
INFORMATION AND COMPUTATION 76, 29-92 (1988)

Strictness Analysis and
Denotational Abstract Interpretation

FLEMMINC NIELSON

Department of Computer Science, The Technical Universiiy qf Denmark,

DTH Building 344, DK-2800 Lynghy. Denmark

A theory of abstract interpretation (P. Cousot and R. Cousot, in “Conf. Record,
4th ACM Symposium on Principles of Programming Languages,” 1977) is
developed for a typed I-calculus. The typed I-calculus may be viewed as the “static”

part of a two-level denotational metalanguage for which abstract interpretation was
developed by F. Nielson (Ph.D. thesis, University of Edinburgh, 1984; in

“Proceedings, STACS 1986,” Lecture Notes in Computer Science, Vol. 210.

Springer-Verlag, New York/Berlin, 1986). The present development relaxes a con-

dition imposed there and this sutices to make the framework applicable to strictness
analysis for the I-calculus. This shows the possibility of a general theory for the

analysis of functional programs and it gives more insight into the relative precision
of the various analyses. In particular it is shown that a collecting (static; P. Cousot

and R. Cousot, in “Conf. Record, 6th ACM Symposium on Principles of Program-
ming Languages,” 1979) semantics exists, thus answering a problem left open by

G. L. Burn, C. L. Hankin and S. Abramsky (Sci. Comput. Programming 7 (1986),
249-278 1. f’) 1988 Acadenuc Press, Inc.

1. INTRODUCTION

Functional programming languages are becoming more and more pop-
ular, especially in the so-called lazy variants. In particular, a lazy language
has the default parameter mechanism call-by-name (or call-by-need) rather
than call-by-value. In order to implement these languages efficiently many
researchers have studied sufficient conditions for safe replacement of call-
by-name by call-by-value. This is of interest in implementing the languages
on parallel architectures because arguments in call-by-value positions of
some function may safely be evaluated in parallel. But even on sequential
architectures it is beneficial to avoid the overhead of call-by-name when
call-by-value would suffice.

In a purely functional language the only difference between call-by-name
and call-by-value is that the latter may lead to non-termination when the
former does not. So in a call

.f(.‘. 1
29

0890-5401/88 $3.00
CopyrIght (1988 by Academic Press. Inc.

All rtghts of reproductmn in any form reserved

30 FLEMMING NIELSON

the parameter mechanism off may be changed to call-by-value if non-ter-
mination of ... implies non-termination of f(...). In the notation of
denotational semantics this is written

i.e., that f is strict. It is generally undecidable whether or not f is strict but
one may attempt to find a safe approximation that is decidable. This entails
working with a safe representation of I, i.e., of when a computation
definitely will not terminate, and for historical reasons this is written as the
number 0. We therefore search for a recursive function f’ such that
f’(0) = 0 implies that f(I) = 1. A number of such strictness analyse.~ are
considered in Mycroft (1981), Mycroft and Nielson (1983), Burn et al.
(1986) Abramsky (1985), Hughes (1986), and Maurer (1986). In the
absence of a general theory the correctness of strictness analysis must be
shown for each functional language considered. Equally important, for a
fixed language there are many different analyses one wants to perform and
these, too, must be shown to be correct one by one.

A similar situation prevailed a decade ago for analyses of imperative
languages. To overcome the inconvenience of a multitude of correctness
proofs a theory of abstract interpretation was developed (Cousot and
Cousot, 1979) for flowchart languages. Subsequent research has studied
how to extend the framework to models of programs other than the
flowcharts. The extension to (first-order) recursion equation schemes has
been performed in, e.g., Mycroft and Nielson (1983) and Jones and
Mycroft (1986). The extension to a wide class of denotational definitions
was performed in Nielson (1986a, 1984). The latter work defined a two-
level metalanguage TMLs and developed abstract interpretation for all
definitions in this metalanguage. Thereby the development is applicable to
all programming languages definable in TMLs and this includes PASCAL-
like languages. This is in contrast to most developments of static analyses
of programs (e.g., Barbuti and Martelli, 1983; Nielson, 1982) where only a
small toy language is considered. The benefit of working with some form of
denotational definitions is that denotational semantics is one of the most
general semantics frameworks available. However, some syntactic
limitations in TMLs preclude a general treatment of functional languages.

In this paper we consider a smaller metalanguage, TMLb. Its syntax and
semantics are presented in Section 3 whereas Section 2 surveys the
necessary domain theory. In Section 4 we develop abstract interpretation
for TMLb. This includes the study of correctness of analyses (w.r.t. the
semantics), safety of analyses w.r.t. other analyses, and the speczjkation of
best analyse.~ (starting from other analyses or the semantics). In Section 5
we apply this theory to examples studied in the literature; in particular we
give a strictness analysis for the typed j.-calculus of Burn er al. (1986). With

DENOTATIONAL ABSTRACT INTERPRETATION 31

respect to Nielson (1986a, 1984) we have lifted a restriction imposed there
and this suffices for a class of “independent attribute analyses” (Jones and
Muchnick, 1981) for functional languages (as opposed to the “relational
analyses” (Jones and Muchnick, 1981) also considered in Nielson (1986a,
1984) but for imperative languages only). Another main difference from
Nielson (1986a, 1984) is that the development does not build on the
existence of the so-called collecting semantics (static semantics; Cousot and
Cousot, 1979). Therefore in Section 6 we show that the collecting semantics
does exist and that correctness of an analysis is equivalent to safety of that
analysis with respect to the collecting semantics. (This also answers a
problem left open in Burn et al. (1986)) Finally, in Section 7 we present
the main conclusions.

An extended abstract of this paper appeared previously as Nielson
(1987) and some of the tedious proofs not given here may be found in
Nielson (1986~).

2. PRELIMINARIES

In this section we review the simpler parts of the theoretical foundations
of denotational semantics. This will suffice for the subsequent development
because the denotational meta-language introduced in the next section does
not contain recursive domain equations.

A partially ordered set is a pair (D, c) where D is a set and c is a par-
tial order, i.e., a binary relation over D that is reflexive (i.e., dcd), trans-
itive (i.e., d&e A ecf*dEf) and anti-symmetric (i.e., dEe A e&d*
d = e). An element d E D is an upper hound of a subset S of D iff s c d holds
for all elements s of S. An element d E D is a least upper hound of S iff d is
an upper bound of S and dcd’ holds whenever d’ is an upper bound of S.
A subset S of D need not have a least upper bound but if it does the least
upper bound is unique and is written US. A partially ordered set is a com-
plete lattice iff every subset has a least upper bound. A subset S of D is a
chain iff s c s’ or s’ c s whenever s and s’ are elements of S. We may define
a complete partial order, or a cpo, to be a partially ordered set where all
chains have least upper bounds. Every complete lattice is a cpo but not vice
versa. An element d, of D is least iff docd holds for all d. A least element
need not exist but if it does it is unique and is written I,, or 1. In a cpo
(and hence also in a complete lattice) a least element always exists and is
given by the formula I = u 0, where 0 is the empty set.

A functionf: (D, c) -+ (D’, c ‘) from a partially ordered set (D, c) into
a partially ordered set (D’, c ’) is a function f: D -+ D’ from D to D’. It is
monotonic iff d, cd, impliesf(d,)c’f(d,). It is continuous iff for every non-
empty chain SG D with a least upper bound also {f(s)) s E S) ED’ is a

M3!76!1-3

32 FLEMMING NIELSON

chain and it hasf(U S) as a least upper bound. Every continuous function
is monotonic but not vice versa. However, whenf is monotonic and SC D
is a chain then {f(s)) s E S} is always a chain; furthermore, if u S and
u {f(s) [SE S} both exist then u {f(s)ls~ S} c’f(U S). The function fis
strict iff whenever D has a least element 1 then D’ has a least element 1’
and f(I) = I’. It is completely additive iff for all subsets SE D with a least
upper bound, {f(s) 1 s E S> c D’ also has a least upper bound and it is
f(U S). Every completely additive function is strict and continuous but not
vice versa.

A fixed point of a functionf: (D, E) -+ (D, c) is an element d of D such
that f(d) = d. A least fixed point off is an element d that is a fixed point
and satisfies dcd’ whenever d’ is a fixed point ofJ A least fixed point need
not exist but if it does it is unique and is written fix(f). The existence of
certain least fixed points is of vital importance for the treatment of iteration
and recursion in denotational semantics.

FACT 1. Zf (D, c) is a cpo and f: (D, c) + (D, c) is monotonic then it
has a least fixed point.

For a proof one may construct fix(f) by translinite induction (Halmos,
1960) but we shall omit the details.

A predicate Q upon a cpo (D, c) is a predicate upon D. It is admissible
iff for all chains SS D we have that Q holds upon U S whenever Q holds
upon each element of S. A related concept is that of a sub-cpo. A cpo
(D’, c ‘) is a sub-cpo of the cpo (D, c) iff D’ is a subset of D and c ’ is the
restriction of E to D’ x D’ and for every chain SG D’ c D that the least
upper bound in D’ equals that in D (i.e., /J’ S= U S). Whenever (D, g) is
a cpo and Q is an admissible predicate one may define a sub-cpo (D’, c ‘)
by putting D’= (dEDIQ(d)} and letting c’ be the restriction of c to
D’ x D’. Admissible predicates are important because they can be used to
infer properties about least fixed points.

FACT 2 (“Scott-induction”). If Q is an admissible predicate upon the cpo
(D, E) and f: (D, g) -+ (D, c) is monotonic then

Q(fix(f 1)

follows if Q(d) =z. Q(f (d)) holds for all de D.

We omit the proof, which is by transfinite induction.
It is useful to be able to construct cpo’s and to have operations upon the

elements. If S is a set we define the Jut cpo S, to be (D, c), where

D={(O,O)}‘-d{lbS)

d, cd, iff d,=(O,O) or d,=dZ.

DENOTATIONAL ABSTRACT INTERPRETATION 33

So (0,O) plays the role of I and D essentially is the disjoint union of S and
(1 j. When (Di, c ,) are cpo’s the separated sum of (0, , c ,) ,..., (Dk, c k)
is the cpo (D, c) defined by

D={(O,O))u((l}xD,)u . ..u((k}xD.)

dcd iff d = (0, 0)

or for some i, d,, d: that

d=(i,d,)r\d’=(i,d:)~d;E~d:.

So D is the disjoint union of D,, D, and a new least element. We write

ini = (i, d)

ifd= I

if d= (i, d’) for some d

ifd= (j,d’) for some d’ andjf i

if d= (i, d’) for some d

otherwise.

In practice we identify Di with (Dj, c i) and write D, + . .. + D, for the
sum. Also, we shall no longer clearly distinguish between the various par-
tial orders so we just write c for the partial order in question.

The cartesian product D, x ... x Dk of the k2 1 cpo’s (D,, L), (D,, c)
is the cpo (D, c), where

D= {(d, ,..., dk)ld,ED1, dkEDk).

(d I,..., d,c)E(d;, 4) iff d,Ld’, A ... A dkCdk.

We write

(d l,...,dk)li=di

and one may check that

u S=(u ($11 l=S},...,U {slkW})

whenever SzD, x ... x D, is a chain. The (monotonic) function space
D’ -P D” of the cpo’s (D’, c) and (D”, g) is the cpo (D, c), where

D = {f: D’ + D” 1 f is monotonic)

fl E f2 iff for all d’ E D’ that f,(d)& ,f2(d').

643/76/l-3*

34 FLEMMING NIELSON

One may check that

whenever Ss D is a chain. We shall explain later why we prefer not to
require functions to be continuous. Finally, the equations

I+d,,d2=I

true + d,,d2 = d,

false -+ d,, d2 = d2

define a conditional construct d + d, , d,.

3. THE METALANGUAGE

The development of the present paper builds on language definitions in
the style of denotational semantics (Stoy, 1977; Gordon, 1979; Mime and
Strachey, 1976). A denotational language definition takes the form of
semantic equations that in a syntax-directed way define a mapping from
programs into denotations (or meanings). The semantics or semantic
function of a language is then taken to be that mapping. The notation used
for constructing denotations is called a metalanguage and is often studied
in its own right. The motivation behind this is that the semantics may
actually be split into two mappings: a mapping from programs into the
metalanguage and a mapping (called an interpretation) from the
metalanguage into denotations. This is illustrated by the top and bottom
halves of Fig. 1. One advantage of this approach is that it becomes possible
to construct a system that interprets denotational definitions (e.g., Mosses,
1979). Another advantage is that one may obtain different semantic
functions from the same semantic equations: One semantic function (the
standard semantics (Milne and Strachey, 1976)) might describe the usual
input-output behaviour of programs whereas another semantic function
might express some analysis of programs, e.g., strictness analysis. This is
illustrated in Fig. 1.

Syntax

We shall consider the metalanguage TMLb whose types are given by

ct::=Ai~Bi~ctxct~ct+ct~c~--,ct (for in I).

Clearly x means Cartesian product, + means separated sum, and +

DENOTATIONAL ABSTRACT INTERPRETATION 35

FIG. 1. The role of the metalanguage

means monotonic function space. The difference between Aj and Bi will
become clearer as we proceed. Here it suffices to say that entities of type Ai
will mean the same in all interpretations whereas the meanings of entities of
type Bi may be different in different interpretations. Another way to put
this is to say that the Ai correspond to concrete datatypes whereas the Bj
correspond to abstract datatypes. The index set I will mostly be assumed to
be the positive integers but other sets could be used, e.g., the language of
some context-free grammar.

The expressions of TMLb are fairly conventional. The context-free
syntax is given by

e ::=fi (for iEZ)

I (e, e’)

Ieli
1 in,e
1 is,e
1 out, e
(lx: ct. e

I de‘)
IX
1 fix,., e
(e -+ e’, e”

constants
constructing a tuple
selecting a component
injection into a sum
testing the tag field
projecting out of a sum
function abstraction
function application
variables
least fixed points
conditional (over the “concrete” truth values)

The metalanguage is typed, which means that certain type constraints must

36 FLEMMING NIELSON

be satisfied. For this let a type environment tenv be a finitary mapping
from variables into types, i.e., a partial function from variables to types that
is only defined on a finite set dom(tenv) of variables. The well-typing
relation tenv +- e: ct then states that e is well-typed with type ct assuming
that the free variables of e are in dom(tenv) and have types as specified by
tenv. To be precise one can give the following inductive definition:

tenv +,h: ctj for fixed types associated with f,

tenv k-- e: ct tenv k- e’: ct’

tenv t- (e, e’): ct x ct’

tenv k- e: ct, x ct2

tenv k- e 1 i: cti

tenv k- e: ct;

tenv t- in, e: ctl + ctz

tenv k- e: ct, + ct,

tenv + isi e: T ’
where T is some A, (e.g., A ,) that is viewed as
being the truth values

tenv c e: ct 1 + ct,

tenv + out, e: ct,

tenv[ct/x] k- e: ct’

tenv +- 1x: ct. e: ct + ct’ ’
where tenv[ct/x] is the type environment
obtained from tenv by letting x be mapped
to ct

tenv t- e: ct -+ ct’ tenv t- e’: ct

tenv k-- e(e’): ct’

tenv k- x: ct whenever tenv(x) = ct

tenv t- e: ct + ct

tenv + tix,.(e: ct ’
where one should note that ct in fi~,.~ is the type of
the result

tenv +-- e: T tenv + e’: ct tenv +- e”: ct

tenv + e --) e’, e”: ct

We shall write 0 for the empty type environment. An expression e (as
generated by the context-free syntax) is closed if @we: ct holds for
some ct.

DENOTATIONAL ABSTRACT INTERPRETATION 37

Interpretations

We shall interpret types as cpo’s and closed expressions as elements of
cpo’s. By a type interpretation we shall mean a structure that assigns a cpo
to each Bj. The semantics of types then is defined relative to a type inter-
pretation. So given a type interpretation I we define the cpo I[ctj as
follows:

I [A ,I = some fixed cpo A,
I[B;] = I(B;)

I[ct x ct’] = I[ct] x I[ct’j (Cartesian product)
I[ct + ct’] = I[ctj + I[ct’] (separated sum)
roof + ctq = Iuctj + qcty (monotonic function space).

We shall not specify the A, further but it is natural to assume that A, is the
flat cpo {true, false 1 I of truth values.

By an interpretatiorz I we shall mean a type interpretation (also denoted
I) together with a structure that assigns an element of I[ct,] to each con-
stant f, (of type ct,). The semantics of an expression e is of course relative
to an interpretation I. It is also relative to a type environment tenv and a
type ct such that tenv t- e: ct. So if dom(tenv) is the set {.Y,,x.} and
tenv(x,) = cti we shall define a semantic function

IUell ,tenv,cr,: rpt,j x ... x lptkj -qctjl

structurally upon e. However, it complicates the notation to be precise
about tenv and ct so for the sake of readability we shall omit the (tenv, ct)
index. We then have the equations

I[,j;J = ;1(/1 I,..., ul) . I(f,)
IU(e,e’)l =A(0 ,,..., ~~).(I[e](u,, uk),I[[e’](v,, Us))

I[e 1 iI = i(u,, uk). (I[[e] (u,, uk)) 1 i
I[inje] = A(v , , Us) .in,(I[e] (tl,, Do))
I[isi e] = iV(u ,,~~).is.(IUel] (u,, uk))

I[outie] =lv(ul, ~~).out~(I[eJ(~,, zjk))

I[%~~+,:ct.e] =%(u,, ~~).h.I[re](~,, uk, U)

Ile(e’)l = R(u,, uk). (I[e] (v,, tjk))(I[e’] (u,, ~1~))
I[X,] = A(Z),)..., u,) . u,

Ipk.,ej = i.(u,, uk). lix(I[e] (II,, ~1~))

IiIe+e’, e”JJ =i(u,, v,).I[e](u,, u~)+I[~‘](u,, u,),

I[e”] (21, , uk).

It should be clear that, e.g., the in, occurring in [lin,e] is a syntactic con-
struct of TMLb whereas the in, on the right-hand side of the equation is
the function defined in Section 2. It is not diffkult to show by structural

38 FLEMMlNG NIELSON

induction that the above equations define a monotonic function of the
stated functionality.

EXAMPLE. The usual input-output semantics is obtained by specifying
the standard interpretation S. We shall define S(B,) = Ai and only when we
come to the applications shall we provide further information/assumptions
about the A, and hence the S(B,). Similarly we shall assume that the S(fi)
are fixed as elements of S[ct,] and we shall be more specific when we come
to the applications. However, it is instructive to point out that a natural
candidate for an f, might be the “abstract” conditional

f,.,:B,xctxct-+ct

for all choices of types ct. In the input-output semantics we will then have

assuming that B, is the “abstract” type of truth values. This is the version
of conditional to be used when we want to analvse a program without
knowing the exact values of variables. By contrast the conditional
. ..-+... . . . should be used for those aspects (e.g., static well-formed-

ness) of a’program that are the same in all interpretations.

It is convenient to name a special kind of interpretations. By a lattice
type interpretation we shall mean a type interpretation that specifies a com-
plete lattice, and not just a cpo, for each B;. We define a lattice inter-
pretation similarly. Not all interpretations are lattice interpretations, and
the standard interpretation S is an example because S(B,) = A, = {true,
false} L is not a complete lattice. The interest in lattice interpretations arises
when one considers program analyses (abstract interpretations or data flow
analyses). This is because a complete lattice is a cpo that has least upper
bounds of two-element sets (Markowsky, 1976): the interest in cpo’s is
inherent in denotational semantics and the interest in least upper bounds of
two-element sets arises when one wants to combine the effects along the
“then” and “else” branches of an “abstract” conditional (the fC, of the
previous example).

Relations between Interpretations

In considering more than one interpretation of the metalanguage it is
important to be able to relate their effects. So let I and J be (type) inter-
pretations and let Q = (~2~)~ be a family of admissible relations (or
predicates)

Qi: I(B,) x J(B,) + {true, false).

DENOTATIONAL ABSTRACT INTERPRETATION 39

The intention with Qi is that Q,(u, a) holds when u E I(B,) and u E J(B,) are
related as desired, e.g., when the property u correctly describes the actual
value U. Given (Qj)i we can use the idea of a relational functor (Reynolds,
1974) or logical relation (Plotkin, 1973) to extend the relationship to all
types, i.e., to obtain a relation

sim,.,[Q]: I[ctj x J[ctl] --f {true, false)

for all types ct.
This relation is defined structurally upon ct by the clauses

sim,,[Q](u, a) 5 u = v
shJQl(u, u) - Q,(u, ~1

sim,.,,C,,[Q](u, u)=simCIIQ](ul I, al 1) A sim,.,,[Q](ul2, 012)
Sk, + ‘ t1 [Q](u,u)=(u=l r\u=l)

v 3u’, cl’: u= in,(u’) A u = in,(u’) A sim,.,[Q](u’, u’)
v 324’, u’: 24 = in,(u’) A u = in,(u’) A sim,.,,[Q](u’, u’)

sim c,4,,,c[Q](u, u)=Vu’, u’: sim,,[Q](u’, u’)+sim,.,.[Q](u(u’), v(u’)).

The first two clauses clearly show that Ai and Bj are regarded differently.
The data domains Ai contain “static entities” that must be the same in all
interpretations. The data domains Bi, on the other hand, contain “dynamic
entities” that need not be the same in all interpretations. The remaining
three clauses extend the relation “componentwise” to all types.

It is not difficult to show (by structural induction) that if each Qi is
admissible then all sim,.,[Q] are admissible. A further result is that we get
structural induction over expressions for free:

PROPOSITION 3. Zfsim,.,,[Q](I(fi), J(h)) holds for all constantsh of type
et,, then simC,[Q](I[ej(l), J[ejJ(I)) holds for all closed expressions e of
t-vpe ct.

Proof: Let I and J be interpretations such that sim,.,,[Q](I(fi), J(fi))
holds for all constantsf, of type ct,. The proof then amounts to showing by
structural induction on expressions e that

if tenv t e: et
where dom(tenv) = {xi, xk} and tenv(xi) = ct:
then sim ,,;.....~,;-,.,CQl(Irrell,JUeD).

We omit the straightforward structural induction. (In the case of fix,., e we
use Fact 2.) 1

A similar use of relational functors and logical relations may be found in
Nielson (19841, Abramsky (1985), and Mycroft and Jones (1985).

40 FLEMMING NIELSON

Later we shall study special instances of sim,.,[Q] in some detail and this
motivates the use of special notation for these. The relation zz (, is obtained
by taking Q, = 2(u’, u’) . true, i.e.,

K z L’I u 3 sim,.,[(%(u’, u’) true);](u, 0)

and this expresses whether two elements are indistinguishable in the type
system. Note that u z<,., u will not always be true (e.g., take ct = Ai).
Assuming that each I(B,) equals J(B,) we may define the relation 6 (‘, by

K <C,u=sim,,[(l(u’, u’).u’Eu’)~](u, a).

This relation gives a structural way of extending the approximation
relation to all types. Note that u d (, u will not always be UL u (e.g., take
ct = A,). Finally, suppose there is a family mu of strict and continuous
functions

mv,: I(B,) + J(Bj)

and define the relation mv,., by

umv,., vzsim,.,[(1(u’, ~‘).mv,(u’)~u’)~](r4 v).

It is not difficult to show that each mv,, is an admissible relation. One may
view < CI as id,.,, where id is the family of identity functions and z L’I as IL,!,
where I is the family of bottom functions.

It is convenient to extend the relations mv, 6, and z to interpretations.
In the case of mv we may define

I mv Jo I(fi) mv,.,$ J(f)) for allf, of type ct,

- IUel(l) mv,., JUeD (1) for all closed e of type ct,

where the last implication is by Proposition 3. We define Id J and I z J in
a similar way.

4. ABSTRACT INTERPRETATION

The interpretations of the metalanguage to be considered in this paper
intuitively fall within two groups. One consists of the standard inter-
pretation, S, that describes the input-output behaviour of expressions. The
other consists of approximating interpretations, I, that describe various
analyses of expressions. As motivated previously these will be lattice inter-
pretations, i.e., the I(B,) will be complete lattices. In Section 6 we study an
approximating interpretation that intuitively is as precise as possible; it is

DENOTATIONAL ABSTRACT INTERPRETATION 41

FIG. 2. Safeness and correctness

called the collecting interpretation, C. Intuitively this interpretation works
on certain sets of values (from the standard interpretation) and it
corresponds to the static semantics of Cousot and Cousot (1979).’

The relations between these interpretations also intuitively fall into two
groups. The relations between S and C and between S and I express the
correctness of some approximating interpretation, C or I, with respect to
the ordinary input-output behaviour. The relation between C and I express
the fact that one analysis, I, is a safe approximation of another analysis, C;
i.e., I may not be as precise as C but will not give information that con-
tradicts information given by C. These relationships are illustrated in Fig. 2
and will be clarified shortly.

For a more concrete example suppose that there is just one base type,
B, , and just one function, ,f, : B, + B, . We shall assume that the standard
interpretation interprets the base type as the flat cpo Z, of integers and the
function as some monotonic function f: Z, -+ Z,. Concerning the
collecting interpretation we assume that the base type is interpreted as the
powerset P(Z) of integers ordered by subset inclusion E , and the function
as some monotonic function g: P(Z) + .Y(Z). Finally, we must consider
the approximating interpretation I, where we assume that the base type is
interpreted as some complete lattice L and the function as some monotonic
function h: L -+ L. A possible choice of L is

anysign

0 egative zero positive

’ The term “collecting semantics” was introduced in Nielson (1982) as a variant of the stan-

dard semantics that had sets of values col!ected at program points. However, the use of “static
semantics” in Cousot and Cousot (1979) conflicts with a well-established use of that term and
eventually the term “collecting semantics” came to mean “static semantics in the sense of
Cousot and Cousot (1979)” (see Mycroft, 1981; Mycroft and Nielson, 1983).

42 FLEMMING NIELSON

i.e., the complete lattice with elements I, anysign, negative, zero, and
positive and ordered by

I G 1 c anysign when I is negative, zero, or positive.

With these assumptions Fig. 2 specializes to Fig. 3 and we shall now
explain the c(, ,!?, y, and c.

The functions /I and (T are strict and continuous functions. They are ter-
med representation functions since the intention is that P(z)E L and
U(Z) E 9(Z) are the properties that best describe z E Z. Thus it is natural to

Put

P(l)=l

/3(z) = negative if=<0

B(O) = zero

b(z) = positive ifz>O

and

i

I-
(T(z)= I’ i if Zfl

QI if ;=I.

Clearly this defines strict and continuous functions /? and 0.
The correctness of h with respect to f may then be expressed by the

condition that

which says that

whenever I correctly describes 2, h(l) also correctly describes f(z).

FIG. 3. An instance of Fig. 2.

DENOTATIONAL ABSTRACT INTERPRETATION 43

So if, e.g., z = 0, f(0) = 0, and 1= anysign we have /I(O) 5 anysign and thus
h must satisfy that zero Lh(anysign). Note that the condition p(z)cl is
nothing but z bs 1 so that the correctness of h with respect to f becomes

fP h. B-B

Similarly,the correctness of g with respect to f is captured by f cB j B g.
The relationship between P(Z) and L is expressed using the framework

of Abstract Interpretation (Cousot and Cousot, 1979). The fundamental
ingredient is that of a pair (a, y) of abstraction and concretization functions.
The intention with the concretization function y is to formalize the intuitive
meaning of the properties in L, so one has y(negative) = {..., -2, - 1 },
;~(l) = 0, y(anysign) = Z, etc. Given a set S of integers the intention
with the abstraction function CI is that cl(S) is the best safi description of
S in L, so one would expect, e.g., tx({ - 3, - 2 >) = negative and
a({ - 3,2}) = anysign.

To be a bit more precise, by “S is safely described by I” we shall mean
that

SC y(l).

So the set { - 3, -2) is safely described by any one of the properties
negative and anysign. But y(negative) is a proper subset of y(anysign) and
negative is therefore the better property. Actually it is more convenient if
one could use the fact that negative c anysign to deduce that one should
prefer negative. For this to succeed the partial orders of Y(Z) and L must
be suitably related. Similarly, there must be a relation between c(and y in
order that one can claim that a produces the best safe description (w.r.t. y).
This is all captured by the adjoinedness condition (Cousot and Cousot,
1979).

v/s E P(Z): VIE L: sGy(l)occ(s)&I,

which may be reformulated as

c1 and y are monotonic

We refer to Cousot and Cousot (1979) for a detailed motivation for
demanding adjoinedness. Given adjoinedness one may formulate the
safeness condition SE y(I) as

44 FLEMMING NIELSON

and this is nothing but See, 1. The safeness of h with repect to g then is

which is nothing but go, j B h. Due to the adjoinedness of CI and y and the
monotonicity of g and h it may be reformulated as

as is illustrated in Fig. 4.
In general one may use abstraction and concretization functions to relate

arbitrary complete lattices of properties. So if L and M are complete lat-
tices and CI: L + A4 and y: M -+ L we say that (x, y) is adjoined when

This may be reformulated as above and the intention is that r([)cm holds
whenever 1 is safely described by m. The function c1 is called a lower adjoint
iff there exists a function y such that (a, y) is an adjoined pair. There need
not exist such a y but if it does it is uniquely determined by the formula
(Cousot and Cousot, 1979)

(Adjoinedness is also studied in category theory (MacLane, 1971))
Whenever c(is completely additive (see Section 2) it is a lower adjoint and
vice versa. Hence each a,, will be an admissible relation. Finally, y is called
an upper adjoint iff there is an c1 such that (a, y) is an adjoined pair and
then c(is uniquely determined by

where n Y = u { y 1 Vy’ E Y: y cy’} is the greatest lower bound of Y.
It follows that there is a one-one correspondence between a lower

adjoint CI and an upper adjoint y. Turning to Fig. 3 this may be extended
with a one-one correspondence to a representation function /I assuming

L

FIG. 4. h safely approximates g

DENOTATIONAL ABSTRACT INTERPRETATION 45

that cr is fixed. For given LY we may define a strict and continuous function
0 by p = LX . c and given /? we may define a completely additive function a
by cr(S) = u (p(s) 1s ES}. It is not hard to show that these constructions
are inverses of one another.

Returning to the general setting of Fig. 2 we have already argued that
P B+B is the proper predicate for relating elements of S[B -+ B] and
I[B + B]. Extending this to all types we may express the correcrness of I
with respect to S as

SPI

Similarly,

sot

expresses the correctness of the interpretation C and

CaI

states that I is a safe approximation to C. (Here each of p, rr, and o! stands
for a family of functions, e.g., pi: S(B,) + I(Bi).)

The Problem qf Inducing

Assume now that I is a lattice interpretation describing some analysis
and consider the task of defining another analysis J that safely
approximates I, i.e., I a J. The choice of the complete lattices J(Bi) is
intended to record a deliberate decision about certain aspects that are to be
treated less precisely in J than in I, e.g., to use J(B,) = L whereas
I(B,) = P(Z). Given this choice there is still much freedom when defining
J(.f,) as a safe approximation to I(fi). As an example let fi have type
B, + B, so that the safeness condition

I(fi) aBj + BI J(fi)
becomes

(compare Fig. 4, suitably relabelled). It follows that J(f,) = cc, . I(f,) . y1
will be the best choice. In particular it will be better than J(f,) = Iv .T,
where T= u J(B,) is the greatest element of J(B,), as this choice would
yield a rather uninformative analysis. So in general we want to define J(fi)
in a best way, given J(B,) and I(fi), so that the resulting analysis will not
be too uninformative. This is the problem of inducing J(,f;) from I(fi) and
the criterion that J(fi) is best may be formulated as

tfh E JlIct,ll: I(A) a(,, h =j J(f,) d,.,, h,

46 FLEMMING NIELSON

where, as usual,

expresses the safeness condition. In particular it is important to observe
that <cI rather than E is the proper relation to use for comparing
analyses (as is clear when, e.g., ct = A i).

So let I be a lattice interpretation, J a lattice type interpretation, and
(c(, y) a family of adjoined functions

(pi: l(B;) + J(Bi), yi : J(Bi) +I(B,)).

The functions CQ and yi move elements from I(B,) to J(B,) and vice versa
and we now consider how to extend this to all types and then later to inter-
pretations. Let us abbreviate

and note that (cr,, yi) is an element of IJIBi]. Consider next a type ct that
mentions only Bis in the list B,, B,. We then define a function

[ct]: (IJIB,] X ... X IJ[B/.,]) + IJ[ct]

as follows, where we write #i for (cl;, y,) and where id is the identity,

UAJl(d,, $N) = (id, id)

IilW(dl> ...? #N)=di
w + ctwh, dN)

=(nu.is,(u)~in,(Ucr'D(~,, 4N)1 1 (out,(u))),
in2(lct"n(d,,..., h)ll (ouW)h

n~.is,(u)~in,(Uct'B(6~, d,)l2 (out,(u))),
inz(i[d’n (4,) #N) 12 (out,(u))))

w x ~fw,,...,hd = (w, 4. mtxh, 4,) 1 w,
wnb4, dd ww,

w, ~7 adw,, hww,
ww,, 4diww

fd + cty (0 ,, . ..h)= uf. wwl, -., 4,di 1 .f. ww,,..., 4d-12,
45. wnh .4ui2 3. iwnw, hdi 1).

We now explain these equations.

DENOTATIONAL ABSTRACT INTERPRETATION 47

The equation for Bi is straightforward, as is the one for Ai because
I(Ai) = J(A,). The equations for ct’+ ct” and ct’ x ct” express a com-
ponentwise definition that we shall illustrate for ct’ x ct” assuming that
N = 0. Then

so that

[ct’]() 1 1: I[ct’] + J[ct’]

[ct”]() 1 1: I[ct”] + J[ct”]

44 own(11 w, wn()I u2.w
has functionality

I[ct’ x ct”] + J[cr’ x ctq

and it is correct to define [ct’ x ct”]() i 1 to be this function. A similar
explanation motivates the definition of [ct’ x ct”]l() 12 and hence of
[ct’ x ct”]. The equation for ct’+ ct” may be surprising in that
[ct’ + ct”]() 1 1 uses [ct’]() 12 and [ct”]() 1 1 rather than [ct’TJ() 11
and [ct”]() 1 1. However, it will be seen from Fig. 5 that this is the correct
thing to do. In particular if ct’ = B, = ct” then [ct’ + ct”]() 1 1 maps f to
rr , .f. y1 (because [[ct’] () 12 = :J, and [ct”] () 11 = cc,). A similar
explanation motivates the definition of [ct’-+ ct”] 12 and hence of
[Tct’+ ct”]. That the above equations do define a function [ct] of the
stated functionality is a consequence of

PROPOSITION 4. If ct mentions only B,‘s among B,, B, the equations
define a monotonic function

[cl]: IJ[B,] X ... x IJ[B,] -, IJ[ct]

that satisfies the functor laws

[ct]((id, id), (id, id)) = (id, id)

[Ictn(~;.~,,...,d',.~N)=[lctn(~;,...,~',).cctn(~,,...,~,),
where $‘.c$=(c$‘~ 1 .bll, #12.$‘12).

JU =t’I] __------ ----------- -$ JD ct”jJ -

I
Uct’Il ()J2

1rlct'Il

, T
[I ct”Il ()11

Ill ct"D - -
f

FIG. 5. The definition of [et’ + ct]i() 1 1.

48 FLEMMING NIELSON

We shall begin by motivating the definition of 4 .b. Here 4 is (cr’, y’)
and q3 is (c(, y) so the definition reads

(a’,y’).(a,y)=(cr’.cr,y.y’).

This is illustrated by Fig. 6, which shows that if (a, ‘J) and (CC’, y’) are pairs
of abstraction and concretization functions then so is (CC’ . tl, y .;I’) and this
pair may be regarded as the composition of (a’, r’) and (a, y). The proof is
by a straightforward structural induction and is omitted. There are many
more results one can show about [eta but we shall postpone this and
instead consider the problems in passing from I[ctl to J[cta when we do
not have pairs of adjoined functions that relate I(B,) and J(B,). An exam-
ple of this setting is one in which we want to induce an analysis directly
from the standard interpretation rather than from some other analysis
(such as the collecting semantics). So let L be an interpretation and R a
lattice type interpretation and let mu be a family of strict and continuous
functions

mu, : L(B,) + R(B,).

Note that it is not assumed that L(B,) is a complete lattice nor is it
assumed that mui is a lower adjoint.

We are searching for a way to transform elements of L[ctl into R[ctlj ;
i.e., we are looking for a suitable function

move,,[mv]: L[ctj + R[ctlJ.

Motivated by the definition of [ct](q51, dN) 11 it is natural for us to
propose

FIG. 6. The composition of pairs of functions.

DENOTATIONAL ABSTRACT INTERPRETATION 49

move,,[mo] = II. I

move,,[mu] = mu,

move,.,. + (.,,* [mu] = IZ.is,(i) + in,(move,.,~[mu] (out,(l))),

in,(move,,..[mu](out2(1)))

move,.,. x Cf.l [mu] = A(ll, 1”). (move,,,[mu](l’), move,.,.[mu](l”)).

It is more troublesome to handle the case ct = ct’ -+ ct”, as is illustrated by
12 when defining Kc?’ + ct”~(~r, tiN) 1 1, the need to use [ct’J($,, dN)

but we propose

move,,. _ (.lII [mu] = Al. ha . u (move,,.~[mu](l(la)) 1 la mv,.,, ra>.

Here 1 is a function from L[ct’J to L[ct”~ and la is an argument in L[ct’l]
corresponding to an argument ra in R[ct’l]. One motivation for the above
formula is the formula

y(ra)= u {laIcc(la)gra}

for an upper adjoint in terms of a lower adjoint, and another is that la
mv,,. ra is the generalization of a(la)cra to all types (assuming cli = WIU~).~
The idea thus is that since we have no function to transform an element
raE R[ct’j into an element of L[ct’J we must instead consider all
la E L[ct’l that are safely described by ra and then combine the results for
all these la’s.

However, the above definition is not well-defined as it stands. The
motivation for requiring R to be a lattice type interpretation is that the
least upper bound in the definition of move,.,, _ C,., then exists if ct” is some
Bi. But this is not enough to guarantee existence in general as the following
example shows. Let T and 0 be the cpo’s given by

true v false

I

1

T: 0:

I 0

* Theorem 12 will give conditions for when la mv,.,, ra is equivalent to

move,,Jmu](lo) Gc,. ra but note that in general (e.g., when CI’ = A,) this will not be equivalent
to move,,,[mu](lo) E ra.

50 FLEMMING NIELSON

Suppose that L(B,) = T and that all other L(B,) and all R(B,) are 0.
Define

mu,(true) = 1, mo,(false) = 1, mu,(l)=0

and otherwise mu,(x) = x. Finally consider

U~)ELCBI +Bz+Bzl

defined by

L(f$)(true)=in,(l), L(d)(false) = in,(l), L(d)(l) = 1.

When calculating move BI - BI + BI [mul(L(h)(1) we have

true mvB, 1, false mvB, 1, I mvB, 1

and so must take the least upper bound of the subset

of RIB, + Bin = 0 + 0. But this set has no least upper bound.

Faithfulness

To overcome the above problem we shall exclude functions like L(d)
from consideration in the hope that this will be sufficient for move to be
well-defined. Intuitively, the problem with L(d) is that different elements of
type B, give rise to results (of type B, + B,) that can be distinguished in the
type system, namely that one result is in the first summand and the other
result is in the second summand. So the idea will be to impose as a con-
dition that differences among elements of the Bi may lead to different
results in the Bj but not differences that can be distinguished by the type
system. This vague formulation is captured by the relation

u x,.,u E sim,.,[(%(u’, u’) true)i](u, tl)

defined earlier. As an example we shall show that

L(4) ;c: B, - B2 + B2 L(d).

It is straightforward to calculate that

true z B, false

and this proves the claim.

DENOTATIONALABSTRACTINTERPRETATION 51

Given a type interpretation I we now define a type interpretation I,
called the faith@ part of I. The aim is to restrict I[ct] to containing only
well-behaved elements. The definition is

I,[ct’ x ct”] = IJct’] x Irfct”] (Cartesian product)

I,[ct’ + ct”] = I,[cr’J + I,[ct”] (separated sum)

I,[c~’ -+ c2”n = if: IrFct’n + I,[ct”g 1 fis monotonic

and f < c,.+crz.f and f z(.,. +,.,,.f].

The requirement that functions in I,[ct’ + ct”] must be monotonic is just
as before and we have already motivated the requirement that f’ z Cl* _ ,,,,,f
by the desire to exclude L(b) from consideration. The requirement that
.f < ~ f, _ ,.,,,f amount to

so that when v is a safe approximation of u then f(u) is also a safe
approximation off(u). This may be expressed as the requirement that f be
monotonic with respect to “safe approximation.” Finally, note that since
< , (.,, _ <.,,, and z (.1, _ (.!., are admissible relations Ir[ct’ + cf”] is still a cpo

and hence all IJct] are cpo’s. Also, the least upper bounds of chains in
IJct] are calculated as in I[ct]. When I is an interpretation such that all
constants I(fi) are elements of I,[ct,] we say that I is a faithfd inter-
pretation.

We now restrict our attention to the faithful part of a (type) inter-
pretation I and study the families 6 and x of relations.

DEFINITION. A subset Y of IJctJJ is a fuithful set iff

V’?‘,,yzE y: y1 Z‘.,J’Z.

An element y of Ir[ct] is faithful iff { JJ} is a faithful set and it is fuithful to
the element y’ of I,[ct] iff { .v, -v’) is a faithful set.

Faithful sets are of interest because they exclude the set

{inIt L Ml), I},

which caused problems previously. Some properties of faithful sets and
elements are given by:

643.76 1.4

52 FLEMMING NIELSON

is a faithful set.

FACT 6. All elements of IJct] are faithful and <-monotonic; i.e., #
v E IJet] then v z (‘, v and v <,., v hold.

The proof of Fact 5 is straightforward and the proof of Fact 6 is by an
easy structural induction.

Recall that the composition R, R, of two relations R, and R2 is given
by

and that an equivalence relation is a reflexive, symmetric, and transitive
relation. We then have

PROPOSITION 7. Let L be a type interpretation and let us restrict our
attention to the faithful part L,. Then

<,., is a partial order on LJct] that implies E,

zCr is an equivalence relation on LJct], and

6,., . zcrr IS x (‘, and z (‘, Go, is z (‘, .

Note that it trivially follows from this proposition that < (,I. Go, is 6 (‘f and
zcz. Z<, 1s ZC,.

Proof The proof is by structural induction on ct and most cases are
straightforward. (In the case of ct = ct’ + ct” it is important that we use the
separated sum rather than the coalesced sum.) We illustrate only the har-
der case when ct = ct’-+ ct”. That 6,,, is reflexive on LJctJ is because
LJct] is defined to include only functions f that satisfy f &J: To see that
<Cl is transitive let fGC,gGCr h. If v 6,.,, w we have v<:,.~~o<,<,.~~w by the
induction hypothesis so that f(v) <Ct.< g(v) Go,,. h(w) and by the induction
hypothesis f(v) <CIP, h(w), as was to be shown. For anti-symmetry let
f<,., gGC,f: For v E LJct’] we have v dC,, u by the induction hypothesis so
that f(v)<Ccl,.g(v)<C,..f(v). It follows that f(v)=g(u) for all u so thatf=g.
Finally, 6 L’I implies c because if f <,,g and v E LJct’] we have v <(,. v and
f(v) ~~~,,g(v); so by hypothesisf(v) c g(v) so that f 5 g.

That z <I is reflexive is because L,[ct] is defined to mclude only faithful
functions. For transitivity let f CC! g z:,,~ h. If v x,, w we have v zC, v z,., w by
hypothesis so that f(u) zC,” g(v) zCrP, h(w) and hence f(v) z’,,,. h(w). That
25 (‘I is symmetric is shown in a similar way.

DENOTATIONAL ABSTRACTINTERPRETATION 53

Next consider the equation < =, . zC, = z,.~. That fzC, g implies
f(G,,. =cr)g is because fGCrfzCtg since we have shown <<! to be
reflexive. That f< (‘, g z LI h implies fzCr h is because u zC,.I, w implies
v 6,,, v Zc,’ w so that f(u) 6.,,, g(u) zC,.l. h(w) and the result then follows by
the induction hypothesis. The other equation is similar. 1

For a partial order it is of interest to know whether least upper bounds
exist.

PROPOSITION 8. Let L be a type interpretation and let us restrict our
attention to the faithfur part Lr. Zf Y c Lr[ctn 1s a non-empty andfaithful set
such that u Y exists in Lr[ctJ then

u Y is the least upper bound of Y w.r.t. <,,,, and

Y u {u Y} is a faithful set.

The requirement that Y be non-empty is because I = u 121 is not the
least upper bound of @ c Lr[A,j with respect to ,< A,, which is =.

Proof: The proof is by structural induction on ct and we illustrate the
case where ct = ct’ -+ ct”. We know that u Y= 1,~. u Y[v], where
Y[v] = { y(v)ly~ Y}. To see that u Y is an upper bound of Y w.r.t. 6,.,
consider some y E Y and show y 6,., u Y. For this let v <<,, MJ and show
y(v) Gctss u Y[w]. Since y 6,., y we have y(u) <,,,, y(w). Since y(w) E Y[uq]
we have y(w)) 6<,,, U Y[w] by the induction hypothesis. The result then
follows by the transitivity of < C.ls,. To see that U Y is the least upper bound
of Y w.r.t. <,., let gE Lr[ctj be an upper bound of Y. When IJ <<(, w we
have y(v) G<.,,. g(w) for all y E Y and by the induction hypothesis
U Y[u] < C,,,g(w). This shows U Yd,.,g.

To show that Y u (U Y} is faithful it suffices by transitivity of z C, to
consider y E Y and show y x,.~ /J Y. When v % (.II w we have y(v) zCtC, y(~1)
so by transitivity of zCt.. it suffices to consider w ~Lr[ct’l and show
y(w) z,.,.,(U Y) (IV). But (1 Y)(w) = U Y[w] and the result follows because
the induction hypothesis asserts that Y[w] u {U Y[w]} is faithful. 1

For lattice type interpretations we do not need to assume that U Y
exists:

PROPOSITION 9. Let R be a lattice type interpretation. Zf Y G RJcta is a
non-empty and faithful set then U Y exists in R,[ctl].

Proof. The proof is by structural induction on ct and we illustrate the
case where ct = ct’ -+ et”. We first show that U Y exists in
RJct’a -+ R,[[ct”lj. For DE Rr[ct’J we have u zC,.,! u and therefore the set
YCul= {Y(U)lYE Y) is nonempty and faithful. Therefore 2~. U Y[u] exists

54 FLEMMING NIELSON

by the induction hypothesis and it equals u Y in RJct’j + RJct”j.
(Clearly u Y is a monotonic function.) To show that u Y exists in Rr[crB
we must show that u Y is faithful and d-monotonic. Let y be some
element of Y. If u FZ~!. u’ we have J(U) zcr.. I. By Proposition 8,
u Y[u] ~~.,~,y(o) and u Y[M>] z<~..J$MJ). By transitivity of z~,.~,~ we get
(u Y)(u)z~,., (u Y) (w). Next if r<<,,, MI we have JJ(v)<~,,, II(+V). Since
v(w) Gc,,. (U Y)(u*) by Proposition 8 we get y(u) d,.,,, (u Y) (w). By yet
another application of Proposition 8 we get (U Y) (u) <,.,,(U Y) (w). 1

Before we prove the existence of move we need some results about the
behaviour of [[ctl. Let us write

iJ,[ct] = (i,fcr] -+ Jf[ct]) x (J[[ctl] + I,[ct])

and begin by stating that [ctn specializes to a mapping between faithful
parts:

PROPOSITION 10. If ct mentions only B,‘s among B,, B, the equations
for [[et] may be viewed as defining a monotonic function

[ct]: I&[B,] X . X IJ,[B,] + I&[ct]

that satisfies the functor laws of Proposition 4 and such that

are faithful and < -monotonic u,hen all xi and ;‘, are monotonic.

Proof The proof is by structural induction on ct and we illustrate the
case where ct = rt’ + ct”. As a shorthand we shall write (c1,~) instead of
((G(~, r,), (aN, Y,,,)). We concentrate on showing the correctness of the
functionality of [ct](a, y) 1 1 and that it is monotonic, faithful, and
<-monotonic. The results about [ctj (CI, y) 12 are similar and together with
the proof of Proposition 4 the remaining results follow.

Concerning the functionality we must show that whenever
f~ I,[ct’ --f ct”j then

Uc~ll (a, Y 11 l(f) = U4l (a, Y) 11 ..f- Udl (a, Y) 12

is monotonic, faithful, and d-monotonic. But f is by assumption and
[ct’] (a, y) 12 and [ct”n (c(, y) J 1 are by the induction hypothesis and the
result then follows because monotonicity, faithfulness, and d -monotonicity
are preserved under composition. Next suppose that f d ‘, g and show that

DENOTATIONAL ABSTRACT INTERPRETATION 55

But if u GC,, v we get

Uct’li (a, Y) 12(u) Gd EcfTi (4 Y) 12(o)

by the induction hypothesis and hence

so that by using the induction hypothesis once more we have

which is the desired result. Faithfulness is shown in a similar way and
monotonicity is straightforward. 1

The primary use of [ct] ((a,, y,), (a,, yN)) is in instances when all
(ai, yi) are pairs of abstraction and concretization functions. Since it is
customary to require these to be adjoined pairs it is of interest whether
[ct]((a,, y,), (a,,,, yN)) is also an adjoined pair.

PROPOSITION 11. If ct mentions on1.v B,‘s among B,, B, and if all
(ai, yi) E IJ,[B,] are adjoined functions then

~a,.,vou~,,UctD((a,,~,),...,(a,,~,))12(u)

* ucta((a,, YIL ...? (a,, Y,V))l1(~)~~.,U

holds for all u E l,[ct] and v E J,[ct].

Proof: The proof is by structural induction on ct and we illustrate the
case where ct= ct’ + ct”. As a shorthand we write (a, y) instead of
((a,, y,), (a,, yN)). The first condition becomes

vu’ E Ir[dj, d E J,[dg : u’ a,.,, 0’ =c= u(24’) a,.,.. v(v’),

the second becomes

vd, WI E I,[rctq: u’ d,.,, w’

-4~‘)~,.,44l(a, YWMU~I(~, ~)l l(w),

and the third becomes

VW’, 21’ E Jr[ct’] : w’ 6,,, u’

=- Ccf’l(a, Y) 1 lWcfl(a, Y) 12W))) +, v(d).

There are now four implications to show.

56 FLEMMING NIELSON

To prove that the first condition implies the second condition we assume
the first condition and that U’ and w’ are such that

By Proposition 10 we have

Ucfll(4 Y)l l(U’)6d ECfli(% Y)l l(w’)

and by the induction hypothesis this is

u’ a,.,. [ct’] (D., y) 1 1 (w’).

By the first condition we get

u(u’) a,.,,, U(UCfli(~, Y)l l(w’))

and by the induction hypothesis we get

u(u’) G,,,, Ect”n(4 Y) 12(fd4(‘% Y) 1 1 (U”))),

as was to be shown.
To prove that the second condition implies the first condition we assume

the second condition and that u’ and v’ are chosen such that

u’ a,.,, v’.

By the induction hypothesis this equals

d 6,.,, rrctw, Y) 12w

and using the second condition we get

~(~‘)~~,.,u~t”n(~(,~)l2(~(~~t’D(~,~)ii(u~t’n(~,~)i2(~‘)))).

Let us pause for a moment and note that

uctw, Y) 12w c.!, u~tw, 14 1 w)

holds by Proposition 7 and u’ E Jr[ct] so that by the induction hypothesis

~~t’~(cr,y)ll(rrct’n(~r,~)12(~‘))~<,.,,~’.

But we have assumed that u E Jr[ct] and by Proposition 10, [ct”] (CI, y) 12
is d-monotonic so we get

CCul(% Y)l2(v(ucfn(~, Y)l1(CCfD(~, Y)12(V'))))

Q,.,,, rrCf”lJ(‘% Y) 12(dv’)).

DENOTATIONAL ABSTRACT INTERPRETATION 57

Continuing the argument we get by Proposition 7 that

u(d) d,.,,. [ct”](‘% y) 12(u(u’))

and by the induction hypothesis this amounts to

u(u’) a, ,‘, u(u’),

as was desired.
We have now proved the equivalence of the first and second conditions.

The proof that the first and third conditions are equivalent follows the
same pattern and is therefore omitted. 1

This result may be viewed as saying that when each (a,, 7,) is an
adjoined pair then

uctn((@l~ Yl)? ...1 (=/v3 YN))

is an adjoined pair with respect to the partial order of “safe
approximation” (namely 6, ,).

Returning to the existence of move we now have sufficient apparatus to
show that the equations

move,,[mu] = Al.1

move,,[mu] = mui

move ~r.+~,.~[mu]=~I.is,(l)~in,(move,.,.[mu](out,(I))),

inz(move,,..[mu](out,(l)))

move,.,, xc,,, [mu] = A(/‘, Y).(move,.,.[mu](1’), move,.,~.[mv](1”))

move,.,. _ (.,- [mu] = ll.J.ra. u { move,.,.,[rnu](l(la)) 1 la mv,.,. ra}

do define a function when attention is restricted to the faithful parts of the
interpretations.

THEOREM 12. Let L be a type interpretation, R a lattice type inter-
pretation, and mu a family qf strict and continuous functions

mu;: L(B,) -+ R(B,).

Then the equations for moue make sense and define a function

move,.,[mu]: Lr[ctj + RJctJ,

that is,

strict, monotonic, <-monotonic, and faithful,

58 FLEMMING NIELSON

and satisfies

umv,, u~move,.,[mv](u)d,., u

u c2 (., move,.,[rnu](u)

for all u E LJctJ and u E Rr[ctJ.

We leave the rather complex proof to the Appendix.
This theorem has some important implications.

COROLLARY. move, ,[mv] constructs the best safe approximation with
respect to mv,,.

ProojY For 24~ Lr[ctD the claim that move,,[mu](u) is a safe
approximation to u amounts to

u mvct move,,[mo](u).

But this follows from the double implication in the theorem by choosing
u = move,.,[mu](u) and observing that u 6,., 11 follows by Proposition 7.
That move,,[mo](u) is the best safe approximation means that all safe
approximations to 24 also safely approximate move,.,[mv](u), i.e.,

u mv,, D * move,,[mu](u) 6,., 21

but this follows from the double implication in the theorem. 1

Furthermore we can compare the effects of [ctj and move,,.

COROLLARY. If (a,, yi); are families of atljoinedfunctions and ct mentions
only B,‘s among B,, B, then

kctl((a,, yI 1, -., (a,, Y,~)) 11 = move,.,C(~j)jl.

ProoJ: From the theorem we have, writing CI for (a,),,

~a,,uomove,.,[a](u)6,.,u

and from Proposition 11 we have

ua,.,v* i[ctntta,, r,), ..., (a,, Y&J))1 l(U)Gc, v.

Combining this we get

move,,C~l(u),<,., o*lIctll((~,, rl), (a,,~,))1 1(~)6, u

and as 6,, is a partial order the result follows. 1

DENOTATIONAL ABSTRACT INTERPRETATION 59

Induced Interpretations

We conclude this section by formulating the development of Abstract
Interpretation in terms of interpretations. So let L be a faithful inter-
pretation and R, a lattice type interpretation. Here L may be thought of as
the standard interpretation or some interpretation that expresses a
program analysis whereas R, is to be extended to a faithful lattice inter-
pretation R that expresses some program analysis. The intended relation
between L and R is based on a family mu of strict and continuous functions

mui: L(B,) -+ R,(B,).

The intention is that R should be a safe approximation to L, i.e.,

L mv R,

and furthermore that R be as precise as possible, given that each R(B,) is
R,(B,), i.e.,

LmvR’=c=RdR’,

where each R’(B,) is also R,(B,). To accomplish this we define the induced
interpretation

R = induce(L, mu, R,)

by

W,) = R, (B,) for all Bi

R(h) = move,.,,Cm~l(W)) for allf, of type cti.

We then have the desired interpretation:

THEOREM 13. Let L be a faithful interpretation, R, a lattice type inter-
pretation, ma a collection of strict and continuous functions, and R’ a
faithful lattice interpretation. Then

induce (L, mu, R,) is a faithful lattice interpretation,

L mv induce(L, mu, R,),

L mv R’ o induce(L, mu, R,) 6 R’.

This is a simple consequence of Theorem 12 and its first corollary and
says that the induced interpretation is the best safe approximation to a
given interpretation. This result is equally applicable to the definition of an
analysis using the standard interpretation and to the definition of an
analysis using a known analysis.

60 FLEMMING NIELSON

5. APPLICATIONS

When applying the framework of the previous section one must make
sure that only faithful interpretations need be considered. This is a semantic
restriction to be fulfilled by the interpretations of the constants f, of type
cti. To ensure the fullillment of this restriction it is therefore of interest to
find a syntactic restriction on cti that will guarantee this, i.e., that will
guarantee that I[ctJ = Ir[ctJ.

We therefore begin defining the predicates pure (abbreviated p), impure
(abbreviated imp) and level preserving (abbreviated lp). These are defined
structurally on types ct with the definitions of impure and level preserving
being mutually recursive. The definitions are:

Ct p(ct) imp(&) lp(ct)

Ai true false true
B, false true true
ct’ x ct” p(ct’) A p(cr”) imp(ct’) A imp(ct”) lp(cr’) A lp(ct”)
ct’ + ct” p(ct’) A p(ct”) false lp(Ct’) A lp(Ct”)

ct’ -+ ct” p(Ct’) A p(Ct”) lp(ct’) A imp(ct”) [P(cf’) A lP(ct”)]
v [lp(ct’) A imp(ct”)]

The motivation behind the definition of pure (i.e., p(ct)) is that the type ct
is pure if it contains no Bi. The motivations for the predicates impure and
level preserving are best explained by the following result.

PROPOSITION 14. For a type interpretation I and a type ct we have

(1) if ct is pure then it is level preserving and E(., and 6,., are both
equality,

(2) ifct is impure then it is level preserving and zC1 is a relation that is
always true and < CI is c,

(3) if ct is level preserving then I[ct] = I,[ct].

It is clear that the predicate level preserving can be used as the sufficient
syntactic condition for ensuring that only faithful interpretations need be
considered. Some examples of level preserving types are

A,, B,> B, x B, x B, + B,, B,+(A,+A,+B,).

One may reformulate the condition for ct’ + ct” to be level preserving to
the requirement that ct’ and ct” be level preserving and that additionally ct’
be pure or ct” be impure. Concerning pure types one notes that they

DENOTATIONAL ABSTRACT INTERPRETATION 61

behave much as the Ai with respect to the definitions of %c, and <,, and,
similarly, impure types behave much as the Bi.

Proof. The proof is by structural induction on ct and we illustrate the
case where ct = ct’ -+ cf’. Assume first that ct is pure, from which it follows
that ct’ and ct” also are. By the induction hypothesis we have that ct” is
level preserving and this shows that ct also is. The predicate fz(.[g
amounts to

and since (by the induction hypothesis) both cc.,. and z:,.’ are equality this
reduces to f= g so that also z~, is equality. In a similar way it is shown
that <‘I is equality.

Assume next that ct is impure but not necessarily pure. Clearly ct is also
level preserving. Using the induction hypothesis the relation fzclg
amounts to

which always holds so that also z:,., is a relation that is always true.
Similarly f< c, g reduces to

This implies that fEg, i.e.,

vu E I[ct’j = If[ct’]:,f(u) &g(u),

since d,.,, is reflexive, as follows from Proposition 7. Next suppose thatfcg
and u d,.,, u. By Proposition 7, I[ct’] = I,[ct’], and monotonicity offwe get

f(u)c .f(v)cg(u)

and this showsf(u)cg(u). It follows that 6,, is c.
Finally, assume that ct is level preserving but not necessarily pure or

impure. There are two cases to consider so suppose first that ct’ is pure and
ct” is level preserving. Then fz,., g reduces to

VU: f(u) = (./u g(u)

as z:,. is equality and since z:,.. is reflexive by Proposition 7 and the fact
I[ct”] = I,[ct”] it follows that z~., also is (over I[ctn). In a similar way it is
shown that <,., is reflexive over I[ct]. This suffices to show that
I[ct] = IJct]. Suppose next that ct’ is level preserving and ct” is impure. In
fact ct is impure too and z(,, and d,., are then reflexive as a consequence of
(2). Again this suffices to show that I[ctJJ = Ir[ct]. 1

62 FLEMMING NIELSON

The motivation for the present work, as well as that of Nielson (1984,
1986a), is to formulate a general framework of Abstract Interpretation for
denotational definitions. This means that it must be possible to formulate a
wide class of program analyses using the framework. One may then con-
sider how to implement the framework and this is currently being
investigated. For this reason we shall concentrate on showing that actual
analyses can be handled by showing that the setup used in various papers
may be transformed to the present framework.

We begin with a brief comparison of the present development with
respect to its forerunners (Nielson, 1984, 1986a). The predicate level preser-
ving generalizes the predicate contravariantly pure used in Nielson (1984)
to constrain the types ctj of constantsf,. The definition of “contravariantly
pure” (abbreviated cp) closely resembles that of “level preserving” with the
exception that cp(ct’ + ct”) is defined as p(ct’) A cp(ct”). Proposition 3 is a
simplified version of Theorem 3.3: 14 of Nielson (1984) and a version of
Proposition 7, but restricted to contravariantly pure types, is given by
Lemma 4.2:3 of Nielson (1984). Finally, the definition of move generalizes
the definition of view in Nielson (1984). This means that Theorem 13 is
more general than its analogue in Nielson (1984) (which is Theorem 4.2:7).
On the negative side we have not treated recursive domains and have only
shown monotonicity and not continuity.

As a second example we consider the setup of Mycroft and Jones (1985).
The language studied there is an untyped l.-calculus. Let Var be an
unspecified countable set of variables X. Then the set Exp of expressions e
is given by

e ::= .Y 1 E.x.e 1 e e.

In Mycroft and Jones (1985) the notion of an interpretation is defined, but
to avoid confusion we prefer to call it a model. A model I is a triple con-
sisting of cpo D and functions

lam:(D-+D)-+D

app: (DxD)-+D.

Relative to a model I we define the cpo of environments

Env,=Var+D

and the semantic function

E,: Exp + Env, + D.

DENOTATIONAL ABSTRACT INTERPRETATION 63

The semantic equations are

E,~j”x.elj(p)=lam(~.d~D.E,[ren(p[d/.~]))

E,Ue e’l(P) = app(E,Uel(pL E,Ue’l(p))

and this clearly defines E,. In Mycroft and Jones (1985) various models are
defined. One is a standard interpretation where D is the solution to the
recursive domain equation

D=(D+D)+Z+ {wrong;,

and where Z is the integers. Another is a strictness analysis and the third
model concerns the type analysis of Hindley and Milner.

To handle this in the present framework we must do two things: one is
to define a syntactic translation from expressions e of Exp into expressions
of TMLb and the other is to construct an interpretation I from a model I.
Concerning the syntactic translation it seems natural to let B, correspond
to D and to let f, and fi correspond to lam and app, respectively. As for
the variables x of Var there are two ways to view them: one is as elements
of, e.g., A, and the other is to identify them with the variables of TMLb.
We shall choose the former and hence Env, will correspond to the type
A, -+ B, . We then define the syntactic translation function b:

~[l.x.e~ =i.p: A, -B,.f,(M: B,.6[e~(p[~/.~])),

where p[d/.u] abbreviates (j-v: A,.f,(u, x) + d, p(v)))

g[ee’] =Ap: A, -B,.fi(&[e~(~), &[e’l(p)).

Here we have assumed that p, d, and v are variables of TMLb and that J7,
of type A,xA,+A,, where A, is the truth-values, stands for the test
3.(I;, x). u = .Y. To be fully precise we should have replaced the use of x on
the right-hand sides by Y ‘[sj where we had formally defined Y’[?sij =,f3 +,
for each X, in Var. So the types ctj of the constants f, are

ct, = (B, -+ B,) + B,

ct2=(B,xB,)+B1

ct,=A,xA,+A,

ct -A, 3+i- for i>O

64 FLEMMING NIELSON

and these are clearly seen to be level preserving. (In fact ct, and ct, are
impure and the remaining are pure.)

Given a model I= (D, lam, app) we then specify an interpretation I by
setting

I(B,) = D

and, e.g., I(B, + i) = D as well for i 2 1, and by setting

I(fi) = lam

UfJ = am

I(f3)=l(u, o).u=a

I(fX+i) an enumeration of the elements of Var.

We take it for granted that A i = Var, and that A, = {true, false} 1 . This
interpretation is faithful by Proposition 14. It should be clear that &[e] is
always a closed expression of TMLb, i.e., no free variables, and that

One small point is that we have only required functions to be monotonic
whereas in Mycroft and Jones (1985) they are in fact assumed to be con-
tinuous. Nonetheless it is correct to claim that this demonstrates that the
setup of Mycroft and Jones (1985) is expressible in the present framework.
As a specific example note that the Correctness Proposition of Mycroft and
Jones (1985) corresponds to Proposition 3.

As the final example we consider the strictness analysis of Burn et al.
(1986). The language studied there is a typed l-calculus. The types t are
given by the abstract syntax

t::=A 1 t-t,

where A is the type of atoms and t + t is a function space. The set Exp of
expressions e is given by the abstract syntax

e::=c’Ix’)Ax’.eI(e e))fix’e.

Here each c’ is a constant c of type t, each x’ is a variable x of type t, i.x’.e
denotes function abstraction, (e e) denotes application, and lix’e denotes
an element of type t that is the fixed point of e. In Burn et al. (1986) this
language is given two semantic definitions. One is

sem: Exp -+ Env -+ D,

DENOTATIONAL ABSTRACT INTERPRETATION 65

which defines the ordinary semantics and where D is an infinite sum
(indexed by the types t) and Env is the cpo of environments, i.e., mappings
from variables to D. The other is

tabs: Exp -+ Env’ + B,

which defines a strictness analysis and where also B is an infinite sum
indexed by the types t and where Env’ contains mappings from variables to
B. The definitions of sem and tabs take the form of semantic equations and
the only difference is the way constants c’ are handled.

To handle this /!-calculus we follow the general approach of the previous
example. In the present case we need to define two syntactic translations.
The function .F translates the types of the i-calculus into types of TMLb.
It is given by

and it is straightforward to verify that all F[tl] are impure and hence level
preserving. Concerning expressions, we must decide how to treat variables
and in this example we choose to identify them with the variables of
TMLb. (To view them as elements of some type, e.g., A,, we would have to
extend TMLb with infinite sums and construct a type that is the sum of all
3[f].) A constant c’ will then be identified with a TMLb constant f, of
type cti = F[t], where the index i is obtained from c. This motivates

cT[c’] =f, for i obtained in a unique way from <

S[x’] = x for each variable x

a[i~cen = ~x~s[rtj .8fej

mldn =mmmd~
&[fix' en = fix;FI,l(&[e]).

Clearly the expression e is closed iff &[e] is and then e has type t iff &[e]
has type F[r]. In general for an expression e we define a type-environment
tenv by setting

tenv(x) = FT[t]

for each free X’ in e and then

tenv +- &Fe] : F [f,a

iff e has type t,.

66 FLEMMING NIELSON

Next we define interpretations S and T corresponding to the semantic
functions sem and tabs, respectively. These interpretations will be faithful,
as required, because all F[t] are level preserving. Concerning S we define
S(B,) to be some unspecified cpo of atoms, just as in Burn et al. (1986),
and for completeness we may interpret the S(B, + ;) similarly. If we write D,
for the summand of D that is indexed by t we essentially have
D, = S[F[t] 1; the difference is that we have only insisted on monotonicity
whereas Burn et al. (1986) insists on continuity. As for S(f,) we do not
specify these in detail but assume that they are interpreted as the
corresponding c’ in Burn et al. (1986). It then follows that for a closed
expression e we have

semITeD = Scalier II(J-)

and a straightforward generalization of this when e is not closed.
Concerning the strictness analysis we define T(B,), and for completeness

also T(B, +i), to be the cpo

! 0

with elements 0 and 1 and ordered by 0~ 1. The intention is that 0 means
“undefined” and 1 means “possibly defined.” To formalize this we define

mu, : S(B,) -+ T(B,)

if d=l
otherwise

and similarly mu,
+ I .

Hence

amounts to

and thus expresses the statement that 4’ describes the “undehnedness” or
“possibly definedness” of x. This motivates the demand that

DENOTATIONAL ABSTRACT INTERPRETATION 67

(for closed expressions e of type t) should express the relation between S
and T. Using Theorem 13 we obtain this by defining

T=induce(S,mu,Ii).

If we write B, for the summand of B that corresponds to t we get

because monotonic functions on finite cpo’s are continuous. Furthermore
we have

whenever e is a closed expression and a straightforward generalization of
this when e is not closed.

As an example consider an expression e of type t = A -+ A -+ A and let us
write ce = &[ej and ct = F[tt]. Then

holds by Theorem 13 and amounts to

m~,(d)cb A m~,(dl)~6’~mu,(Sj[rcen(l)(d)(d’))~T~cen(l)(b)(b’).

Suppose next that

T[cej(I)(O)(l)=O.

Since mu,(d’)~ 1 holds for all d and mv,(d)rO holds iff d= i this gives

v’d’: S[ce](l)(l)(d’) = 1.

It follows that S[lcej (I) is strict in its first argument and this information
may then be used as sketched in the Introduction. In Burn et al. (1986) the
correctness of using tabs to infer strictness information about sem is
expressed by the Soundness Theorem (Burn et al., 1986, Theorem). A key
ingredient in the proof is Lemma 8 of Burn et al. (1986), which
corresponds to our Theorem 13 (using Proposition 3). Another ingredient
in the proof is Proposition 3 of Burn et al. (1986), which corresponds to
stating that move,,, _ (.Ill [mu](j) is strict iff f is.

643/76./l-5

68 FLEMMING NIELSON

6. THE COLLECTING SEMANTICS

The intuition behind the collecting interpretation C is that it is the most
precise Abstract Interpretation3 that is consistent with the standard inter-
pretation. The consistency condition demands that C be correcf with
respect to S, i.e., that

sac

for (T a suitable family of strict and continuous functions gi: S(B,) -+ C(B,).
The preciseness condition demands that a faithful analysis I be correct with
respect to S iff it is a safe approximation of C, i.e.,

(3/l: s p I)0 (3.x: c a I),

where p ranges over families of strict and continuous functions and x
ranges over families of lower adjoints. So far we have not assumed that a
collecting interpretation exists although we have indicated that it would
have C(B,) =P(Z), or something isomorphic to it, if S(B,) =Z,. Then
each ~1, may be obtained from fl, by setting ai = u {Bi(s) 1 s E S} and
each fli may be obtained from ~1, by setting fi, = xi. Ok, where ai(I) = 0
and otherwise cr;(s) = {s).

To enable a general definition of the collecting interpretation we must
cover the theory of the relational power domain, $PR, also known as the
lower or Hoare power domain. So let D be a cpo. A subset XC D is left-
closed iff

Vd,d’ED: d&d’EX-dEX

and is Scott-closed iff

VYsD: Y~XA Yisachainau YEX

and X is left-closed.

Given XG D there exists a least (w.r.t. c) left-closed set containing X; it is
called the left-closure of X and is given by

LC(X)= (dEDI3d’~X: d&d’}.

‘Here the Abstract Interpretations range over those that can be proved correct by the
methods of the present paper and so do not include “second-order” analyses like “live
variables analysis.”

DENOTATIONAL ABSTRACT INTERPRETATION 69

Given Xc D there also exists a least (w.r.t. E) Scott-closed set containing
X; it is called the Scott-closure of X and is given by

X* = n {xl ED (Xc x’ A X’ is Scott-closed >.

To see this note first that the intersection exists because D is a candidate
for x’ and therefore we do not take an empty intersection. Clearly X& X*
and X* is left-closed. To see that X* is Scott-closed let Y be a chain such
that YE X*. Then Y g x’ for all Scott-closed X’ containing X and hence
u YE x’ for all these x’ so that u YE X*.

DEFINITION. For a cpo D the relational power domain &(D) is

((Xs D 1 X Scott-closed and not empty}, E).

The associated singleton function IX D + PR(D) is

3-d. {d}*.

PROPOSITION 15. Let D he a cpo.

(1) P,,(D) is a complete lattice with u Y = (U Y)* u {In) and
I = {lo)..

(2) CJ = id. LC((d}) and is strict and continuous.

(3) Whenever p: D + L is strict and continuous and L is a complete
fattice there exists precisely one completely additive function a: PR(D) --f L
such that /I’ = a . r~. It is given by a(S) = u {p(s) 1 s E S} and is written fl”.

This is a version of a well-known result but for completeness a proof is
given in the Appendix.

With this information we can now define the collecting interpretation C
from a faithful standard interpretation S. Writing (T for the family

(0;: S(B;) + %dWi)))r

of strict and continuous singleton functions we put

C = induce(S, r~, (9$(S(Bj)))i).

If S(B,) = Z, we now have C(B,) = (S s Z, 1 I E S}, which is isomorphic
to the C(B,) = P(Z) suggested earlier. It follows that the collecting inter-
pretation will not distinguish between programs that produce the same set
of integers as results even if one program may not terminate although the
other one always does.

70 FLEMMING NIELSON

To prepare the ground for showing that C behaves as desired we first
show some functor-like properties of inducing and how the mv relations
compose.

PROPOSITION 16. Let L be a type interpretation and let R and R’ be
lattice type interpretations. Furthermore, let mv be a family of strict and
continuous functions

mv,: L(B,) + R(B,)

and let a be a family of lower adjoints

a,: R(B,) -+ R’(B,).

For all types et we have the functor-like equations

move,.,[(Al.l)i] = 11.1

move,.,[cc .mv] = move,.,[a] .move,.,[mv],

where (a . mv)i = ai. mvi. Furthermore we have the composition law

(a * mv),., = mvct . cq.,

and the adjoinedness-like formula

l(a * mv),., r’ 0 move,.,[mu](l) a,., r’

*lmv,, Bctl(a, y)12(r’).

Here y is the family of upper adjoints corresponding to a and we have restric-
ted our attention to faithful parts of interpretations.

ProoJ: The first equation for move follows from Proposition 10, the
second corollary to Theorem 12, and the fact that (U.l)i is a family of
lower adjoints. The second equation for move is proved by a structural
induction on ct and we illustrate the case where ct = ct’ + ct”. We write
(a, y) for ((a,, y,), (aN, yN)), where each yI is the upper adjoint
corresponding to ai and where N is the maximal index i of any Bj occurring
in ct. We then calculate as follows,

move,.,[a .mv](f) =

2ra.U {move,.,..[a~mv](f(la))(move,.,~[a~mv](la)~~,~ra} =,

DENOTATIONAL ABSTRACT INTERPRETATION 71

where we have used Theorem 12. For the next step we use the induction
hypothesis

ha. u {move,.,~~[~](move,.~~~[~~](~(kz))) I

move,.,~[~](move,,~[mu](la)) GC,, ra> =

and then one of the corollaries to Theorem 12 to get

h. U { llcfD(~r, Y) 1 l(move,.,,,[mul(f(Zua)))l

[ct’](cr, y) 1 l(move,.,,[mu](la)) <,.,.ru} =.

Using Proposition 11 we may continue

h. U { hcf”il(4 Y) 11 (move,.,~Cmul(f(lu)))l

move,.,,[mu](lu) GC,,[ct’j(~, y) J2(ru)} =,

which equals

[
ha'. U { ww, Y) 1 1 (move,.,,,Cmul(f(la)))I

move,.,.[mu](lu) Gc,, ru’} 1 . [dn(ct, y) 12 =.

The next step is to rewrite this to

. Aru’.U {moveC,~~[mu](f(kz))~move,.,~[mu](Zu) 6,,, ru’}
i 1

. iktw, w=
and we shall justify this shortly. But having done so we may continue

which shows the result.

72 FLEMMING NIELSON

It now remains to show the correctness of the step that was not justified
above. For this write

Y= (move,.,.,[mu] (f/a)) 1 move,.,,[mu](la) GC,, ra’}

(abs, con) = [ct”~ (~1, y)

Z= {abs(y)l~~~ YJ.

Since f~ L,[ctl and ru’ E RJct’l it follows by the reasoning in the proof of
Theorem 12 that Y is a non-empty and faithful set. Similarly abs and 2 are
faithful, and we are claiming that

abs u Y = u Z,
(1

where by Proposition 8 the u are the least upper bound operators with
respect to Q,.,,,. Hence we are claiming that

vzez:

(Vz E z: z d,.,,, u) a abs
(>

u Y c~,,. U.

But the first result is immediate as each z E Z is of the form abs(y) for 4’ E Y
and y G~,,,U Y follows by Proposition 8 and abs is <-monotonic by
Proposition 10. Next suppose that

By Proposition 11 and the definition of Z this amounts to

Vy E Y: y <c,ss con(u)

so that

/J Y 6c,ps con(u),

from which we get the desired

In fact we could have justified this step more tersely by just saying that u
is the least upper bound operator with respect to GCr,, and abs is a lower
adjoint by Proposition 11, and hence it is completely additive with respect
to Q,,,, .

DENOTATIONAL ABSTRACT INTERPRETATION 73

We have now proved the equations for move and turn our attention
towards the composition law and the adjoinedness-like formula. We
calculate

/(a - mv),., r’

0 by Theorem 12
move,.,[cc .mv](1) <<, r’

0 by the equations for move
Ectl(h Y 11 l(move,.,lImvl(O) d,., r’

0 by Proposition 11
move,.,[lm~l(O ~ctlIc~I(4 Y) -13r’).

By Theorem 12 this is equivalent to

l mv,., Ictli (4 Y)12(r’)

and by Proposition 11 to

move,.,[mu](l) a,., r’

and this proves the adjoinedness-like formula. For the composition law we
continue the calculation:

move,.,[m~l(O C,BctI(~, Y) 12Cr’)
0 by Proposition 7

Jr: move,.,[mu](1) Gc, r A r Gc,IlctIl(cc, y) 12(r’)

0 by Proposition 11 and Theorem 12
3: 1 mv,., r A r a,., r’

0
I(mv,., . a,.,) r’.

This completes the proof of the composition law. 1

The intuitive contents of Proposition 16 is more clearly expressed when
reformulating it for interpretations.

THEOREM 17. Let L be a faithful interpretation, let R and R’ be faithful
lattice interpretations, and let mu and CI be as aboue. Then inducing behaves
much like a .functor, i.e.,

induce(L, (Al./),, (L(B,)),) = L

induce(induce(L, mu, (R(Bi)),), a, (R’(B,)),) =

induce(L, CI ‘mu, (R’(B,)),).

74 FLEMMING NIELSON

Furthermore correctness and safeness compose, i.e.,

mv’ _= (a . mv) where mu’ = mu a

and inducing giues a result that is as precise as possible, i.e.,

L(a * mv) R’ o induce(L, mv, (R(B,)),) a R’.

The functor-like properties of inducing means that an Abstract Inter-
pretation may be built by inducing in small steps and still give the same
result as if induced in one big step. This supports a “stepwise coarsening”
methodology for the design of Abstract Interpretations. The composition of
correctness and safeness implies that if R is safe/correct with respect to L
(i.e., L mv R) and if R’ is safe with respect to R (i.e., R a R’) then also R’ is
safe/correct with respect to L (i.e., L a * mv R’). The final result of the
theorem says that inducing does not lose information and it is a
strengthening of the final statement in Theorem 13. The proof of Theorem
17 is an easy consequence of Proposition 16 and is therefore omitted: it
merely amounts to a “componentwise” application of Proposition 16
(where the “components” are the A).

We can now prove the desired result about the collecting interpretation.

THEOREM 18. The collecting interpretation C is a faithful lattice inter-
pretation that is correct with respect to S, i.e.,

s a c,

and that is as precise as possible, i.e.,

(y?:S~I)o(3a: c a I),

where each pi is strict and continuous and each tli is a lower adjoint.

Proof The first half of the result is a consequence of Theorem 13 so
consider the second half. If C a I it follows from S o C and Theorem 17
that S fl I with /?= a. a. Conversely suppose that S p 1. Define a as
designated in Proposition 15, i.e., aj = pi, and note that a then is a family
of lower adjoints. Then fi = a. a so S a * o I and the last statement in
Theorem 17 gives

induce(S, 6, (C(B,)),) a I,

which is the desired C a 1. 1

Returning to the application in Section 5 to the strictness analysis of
Burn et al. (1986), this theorem answers a problem left open in that paper,
namely how to construct a collecting semantics.

DENOTATIONAL ABSTRACT INTERPRETATION 75

We conclude with a few examples of the collecting interpretation. Sup-
pose that the standard interpretation has S(B,) = 2, and interprets f, :
B, x B, -+ B, as S(f,) = ,I(u, u).u + u, where + is strict in each of its
arguments. Then

c(fl) = moveBl x BI - Bl[Ol(+)

so C(f,) is the element-wise application of + .
For a more involved example consider the function twice defined by the

TMLb expression

Lx:B, -B,.Ly:B,.x(x(y)).

First note that

move B,-B,bl(fkAX.U {a(fb))~o(ukx}

=~x.{f(u)IuEX}u {I},

which equals Ix. {f() I u u E x} iffis strict. We shall write PR(f) for this, i.e.,
~aCf)Cx) = u-(4 I u E x> ” 1 -L 1, since this is the standard way of extending
gR to a functor (Arbib and Manes, 1975). We then have, omitting environ-
ments,

So C[twice] (g) combines the effects of the “primitives” less than g; this is
somewhat similar to the use of the function lin in Nielson (1984), where the
“primitives” are the irreducible elements.

Another way to write the result is

WwiceIl = kg.Ax. (J- 1 u UI%(f)(%(f)(x)) I b: %UW) ~dy)I

=4Gx.{+J W-WI UEX A Yv %u-)(YEs(Y)J

and one could avoid the explicit “{I } u ” if g, and hence f, is strict.

76 FLEMMING NIELSON

Clearly Cjrtwicej c1g.g .g but we do not have the converse inequality.
To see this let

gWH= w

‘!d{L 4)= {l) for uEZ

g(x) = .x otherwise

and note that Vy: Pi(f)(y) E g(y) then reduces to f= 1. Then
C[twiceJ(g) = I, which clearly differs from g. g. This may be somewhat
surprising but is just an instance of the general phenomenon in Abstract
Interpretation that the induced version may be more precise than expected
(see Nielson, 1986b, 1984).

7. CONCLUSION

The motivation behind the present work as well as that of its forerunners
(Nielson, 1984, 1986a) is to formulate a general theory of program analyses
that is based on Abstract Interpretation and denotational language
definitions. Such a development potentially has two benefits. One is that
the theoretical justification of correctness need not be performed for each
analysis. We believe that our examples show that this goal has been
achieved. The present development is already contained in the development
of Nielson (1984, 1986a) except that the syntactic restriction “con-
travariantly pure” has now been weakened to the syntactic restriction “level
preserving” or the semantic restriction “faithful.” The other potential
benefit is that it might be possible to construct a system that facilitates per-
forming program analyses whose results are guaranteed to be correct. This
possibility is currently being explored.

On a more technical side the present development should be extended to
allow recursive domains; i.e., the types of TMLb should be given by

Before this can be accomplished we must replace monotonic function space
by continuous function space as otherwise recursive domain equations need
not have solutions. But this boils down to requiring move,, +c,-[mu] to
preserve continuity and the remark in the Appendix shows that this does
not hold in general. So one would search for conditions on the mu strong
enough to guarantee this. One candidate is the backward continuity of Bar-
buti and Martelli (1983) but their proof, Theorem A.3, is not convincing.
Another candidate might be a requirement that mu map compact (or finite
or isolated; Stoy, 1977) elements to compact elements but then one would
probably need to identify the compact elements in I,[Ilct’ -+ ct”%. However,

DENOTATIONAL ABSTRACT INTERPRETATION 77

the present development should be sufficiently general that we can handle a
restricted version of recursive domains where ret X.ct does not allow ct to
contain function spaces and this would suffice for lists, trees, etc.

APPENDIX

In this appendix we give the proofs promised in the main text. The first
result to be proved is Theorem 12 and to do so it is convenient first to state
a strengthening of some of the results from Proposition 7.

LEMMA. The following equations hold in general upon fathful parts of
interpretations:

Note. In Proposition 7 it was assumed that I, J, and K were the same.

Proof. Assume for a moment that the third equation has been proved.
If u<,.twz:,.,u we have UZ., w by Proposition 7 and hence uzcI u by the
third equation. Conversely if u E t, v we have u <,, u zcz u by Proposition 7.
This shows that the first equation follows from the third and in a similar
way it is shown that the second equation follows from the third. The third
equation will be a consequence of the result

u zct w z,., u =a u x,., u (*I

~~mnu~ ww, (#I
where (I, 1) abbreviates ((I, I), (I, I)). To see this, note that (*) is
one-half of the result and that if u x,, u then

24 z(., v kzcr UctD(-L 1)1 l(v)

by (#) and we then get

u~:,.,w~c,u for)v= fctn(I, 1)J I(V)

using (*) and the symmetry of z~,.

78 FLEMMING NIELSON

We prove the conjunction of (*) and (#) by structural induction on ct.

Case ct = A i. This is straightforward as z(,, is = and [ct](1, I) J 1 is
111.1.

Case ct = Bi. This is straightforward as zcl is the relation that is always
true.

Case ct = ct’ x ct”. This follows from the induction hypothesis due to the
componentwise definition of zct and [ct](I, I) 1 1.

Case ct = ct’ + ct”. This follows from the induction hypothesis by case
analysis, e.g., on whether is, (0) is 1, true, or false.

Case ct = ct’ + ct”. We first prove (*) so suppose that

f*ctg=:th

and show f zct h. For this let UZ~,,O and note that for
w = [ct’] (I, I) 1 l(u) it follows from the induction hypothesis that

u Z:,’ w Z(,’ u.

From this we have

f(u)z<,ug(w)z:,.,.. h(w)

and by (*) of the induction hypothesis we get f(u) z~,,, h(w). This com-
pletes the proof of (*) and for (#) note that

[ct](l, 1)J l(h)= [ct”](l, I)1 1 .h.[ct’](I, 1)J 1

since [ct](l, 1)12= [ct](l, 1)J 1. To show

hz,.,[rctll(L 1)1 l(h)

let 24z(,, v. By the induction hypothesis (#)

U+~d7](1, 111 I(~)

so that by (*)

U+jrdlj(l, 111 I(U).

Since h z~, h we have

h(u)=2:,.,-h(5cfl(L 1)1 l(v))

DENOTATIONAL ABSTRACT INTERPRETATION 79

and by the induction hypothesis we get

h(u)=,.,*uct”n(L 1)1 l(h(uct’n(L I)1 l(v))).

This completes the proof of (#). 1

THEOREM 12. Let L be a type interpretation, R a lattice type inter-
pretation, and mu a family of strict and continuous functions
mui: L(B,) + R(B,). Then the equations

move,,[mv] = Al.1

moveg, [mu] = mu,

move, I x (.fI [mu] = A(/, I’).(move,.,[mu](l), move,.,.[mv](l’))

move,, + cfI [mu] = IlZ.is,(f) + in,(move,.,[mv](out,(I))),

in,(move,.,.[mu](out,(l)))

move,., j (.,, [mu] =Af.ha.U{ move,.,,[mv](l(fa)) 1 la mv,, ra}

make sense and define a function

move,.,[mv]: L,[ctl] -+ R,[ctj

that is strict and monotonic, <-monotonic, and faithful and satisfies

u mv,., v 9 move,.,[mv](u) d,., v

as well as

u x,., move,.,[mv](u)

for all u E LJctl and u E RJctj.

Proof. The proof will be by structural induction on ct but to be able to
conduct the proof for function space we need a stronger induction
hypothesis. This is obtained by also claiming that

down,,[mv](l, r) = r

down,,[mv](l, r) = 1

down,.,.,.,.[mv](l, r)= (down,,[mu](Zl 1, rl l), down,.,S[mv](l12, rJ2))

down,,+,.,S[mv](l, r) =is,(r) -+ in,(down,,[mv](outl(l), out,(r)),

in,(down,.,.[mv](out,(l), out,(r))

down,., _ C,I [mv](l, r) = Ua.down,.,.[mv](Z(la), r(move,.,[mv](la)))

80 FLEMMING NIELSON

define a function

down,.,[mu]: L,[ctTj x RJctJ + LJctj

that is monotonic, <-monotonic, and faithful in each argument and
satisfies

as well as

move,.,[mu](l)cr~lcdown,.,[mv](l, r) A down,.,[mu](/, r) mv,, Y.

Case ct = Ai. Clearly 11.1 is a function of the stated functionality and it is
strict, monotonic, and Q-monotonic (as < is =) and faithful (as z is =).
The double implication

reduces to u = v o u = v, which clearly holds. Analogously

2.4 z:,.! move,.,[mu](u)

reduces to u = U, which is trivially true.
The function n(l, T).Y has the stated functionality because

L,[AJ = R,[AJ. Clearly it is monotonic in each argument and it is B-
monotonic in each argument because < is =. Similarly it is faithful in each
argument as x is =. The implication

Iz.,.Ir*l zC, down,,[mv](l, r) zCcr r

reduces to I = r =S I= r = r, which holds. Analogously the implication

move,,[mu](,) c r + 1 c down,,[mo](l, r) A down,.,[mv](l, r) mv,, r

reduces to 1~ r * 1zr A r = r, which is also the case. (Note that this result
would not hold if we had defined down,,[mu](l, r) to be 1.)

Case ct = Bi. Clearly mvj is a strict and monotonic function of the
stated functionality. It is also <-monotonic and faithful as < is c and z
is always true. The condition

u mv,, 0 0 move,,[mu](u) G,, v

reduces to mu,(u) c v o mu,(u) c u, which clearly holds, and

u z:,(move,,[mv](u)

is true because = is constantly true.

DENOTATIONAL ABSTRACT INTERPRETATION 81

The function A(/, r).l has the stated functionality and is monotonic in
each argument. It is clearly <-monotonic in its left argument and also in
its right argument. Similarly it is faithful in both arguments. The condition

is true because z is constantly true. The condition

move,.,[mu](/) c r = 1~ down,,[mu](l, r) A down,,[mv](l, r) mv,, r

reduces to mu,(f) E r * I E 1 A mu,(l) c r, which clearly holds. (Note that
this result would not hold if we had defined down,,[mu](l, r) to, e.g., I in
L~llBili .I

Case ct = ct’ x et”. The equation for move,.,[mo] defines a function of
the stated functionality given that the induction hypothesis holds for
move,.,. and move,,.. . Also, move,,[mu] is strict and monotonic, 6-
monotonic, and faithful because of the componentwise definition of d (‘, (in
terms of < C,i and d C,,,) and zCr (in terms of zC,’ and z~,,~). It is then easy to
see that the two conditions on move.,[mv] are indeed true.

The equation for down,.,[mu] defines a function of the stated
functionality given that the induction hypothesis holds for down,.,, and
down,.,,, Monotonicity, d -monotonicity, and faithfulness in each
argument follow from the induction hypothesis and the componentwise
definition of 6,., and zC,. The condition

I~;,.tY*I~:,.I down,.,[inu](l, r) zCr r

holds by the induction hypothesis and the componentwise definition of zzC.t.
For the condition

move,.,[mu](l)Er=l & down,,[mu](/, I) A down,.,[mu](l, r) mv,., r

note that

move,,[mu](Z) c r

and

I c down,.,[mu](l, r)

iff move,.,,[mu](lJ 1) c rl 1

and move,.,..[mu](112) L r12

iff ZJ 1 cdown,.,.[mu](lJ 1, rll)

and1J2cdownC,.[mu](IJ2,rJ2)

82 FLEMMING NIELSON

and

down,,[mu](/, r) mv,., r iffdown,.,.[mo](lJ 1, rJl)mv,,.rJ 1

and down,.,.[mu](lJ 2, r 12) mv,.,. r J 2

so that the condition follows from the inductive hypothesis.

Case ct = ct’ + ct”. The equation for move,.,[mo] defines a function of
the stated functionality given that the induction hypothesis holds upon
move,,. and move,,. . Clearly the function is strict and monotonic. For <-
monotonicity and faithfulness let Q be < or z as appropriate. If I, Ql, we
consider three cases depending on I,. When I, = I also I, = I so
move,,[mu](I,) = move,.,[mu](Z2) and move,.,[mo](l,) Q,., move,.,[mu](l,)
follows because Q (i.e., < or zz) is reflexive by Proposition 7. When
I, = ini also I, = in,(&) for some 4 such that 1; Q,,, 1;. By the induction
hypothesis we get

move,.,S[mu](l;) Qc,, move,.,.[mo](/“)

and the result then easily follows. When I, = in,(&‘) the proof is similar.
The conditions

u mv,, uomove,,[mu](u) Gc, 0

24 zccr move,.,[mu](u)

are shown by a similar case analysis upon U.

The equation for down,,[mu] defines a function of the stated
functionality given that the induction hypothesis holds for down,,, and
down,,... Monotonicity in the left and right arguments are straightforward
as is G-monotoncity in the left argument. As for d-monotonicity in the
right argument note that rl d,., r2 implies that is,(r,) = is,(r,) and the result
easily follows from the induction hypothesis. A similar argument shows
that it is faithful in each argument. The condition

1~~~ r+lz:,.,down,.,[mu](1, r)xCt r

is proved by cases of 1, assuming that 1 z:, r. If I = I also r = I and the
result follows because down,,[mu](/, r) = I. If I= in,(a) there is an r’ such
that 11~~~. r’ and r = in,(r’). Hence I’ z~,, down,.,,[mu](P, r’) zC,, r’ follows
by the induction hypothesis. From this the result easily follows and the
case I = in*(Z”) is similar. Finally, assume that

move,.,[mu](l)Er (i)

DENOTATIONALABSTRACTINTERPRETATION 83

and show that

1 E down,,[mu](l, r) (ii)

down,,[mv](1, r) mv,, r. (iii)

If l= I we clearly have (ii). Then (iii) is immediate if r = I as then
down,,[mu](l, r)= 1. If r =in,(r’) then condition (iii) reduces to
down,,.[mu](l, I’) mv,.,, r’, which holds by the induction hypothesis
because move,,,[mu](l)cr’ as move,,.[mu](1)= 1. (Note that it is here
we need each mu, to be strict.) The case r = in2(r”) is similar. Next assume
l=in,(l’). Then (i) implies that there is r’ such that r =in,(r’) and
move,,.[mu](l’)gr’. Hence (ii) and (iii) follow from the induction
hypothesis for down,,.[mu]. The case I= inz(/“) is similar.

Case et = ct’ -+ cf. We now come to the case where the assumptions
about faithfulness will pay off by allowing us to show that the least upper
bound in the equation for move,,[mu] does exist. We begin by stating an
auxiliary result along the lines of the lemma preceding Theorem 12 in this
appendix.

FACT. u mv,,, u z:[, w implies u z5,, w.

Proof: If u mv,,. u it follows by the induction hypothesis that
move,.,,[mu](u) <,,, u. By the lemma we get move,,,[mu](u) z~~,w if also
0 z:,,. w. By the induction hypothesis we also have u zCtL move,,.[mu](u) so
that u=~,, w follows by the lemma.

Given IKE LJcta and ra E RJct’J we must show that the set

Zz = (move,,~j[mu](Zf(la))~ la mv,,. ra)

has a least upper bound in RJct”]. For this it is convenient to name the
sets

Yz = { lf(la) 1 la mv,,. ra} c Lr[ct”l

X,, = {la 1 la mv,.,, ra} G Lf[ctq.

First note that X,, is not empty because it contains down,,,[mu](l, ra)
as follows from the induction hypothesis for down,,,. Also, X,, is a faithful
set for if la mv,,, ra we get la zcrf ra by the above fact and if also la’ mv,, ra
we have la’ zct. ra and hence la z C18 la’ by the lemma and symmetry of zC,,.
Next Y$J is also a non-empty and faithful set because lf is faithful. Finally,
Z% is non-empty and faithful because move,,.,[mu] is faithful. Hence u Zc
exists in R,([ct”J by Proposition 9. Thus move,..[mu](lf)(ra) is well-defined
and is an element of RJct”J.

643:76/l-6

84 FLEMMING NIELSON

To show that move,.,[mu](Ef) is an element of R,[[ctJ we must show
that ha. u Zif, is monotonic, <-monotonic, and faithful. Suppose that
ra&rb and that la E X,,. Then move,.,.[mo](la) G,,, ra so that
move,,,[mo](la)cra by Proposition 7 and hence move,.,s[mu](fa)~rb.
Define lb = down,.,,[mu](la, rb) and note that la E lb and lb E X,, follows
from the induction hypothesis for down,.,. . It follows that u .Zg c u 2%
because If and move,,,,[nzu] are monotonic. Next suppose that ra d,.,, rb
and that la E X,,. Then la E X,, follows by

la mv,.,, ra 0 move,.,.[mu](la) Gcrs ra

and Proposition 7. It follows that X,,c X,, and hence 2;: GZ$,. Then
u zz is an upper bound of Zc w.r.t. d,.,,, and hence U Zz d,.,,, U Z$.
Finally suppose that ra zc,, rb. Then each .?a E X,, and lb E X,, satisfy
la z c.II lb by the above fact. It is possible to choose elements rxE Zz and
ry E ZLi and it follows that rx z:,.. ry. As rx z.,.,., U Zg and rv zcls, U Z$, by
Proposition 8 we get /J ZFL z(,,,, U Z$, by Proposition 7.

Clearly move,.,[mo] is a strict function. For monotonicity suppose that
Ifc lg. Then for all ra

VXE Y’f . 3yE Y’g : ru . ra XCY

and a similar condition relates Zu and Z$. It follows that
ha. U Zc c ha. /J Z$. For ,< -monotonizty suppose that If& fg and that
ra 6,.,! rb. Then

VXEX,,: 3yEXr,: x Gcf y

and a similar condition relates Zt/, and Z$,. But then U Z$, is an upper
bound of 2: w.r.t. d,.,,, and U Z% &, U Zs follows. This shows
ha. /JZc 6,, h-a. U Z,, ‘g. Finally, for faithfulness, suppose that lf z,.! lg and
that ra z:,.,. rb. Then

VXEX,,: 3yEXr,: x Z:,.f y

and a similar condition relates Zg and Zs. It follows that U Z$ x,.,. U Z$
and hence ha. U Zg zc, Ira . U Zz.

For the implication concerning move,.,[mu] we note first that If mv,, rf
amounts to

la mv,,, rb - move,,~8[mu](Zf(la)) d.,,, rfrb),

using the induction hypothesis for move,,... Similarly move,,[mu](lf) <<,* rf
amounts to

ra <,,, rb * (la mv,.,, ra =S move,,~~[mu](lf (la)) Gc,- rf(rb)),

DENOTATIONAL ABSTRACT INTERPRETATION 85

using the fact that u (...} is the least upper bound of {...I w.r.t. <<,.,
whenever {...I is non-empty and faithful. It is then immediate that the
second condition implies the first as one may choose ra = rb. That the first
condition implies the second follows from

la mv,.,. ra <<,, rb - la mv,,, rb,

which was shown previously.
Finally If% (f move,.,[nzo](lf) may be shown as follows. Let la zcr. ra and

choose lb such that lb mv,.,. ra. Then

by a previous fact. Then

and by the induction hypothesis for move,.,9.[muJ we get

lf(la) z~.,.~ move,.,,.[mu](lf(lb)).

But move,,[mv](lf)(ra) z (.,- move[mu](lf(fb)) follows by Proposition 8 so
that

If(h) zc.,ps move,.,[mu](lf)(ra),

as was to be shown.
We now turn our attention towards down,.,. Clearly

down,,[mu](lf, f)(h) is well-defined and is an element of Lr[ct”~. To
prove that down,,[mu](lf, rf) is an element of Lr[ctJ we must show that

ilu.down,.,,~[mu](lf(fu), rf(move,.,,[mu](lu)))

is monotonic, <-monotonic, and faithful. Let Q be any one of L, <, or
z:. If la Q,,. lb then

If(la) Q,.,- If(lb 1

by assumptions about rf; and

rf(move,.,~[mu](la)) Q,.,,, rf(move,.,.[mu](lb))

by assumptions about rf and move,.,.[mu]. Since down,.,..[mu] preserves Q
in each argument we have

86 FLEMMING NIELSON

down,.,~,[mu](,f(kz), rf(move,.,.[mv](Za)))

Qc,,,
down,.,.[mv](lf(&), rfmove,.,.[mu](la)))

Q,.,,,
down,.,,.[mu](lf(Zb), rfmove,.,.[mu](lb))),

from which the result follows as Q,.,,, is transitive.
Next we must show that down,.,[mu] is monotonic, <-monotonic, and

faithful in each argument. Let Q be c, 6, or z as appropriate and sup-
pose that ,f Q,., lg and la Q,.,, lb. It was argued above that

down,.,~~[mu](lf(la),rfmove,.,.[mo](lu)))

Q,.P
down,.,..[mu](lf(1b),rfmove,.,,[mv](lb))).

Since down,.,,, preserves Q in its left argument we may extend this with

Qd
down,.,.[mv](lg(lb), rfmove,.,,[mu](~b))).

Since Q is transitive it follows that down,.,[mu] preserves Q in its left
argument. Preservation in its right argument is shown in a similar way.

Suppose next that If%:, rf and let us show that

If=?, down,,[mu](lf, rf) %c,.l rf

Actually,, by the lemma it suffices to prove the left half. So suppose that
la zCcC lb. Then

lb x,.,, move,.,,[mu](lb)

by the inductive hypothesis so that

If(lb) zcrsz rf(move,.,,[mu](fb)).

Hence

If (16) zC,,, down,.,.[mu](u(lb), rf(move,.,,[mu](lb)))

follows by the induction hypothesis. Since laz:,,. lb we get y(/a)zC,,, If(lb)
so that

as was to be shown.

DENOTATIONAL ABSTRACT INTERPRETATION 87

Finally suppose that move,,[mv](lf) E rf, i.e., that

move,.,.[mu](la) Gc,, ra *move,.,..[mu](lf(la))~rf(ra).

By setting ra = move,.,,[mu](fa) and using the fact that &,, is reflexive we
have

(*)

Using the induction hypothesis we have

If(la)~down,.,.,[mu](If(la), rfmove,.,.[mu](la))).

Since this holds for all la E LJct’l we have

Ifcdown,.,Cmvl(lf, dI

and this was the first conjunct we had to show. To show the other conjunct
we assume that

move,.,,[mu](la) d,.,, ra (**I

and must show

move,.,.[mu](down,.,.[mu](lf(la), rfmove,.,,[mu](fa))) Gcr,, rf(ra).

From (*) and the induction hypothesis we get

move,.,,.[mu](down,.,..[mu](lf(la), rf(move,.,.[mu](/a))))

6,.,., rf(move,.,,[mu](la))

but by (w) we may continue

Gc,,! rjlra),

which shows the result. m

Remark. To stay within the traditional theory of denotational seman-
tics we should have worked with continuous functions rather than
monotonic functions. In particular we should show that move,,[mu](f) is
continuous wheneverf is. Unfortunately this need not be so. For an exam-
ple of this let

88

where

FLEMMING NIELSON

and

l 2

R(B,)=((I, 1,2 ,..., o}, <)= 1

and

i

1

L(B,) = R(B,) =
0

Furthermore, let

mvi = 2x.x

f=Ax.(x=~)+l,O EL(B~)+L(BJ

and note that this defines strict and continuous functions. Then

move,,[mv](f) = Ax.(x= o) + 1,O E R(B,) --f R(B,),

which is not continuous. (In the case where all R(B,) are finite we do have
continuity, as is implied by monotonicity.)

PROPOSITION 15. Let D be a cpo.

(1) YR(D) is a complete lattice with ~GY=(UCY)*U(~~} and
I= {ID}.

(2) u = Id. LC({d)) and is strict and continuous.

(3) Whenever fl: D -+ L is strict and continuous and L is a complete
lattice there exists precisely one completely additive function ~1: PR(D) + L
such that p = a. a. It is given by u(S) = u {p(s) 1 s E S} and is written p”.

DENOTATIONAL ABSTRACT INTERPRETATION 89

Proof We first show that Pk(D) is a complete lattice. For this let Y be
some subset of PR(D). Clearly (U g)* u {ID} is an element of PR(D) and
is an upper bound of Y. Next let YE PR(D) be an upper bound of Y. We
have u Y G Y and IDe Y so that (lJY)*u {ID} c Y. This shows that
&(D) is a complete lattice with u Y as stated. Then also
I=U@={I,} follows.

To see that (T = Ad.LC({d}) note that LC({d}) is already Scott-closed: if
YE LC({d}) is a chain then d is an upper bound of Y and hence u Y E d
so that u YE LC(Cd}). T o see that CJ is continuous let Yc_ D be a non-
empty chain. Then

and we must show

(u w~gJ))-=q{uyI)~
?E Y

Clearly E holds so consider 2. It suffices to show that

and this follows from

yc u LC({YH ve Y

and the Scott-closedness of (UyE y LC({ y}))*. That (T is strict is evident.
Finally, let L be a complete lattice, let /I? D + L be a strict and con-

tinuous function, and let c(: gk(D) -+ L be as stated in (3). That CI is com-
pletely additive amounts to showing

cl UY =u {ct(Y)IYEY}
()

for u?I c Yk(D). Since p is strict we have

90 FLEMMING NIELSON

and we have

From this u(U g) 2 u { c((Y) I YE %} easily follows so consider
cr(u g) c u (u.(Y)l YE%}. It suffices to show that

whenever s E (U Y)*. It follows from Markowsky (1976, Sect. 6) that
(u ?V)* = W, for some ordinal number 6 where

W,=LC u CJCisachainandC&U,,A W, for A>O.

It thus suffices to show that

SE wA*/J(s) E u
i

P(OIS’E 0 y
I

by translinite induction on 1. For ;I = 0 this is evident and for A > 0 we
have

P(s) c ,l(u c)=u UwW~C~ for C as above

E u 1 a(s’) u w, y < i. I
5 u P(OlS’EU y

i 1

This proves that c(is completely additive. To see that fl= a . cr note that

DENOTATIONALABSTRACTINTERPRETATION 91

It remains to show that ~1’ = a whenever a’ is a completely additive function
such that a’ . B = fi. For YE P?(D) we calculate

and this shows the result. 1

ACKNOWLEDGMENTS

This research is part of the PSI-project supported by the Danish Natural Science Research
Council and most of the work reported here was performed while the author was at the
Institute of Electronic Systems at Aalborg University Centre. The present version benefits
from the useful comments of the referees,

RECEIVED: July 23, 1986; ACCEPTED: June 12, 1987

REFERENCES

ABRAMSKY, S. (1985), Strictness analysis via logical relations, unpublished manuscript.
ARBIB, M. A., AND MANES, E. G. (1975) “Arrows. Structures and Functors: The Categorical

Imperative,” Academic Press, Orlano, FL.
BARBUTI, R., AND MARTELLI, A., (1983). A structured approach to static semantics

correctness, Sci. Comput. Programming 3, 279-311.
BURN, G. L.. HANKIN, C. L. AND ABRAMSKY, S. (1986), Strictness analysis for higher order

functions, Sci. Comput. Programming 7. 249-278; also see Report 85/6, Department of
Computing, Imperial College, 1985.

COUSOT, P., AND COUSOT, R. (1977), Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of tixpoints, in “Conf. Record, 4th
ACM Symposium on Principles of Programming Languages.”

COUSOT, P., AND Cousor, R. (1979). Systematic design of program analysis frameworks, in
“Conf. Record, 6th ACM Symposium on Principles of Programming Languages.”

GORDON. M. J. C. (1979), “The Denotational Description of Programming Languages: An
Introduction,” Springer-Verlag, New York/Berlin.

HALMOS. P. R. (1960), “Naive Set Theory,” Van Nostrand, Princeton, NJ.

92 FLEMMING NIELSON

HUGHES, J. (1986), Strictness detection in non-flat domains, in “Proceedings, ‘Programs
as Data Objects,“’ Lecture Notes in Computer Science, Vol. 217, Springer-Verlag,

New York/Berlin.
JONES, N. D. AND MUCHNICK, S. S. (1981), Complexity of flow analysis, inductive assertion

synthesis and a language due to Dijkstra, in “Program Flow Analysis: Theory and

Applications” (S. S. Muchnick and N. D. Jones, Eds.), Prentice-Hall, Englewood Cliffs,
NJ.

JONES, N. D., AND MYCROFT, A. (1986), Data flow analysis of applicative programs using
minimal function graphs. in “Conf. Record, 13th ACM Symposium on Principles of

Programming Languages.”
MACLANE. S. (1971). “Categories for the Working Mathematician,” Springer-Verlag,

New York/Berlin.
MARKOWSKY, G. (1976), Chain-complete posets and directed sets with applications, Algebra

Universalis 6, 53-68.
MAURER, D. (1986), Strictness computation using generalized i-expressions, in “Proceedings,

‘Programs as Data Objects, ” Lecture Notes in Computer Science, Vol. 217, Springer-
Verlag, New York/Berlin.

MILNE, R., AND STRACHEY, C. (1976), “A Theory of Programming Language Semantics,”
Chapman & Hall, London.

MOSSES, P. D. (1979). “SK-Semantics Implementation System: Reference Manual and User
Guide,” DAIMI Report No. MD-30, Denmark.

MYCROFT, A. (1981). “Abstract Interpretation and Optimizing Transformations for

Applicative Programs,” Ph.D. thesis, University of Edinburgh, Edinburgh, Scotland.
MYCROFT, A., AND JONES, N. D. (1986), A relational framework for abstract interpretation, in

“Proceedings, ‘Programs as Data Objects,’ ” Lecture Notes in Computer Science, Vol. 217,

Springer-Verlag, New York/Berlin.
MYCROFT, A., AND NIELSON, F. (1983), Strong abstract interpretation using power domains,

in “Proceedings, 10th ICALP,” Lecture Notes in Computer Science, Vol. 154, Springer-
Verlag, New York/Berlin.

NIELSON, F. (1982). A denotational framework for data flow analysis, Acfa Inform. 18.
NIELSON, F. (1984), “Abstract Interpretation Using Domain Theory,” Ph.D. thesis. University

of Edinburgh, Edinburgh, Scotland.
NIELSON, F. (1986a), Abstract interpretation of denotational definitions, in “Proceedings,

STACS 1986,” Lecture Notes in Computer Science, Vol. 210, Springer-Verlag,

New York/Berlin.
NIELSON, F. (1986b), Expected forms of data flow analyses, in “Proceedings, ‘Programs as

Data Objects,” Lecture Notes in Computer Science, Vol. 217; Springer-Verlag,
New York/Berlin.

NIELSON, F. (1986c), “Strictness Analysis and Denotational Abstract Interpretation,” Research
Report R86-9A, Aalborg University Centre.

NIELSON, F. (1987), Strictness analysis and denotational abstract interpretation (extended

abstract), in “Proceedings, 14th POPL, ACM.”
PLOTKIN, G. D. (1973), Lambda-delinability and logical relations, Edinburgh AI memo.

REYNOLDS, J. C. (1974), On the relation between direct and continuation semantics, in
“Proceedings, 2nd ICALP,” Lecture Notes in Computer Science, Vol. 14, Springer-Verlag,

New York/Berlin.
J. E. STOY, (1977). “Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory,” MIT Press, Cambridge, MA.

Printed in Belgium

