derive the CAS’s secret key K_0 by the Euclidean algorithm [8]. Meanwhile, the secret key for each user in the system will also be revealed.

Let U_x and U_y be two arbitrary users in the system. Since, the secret key K_x of U_x is computed by $K_x = K_t^t_x \mod N$, t_x is also another secret key of U_x. Because all t_i are distinct odd primes and different from p' and q', it is obvious that t_x of U_x and t_y of U_y are relatively prime. Therefore, U_x and U_y can collude to find two numbers r and s that satisfy $rt_x + st_y = 1$ by the Euclidean algorithm. Thus, the CAS’s secret key K_0 can be computed as follows:

$$K_x^r K_y^s \mod N = K_0^{rt_x} K_0^{st_y} \mod N = K_0^{rt_x + st_y} \mod N = K_0 \mod N.$$

In this case, the secret key K_j of each user U_j in the system can also be revealed by computing

$$K_0^{f(t_j)^d} \mod N = K_0^{rt_x \mod \lambda(N)} \mod N = K_0^t \mod N = K_j \mod N,$$

where $f(t_j) = t_j^r \mod \lambda(N)$ is the public key of U_j and d is the public key of CAS.

As stated above, the proposed system is vulnerable to the conspiracy attack. That is, two cooperative users can always decrypt any transmitted ciphertexts in the system, even though they are not the legitimate receivers.

4. MODIFICATIONS

We have shown that Liaw’s system is insecure. From the above cryptanalysis, we see that U_x and U_y can use their secret keys t_x and t_y to derive the CAS’s secret key K_0 cooperatively. Therefore, t_x and t_y should only be possessed by the CAS so that the secret key for each user U_i is only K_i. In such cases, Steps 2 and 3 in the broadcasting encryption phase need to be modified, and the other phases remain unchanged. The detailed modifications are presented as follows.

STEP 2. CAS computes two public keys $f(B_1)$ and PK_1 as follows:

$$B_1 = t_2 \times t_3 \times \cdots \times t_a \mod \lambda(N), \quad f(b_1) = B_1^f \mod \lambda(N),
MK_1 = K_0^{B_1} \mod N, \quad PK_1 = E_{K_1}(MK_1).$$

STEP 3. Upon receiving $f(B_1)$ and PK_1, U_1 recovers $MK_1 = D_{K_1}(PK_1)$ and broadcasts the ciphertext $C = E_{MK_1}(M)$.

During the decryption phase, each legitimate receiver U_j only adopts his own secret key K_j and public key $f(t_j)$ to obtain the encryption/decryption key MK_1 by computing $K_j^{f(B_1)/f(t_j)^d} \mod N$. In fact, we can see that the secret value t_j for each user U_j in Liaw’s system does not need to be possessed by each user U_j.

5. DISCUSSIONS

In the improved system, although $f(t_i) = t_i^r \mod \lambda(N)$ is the public key of a user U_i, an adversary or U_i does not know the value $\lambda(N)$, so that they cannot obtain t_i. Since t_i is unknown, any two users U_x and U_y cannot collude to derive the CAS’s secret key K_0 by adopting the Euclidean algorithm to find two numbers r and s such that $rt_x + st_x = 1$ as the cryptanalysis mentioned in Section 3. Therefore, the modified system not only retains the advantages of Liaw’s system, but also prevents the conspiracy attack.
REFERENCES

