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A theory of abstract interpretation (P. Cousot and R. Cousot, in “Conf. Record, 
4th ACM Symposium on Principles of Programming Languages,” 1977) is 
developed for a typed I-calculus. The typed I-calculus may be viewed as the “static” 

part of a two-level denotational metalanguage for which abstract interpretation was 
developed by F. Nielson (Ph.D. thesis, University of Edinburgh, 1984; in 

“Proceedings, STACS 1986,” Lecture Notes in Computer Science, Vol. 210. 

Springer-Verlag, New York/Berlin, 1986). The present development relaxes a con- 

dition imposed there and this sutices to make the framework applicable to strictness 
analysis for the I-calculus. This shows the possibility of a general theory for the 

analysis of functional programs and it gives more insight into the relative precision 
of the various analyses. In particular it is shown that a collecting (static; P. Cousot 

and R. Cousot, in “Conf. Record, 6th ACM Symposium on Principles of Program- 
ming Languages,” 1979) semantics exists, thus answering a problem left open by 

G. L. Burn, C. L. Hankin and S. Abramsky (Sci. Comput. Programming 7 ( 1986), 
249-278 1. f’) 1988 Acadenuc Press, Inc. 

1. INTRODUCTION 

Functional programming languages are becoming more and more pop- 
ular, especially in the so-called lazy variants. In particular, a lazy language 
has the default parameter mechanism call-by-name (or call-by-need) rather 
than call-by-value. In order to implement these languages efficiently many 
researchers have studied sufficient conditions for safe replacement of call- 
by-name by call-by-value. This is of interest in implementing the languages 
on parallel architectures because arguments in call-by-value positions of 
some function may safely be evaluated in parallel. But even on sequential 
architectures it is beneficial to avoid the overhead of call-by-name when 
call-by-value would suffice. 

In a purely functional language the only difference between call-by-name 
and call-by-value is that the latter may lead to non-termination when the 
former does not. So in a call 
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the parameter mechanism off may be changed to call-by-value if non-ter- 
mination of ... implies non-termination of f( ... ). In the notation of 
denotational semantics this is written 

i.e., that f is strict. It is generally undecidable whether or not f is strict but 
one may attempt to find a safe approximation that is decidable. This entails 
working with a safe representation of I, i.e., of when a computation 
definitely will not terminate, and for historical reasons this is written as the 
number 0. We therefore search for a recursive function f’ such that 
f’(0) = 0 implies that f(I) = 1. A number of such strictness analyse.~ are 
considered in Mycroft (1981), Mycroft and Nielson ( 1983), Burn et al. 
(1986) Abramsky (1985), Hughes (1986), and Maurer (1986). In the 
absence of a general theory the correctness of strictness analysis must be 
shown for each functional language considered. Equally important, for a 
fixed language there are many different analyses one wants to perform and 
these, too, must be shown to be correct one by one. 

A similar situation prevailed a decade ago for analyses of imperative 
languages. To overcome the inconvenience of a multitude of correctness 
proofs a theory of abstract interpretation was developed (Cousot and 
Cousot, 1979) for flowchart languages. Subsequent research has studied 
how to extend the framework to models of programs other than the 
flowcharts. The extension to (first-order) recursion equation schemes has 
been performed in, e.g., Mycroft and Nielson (1983) and Jones and 
Mycroft (1986). The extension to a wide class of denotational definitions 
was performed in Nielson (1986a, 1984). The latter work defined a two- 
level metalanguage TMLs and developed abstract interpretation for all 
definitions in this metalanguage. Thereby the development is applicable to 
all programming languages definable in TMLs and this includes PASCAL- 
like languages. This is in contrast to most developments of static analyses 
of programs (e.g., Barbuti and Martelli, 1983; Nielson, 1982) where only a 
small toy language is considered. The benefit of working with some form of 
denotational definitions is that denotational semantics is one of the most 
general semantics frameworks available. However, some syntactic 
limitations in TMLs preclude a general treatment of functional languages. 

In this paper we consider a smaller metalanguage, TMLb. Its syntax and 
semantics are presented in Section 3 whereas Section 2 surveys the 
necessary domain theory. In Section 4 we develop abstract interpretation 
for TMLb. This includes the study of correctness of analyses (w.r.t. the 
semantics), safety of analyses w.r.t. other analyses, and the speczjkation of 
best analyse.~ (starting from other analyses or the semantics). In Section 5 
we apply this theory to examples studied in the literature; in particular we 
give a strictness analysis for the typed j.-calculus of Burn er al. (1986). With 
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respect to Nielson (1986a, 1984) we have lifted a restriction imposed there 
and this suffices for a class of “independent attribute analyses” (Jones and 
Muchnick, 1981) for functional languages (as opposed to the “relational 
analyses” (Jones and Muchnick, 1981) also considered in Nielson (1986a, 
1984) but for imperative languages only). Another main difference from 
Nielson (1986a, 1984) is that the development does not build on the 
existence of the so-called collecting semantics (static semantics; Cousot and 
Cousot, 1979). Therefore in Section 6 we show that the collecting semantics 
does exist and that correctness of an analysis is equivalent to safety of that 
analysis with respect to the collecting semantics. (This also answers a 
problem left open in Burn et al. (1986)) Finally, in Section 7 we present 
the main conclusions. 

An extended abstract of this paper appeared previously as Nielson 
( 1987) and some of the tedious proofs not given here may be found in 
Nielson ( 1986~ ). 

2. PRELIMINARIES 

In this section we review the simpler parts of the theoretical foundations 
of denotational semantics. This will suffice for the subsequent development 
because the denotational meta-language introduced in the next section does 
not contain recursive domain equations. 

A partially ordered set is a pair (D, c ) where D is a set and c is a par- 
tial order, i.e., a binary relation over D that is reflexive (i.e., dcd), trans- 
itive (i.e., d&e A ecf*dEf) and anti-symmetric (i.e., dEe A e&d* 
d = e). An element d E D is an upper hound of a subset S of D iff s c d holds 
for all elements s of S. An element d E D is a least upper hound of S iff d is 
an upper bound of S and dcd’ holds whenever d’ is an upper bound of S. 
A subset S of D need not have a least upper bound but if it does the least 
upper bound is unique and is written US. A partially ordered set is a com- 
plete lattice iff every subset has a least upper bound. A subset S of D is a 
chain iff s c s’ or s’ c s whenever s and s’ are elements of S. We may define 
a complete partial order, or a cpo, to be a partially ordered set where all 
chains have least upper bounds. Every complete lattice is a cpo but not vice 
versa. An element d, of D is least iff docd holds for all d. A least element 
need not exist but if it does it is unique and is written I,, or 1. In a cpo 
(and hence also in a complete lattice) a least element always exists and is 
given by the formula I = u 0, where 0 is the empty set. 

A functionf: (D, c ) -+ (D’, c ‘) from a partially ordered set (D, c ) into 
a partially ordered set (D’, c ’ ) is a function f: D -+ D’ from D to D’. It is 
monotonic iff d, cd, impliesf(d,)c’f(d,). It is continuous iff for every non- 
empty chain SG D with a least upper bound also {f(s)) s E S) ED’ is a 
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chain and it hasf(U S) as a least upper bound. Every continuous function 
is monotonic but not vice versa. However, whenf is monotonic and SC D 
is a chain then {f(s) ) s E S} is always a chain; furthermore, if u S and 
u {f(s) [SE S} both exist then u {f(s)ls~ S} c’f(U S). The function fis 
strict iff whenever D has a least element 1 then D’ has a least element 1’ 
and f( I ) = I’. It is completely additive iff for all subsets SE D with a least 
upper bound, {f(s) 1 s E S> c D’ also has a least upper bound and it is 
f(U S). Every completely additive function is strict and continuous but not 
vice versa. 

A fixed point of a functionf: (D, E ) -+ (D, c ) is an element d of D such 
that f(d) = d. A least fixed point off is an element d that is a fixed point 
and satisfies dcd’ whenever d’ is a fixed point ofJ A least fixed point need 
not exist but if it does it is unique and is written fix(f ). The existence of 
certain least fixed points is of vital importance for the treatment of iteration 
and recursion in denotational semantics. 

FACT 1. Zf (D, c ) is a cpo and f: (D, c ) + (D, c ) is monotonic then it 
has a least fixed point. 

For a proof one may construct fix(f) by translinite induction (Halmos, 
1960) but we shall omit the details. 

A predicate Q upon a cpo (D, c ) is a predicate upon D. It is admissible 
iff for all chains SS D we have that Q holds upon U S whenever Q holds 
upon each element of S. A related concept is that of a sub-cpo. A cpo 
(D’, c ‘) is a sub-cpo of the cpo (D, c ) iff D’ is a subset of D and c ’ is the 
restriction of E to D’ x D’ and for every chain SG D’ c D that the least 
upper bound in D’ equals that in D (i.e., /J’ S= U S). Whenever (D, g ) is 
a cpo and Q is an admissible predicate one may define a sub-cpo (D’, c ‘) 
by putting D’= (dEDIQ(d)} and letting c’ be the restriction of c to 
D’ x D’. Admissible predicates are important because they can be used to 
infer properties about least fixed points. 

FACT 2 (“Scott-induction”). If Q is an admissible predicate upon the cpo 
(D, E ) and f: (D, g ) -+ (D, c ) is monotonic then 

Q(fix(f 1) 

follows if Q(d) =z. Q( f (d)) holds for all de D. 

We omit the proof, which is by transfinite induction. 
It is useful to be able to construct cpo’s and to have operations upon the 

elements. If S is a set we define the Jut cpo S, to be (D, c ), where 

D={(O,O)}‘-d{lbS) 

d, cd, iff d,=(O,O) or d,=dZ. 



DENOTATIONAL ABSTRACT INTERPRETATION 33 

So (0,O) plays the role of I and D essentially is the disjoint union of S and 
( 1 j. When ( Di, c ,) are cpo’s the separated sum of (0, , c , ) ,..., ( Dk, c k) 
is the cpo (D, c ) defined by 

D={(O,O))u((l}xD,)u . ..u((k}xD.) 

dcd iff d = (0, 0) 

or for some i, d,, d: that 

d=(i,d,)r\d’=(i,d:)~d;E~d:. 

So D is the disjoint union of D,, . . . . D, and a new least element. We write 

ini = (i, d) 

ifd= I 

if d= (i, d’) for some d 

ifd= (j,d’) for some d’ andjf i 

if d= (i, d’) for some d 

otherwise. 

In practice we identify Di with (Dj, c i) and write D, + . .. + D, for the 
sum. Also, we shall no longer clearly distinguish between the various par- 
tial orders so we just write c for the partial order in question. 

The cartesian product D, x ... x Dk of the k2 1 cpo’s (D,, L ), . . . . (D,, c ) 
is the cpo (D, c ), where 

D= {(d, ,..., dk)ld,ED1, . . . . dkEDk). 

(d I,..., d,c)E(d;, . . . . 4) iff d,Ld’, A ... A dkCdk. 

We write 

(d l,...,dk)li=di 

and one may check that 

u S=(u ($11 l=S},...,U {slkW}) 

whenever SzD, x ... x D, is a chain. The (monotonic) function space 
D’ -P D” of the cpo’s (D’, c ) and (D”, g ) is the cpo (D, c ), where 

D = {f: D’ + D” 1 f is monotonic) 

fl E f2 iff for all d’ E D’ that f,(d)& ,f2(d'). 

643/76/l-3* 
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One may check that 

whenever Ss D is a chain. We shall explain later why we prefer not to 
require functions to be continuous. Finally, the equations 

I+d,,d2=I 

true + d,,d2 = d, 

false -+ d,, d2 = d2 

define a conditional construct d + d, , d,. 

3. THE METALANGUAGE 

The development of the present paper builds on language definitions in 
the style of denotational semantics (Stoy, 1977; Gordon, 1979; Mime and 
Strachey, 1976). A denotational language definition takes the form of 
semantic equations that in a syntax-directed way define a mapping from 
programs into denotations (or meanings). The semantics or semantic 
function of a language is then taken to be that mapping. The notation used 
for constructing denotations is called a metalanguage and is often studied 
in its own right. The motivation behind this is that the semantics may 
actually be split into two mappings: a mapping from programs into the 
metalanguage and a mapping (called an interpretation) from the 
metalanguage into denotations. This is illustrated by the top and bottom 
halves of Fig. 1. One advantage of this approach is that it becomes possible 
to construct a system that interprets denotational definitions (e.g., Mosses, 
1979). Another advantage is that one may obtain different semantic 
functions from the same semantic equations: One semantic function (the 
standard semantics (Milne and Strachey, 1976)) might describe the usual 
input-output behaviour of programs whereas another semantic function 
might express some analysis of programs, e.g., strictness analysis. This is 
illustrated in Fig. 1. 

Syntax 

We shall consider the metalanguage TMLb whose types are given by 

ct::=Ai~Bi~ctxct~ct+ct~c~--,ct (for in I). 

Clearly x means Cartesian product, + means separated sum, and + 



DENOTATIONAL ABSTRACT INTERPRETATION 35 

FIG. 1. The role of the metalanguage 

means monotonic function space. The difference between Aj and Bi will 
become clearer as we proceed. Here it suffices to say that entities of type Ai 
will mean the same in all interpretations whereas the meanings of entities of 
type Bi may be different in different interpretations. Another way to put 
this is to say that the Ai correspond to concrete datatypes whereas the Bj 
correspond to abstract datatypes. The index set I will mostly be assumed to 
be the positive integers but other sets could be used, e.g., the language of 
some context-free grammar. 

The expressions of TMLb are fairly conventional. The context-free 
syntax is given by 

e ::=fi (for iEZ) 

I (e, e’) 

Ieli 
1 in,e 
1 is,e 
1 out, e 
( lx: ct. e 

I de‘) 
IX 
1 fix,., e 
( e -+ e’, e” 

constants 
constructing a tuple 
selecting a component 
injection into a sum 
testing the tag field 
projecting out of a sum 
function abstraction 
function application 
variables 
least fixed points 
conditional (over the “concrete” truth values) 

The metalanguage is typed, which means that certain type constraints must 
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be satisfied. For this let a type environment tenv be a finitary mapping 
from variables into types, i.e., a partial function from variables to types that 
is only defined on a finite set dom(tenv) of variables. The well-typing 
relation tenv +- e: ct then states that e is well-typed with type ct assuming 
that the free variables of e are in dom(tenv) and have types as specified by 
tenv. To be precise one can give the following inductive definition: 

tenv +,h: ctj for fixed types associated with f, 

tenv k-- e: ct tenv k- e’: ct’ 

tenv t- (e, e’): ct x ct’ 

tenv k- e: ct, x ct2 

tenv k- e 1 i: cti 

tenv k- e: ct; 

tenv t- in, e: ctl + ctz 

tenv k- e: ct, + ct, 

tenv + isi e: T ’ 
where T is some A, (e.g., A ,) that is viewed as 
being the truth values 

tenv c e: ct 1 + ct, 

tenv + out, e: ct, 

tenv[ct/x] k- e: ct’ 

tenv +- 1x: ct. e: ct + ct’ ’ 
where tenv[ct/x] is the type environment 
obtained from tenv by letting x be mapped 
to ct 

tenv t- e: ct -+ ct’ tenv t- e’: ct 

tenv k-- e(e’): ct’ 

tenv k- x: ct whenever tenv(x) = ct 

tenv t- e: ct + ct 

tenv + tix,.( e: ct ’ 
where one should note that ct in fi~,.~ is the type of 
the result 

tenv +-- e: T tenv + e’: ct tenv +- e”: ct 

tenv + e --) e’, e”: ct 

We shall write 0 for the empty type environment. An expression e (as 
generated by the context-free syntax) is closed if @we: ct holds for 
some ct. 
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Interpretations 

We shall interpret types as cpo’s and closed expressions as elements of 
cpo’s. By a type interpretation we shall mean a structure that assigns a cpo 
to each Bj. The semantics of types then is defined relative to a type inter- 
pretation. So given a type interpretation I we define the cpo I[ctj as 
follows: 

I [A ,I = some fixed cpo A, 
I[B;] = I( B;) 

I[ct x ct’] = I[ct] x I[ct’j (Cartesian product) 
I[ct + ct’] = I[ctj + I[ct’] (separated sum) 
roof + ctq = Iuctj + qcty (monotonic function space). 

We shall not specify the A, further but it is natural to assume that A, is the 
flat cpo {true, false 1 I of truth values. 

By an interpretatiorz I we shall mean a type interpretation (also denoted 
I) together with a structure that assigns an element of I[ct,] to each con- 
stant f, (of type ct,). The semantics of an expression e is of course relative 
to an interpretation I. It is also relative to a type environment tenv and a 
type ct such that tenv t- e: ct. So if dom(tenv) is the set {.Y,, . . ..x.} and 
tenv(x,) = cti we shall define a semantic function 

IUell ,tenv,cr,: rpt,j x ... x lptkj -qctjl 

structurally upon e. However, it complicates the notation to be precise 
about tenv and ct so for the sake of readability we shall omit the (tenv, ct) 
index. We then have the equations 

I[,j;J = ;1(/1 I,..., ul) . I(f,) 
IU(e,e’)l =A(0 ,,..., ~~).(I[e](u,, . . . . uk),I[[e’](v,, . . . . Us)) 

I[e 1 iI = i(u,, . . . . uk). (I[[e] (u,, . . . . uk)) 1 i 
I[inje] = A(v , , . . . . Us) .in,(I[e] (tl,, . . . . Do)) 
I[isi e] = iV( u ,, . . ..~~).is.(IUel] (u,, . . . . uk)) 

I[outie] =lv(ul, . . . . ~~).out~(I[eJ(~,, . . . . zjk)) 

I[%~~+,:ct.e] =%(u,, . . . . ~~).h.I[re](~,, . . . . uk, U) 

Ile(e’)l = R(u,, . . . . uk). (I[e] (v,, . . . . tjk))(I[e’] (u,, . . . . ~1~)) 
I[X,] = A(Z), )..., u,) . u, 

Ipk.,ej = i.(u,, . . . . uk). lix(I[e] (II,, . . . . ~1~)) 

IiIe+e’, e”JJ =i(u,, . . . . v,).I[e](u,, . . . . u~)+I[~‘](u,, . . . . u,), 

I[e”] (21, , . . . . uk). 

It should be clear that, e.g., the in, occurring in [lin,e] is a syntactic con- 
struct of TMLb whereas the in, on the right-hand side of the equation is 
the function defined in Section 2. It is not diffkult to show by structural 
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induction that the above equations define a monotonic function of the 
stated functionality. 

EXAMPLE. The usual input-output semantics is obtained by specifying 
the standard interpretation S. We shall define S(B,) = Ai and only when we 
come to the applications shall we provide further information/assumptions 
about the A, and hence the S(B,). Similarly we shall assume that the S(fi) 
are fixed as elements of S[ct,] and we shall be more specific when we come 
to the applications. However, it is instructive to point out that a natural 
candidate for an f, might be the “abstract” conditional 

f,.,:B,xctxct-+ct 

for all choices of types ct. In the input-output semantics we will then have 

assuming that B, is the “abstract” type of truth values. This is the version 
of conditional to be used when we want to analvse a program without 
knowing the exact values of variables. By contrast the conditional 
. ..-+... . . . should be used for those aspects (e.g., static well-formed- 

ness) of a’program that are the same in all interpretations. 

It is convenient to name a special kind of interpretations. By a lattice 
type interpretation we shall mean a type interpretation that specifies a com- 
plete lattice, and not just a cpo, for each B;. We define a lattice inter- 
pretation similarly. Not all interpretations are lattice interpretations, and 
the standard interpretation S is an example because S(B,) = A, = {true, 
false} L is not a complete lattice. The interest in lattice interpretations arises 
when one considers program analyses (abstract interpretations or data flow 
analyses). This is because a complete lattice is a cpo that has least upper 
bounds of two-element sets (Markowsky, 1976): the interest in cpo’s is 
inherent in denotational semantics and the interest in least upper bounds of 
two-element sets arises when one wants to combine the effects along the 
“then” and “else” branches of an “abstract” conditional (the fC, of the 
previous example). 

Relations between Interpretations 

In considering more than one interpretation of the metalanguage it is 
important to be able to relate their effects. So let I and J be (type) inter- 
pretations and let Q = (~2~)~ be a family of admissible relations (or 
predicates) 

Qi: I(B,) x J(B,) + {true, false). 
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The intention with Qi is that Q,(u, a) holds when u E I(B,) and u E J(B,) are 
related as desired, e.g., when the property u correctly describes the actual 
value U. Given ( Qj)i we can use the idea of a relational functor (Reynolds, 
1974) or logical relation (Plotkin, 1973) to extend the relationship to all 
types, i.e., to obtain a relation 

sim,.,[Q]: I[ctj x J[ctl] --f {true, false) 

for all types ct. 
This relation is defined structurally upon ct by the clauses 

sim,,[Q](u, a) 5 u = v 
shJQl(u, u) - Q,(u, ~1 

sim,.,,C,,[Q](u, u)=simCIIQ](ul I, al 1) A sim,.,,[Q](ul2, 012) 
Sk, + ‘ t1 [Q](u,u)=(u=l r\u=l) 

v 3u’, cl’: u= in,(u’) A u = in,(u’) A sim,.,[Q](u’, u’) 
v 324’, u’: 24 = in,(u’) A u = in,(u’) A sim,.,,[Q](u’, u’) 

sim c,4,,,c[Q](u, u)=Vu’, u’: sim,,[Q](u’, u’)+sim,.,.[Q](u(u’), v(u’)). 

The first two clauses clearly show that Ai and Bj are regarded differently. 
The data domains Ai contain “static entities” that must be the same in all 
interpretations. The data domains Bi, on the other hand, contain “dynamic 
entities” that need not be the same in all interpretations. The remaining 
three clauses extend the relation “componentwise” to all types. 

It is not difficult to show (by structural induction) that if each Qi is 
admissible then all sim,.,[Q] are admissible. A further result is that we get 
structural induction over expressions for free: 

PROPOSITION 3. Zfsim,.,,[Q](I(fi), J(h)) holds for all constantsh of type 
et,, then simC,[Q](I[ej(l), J[ejJ(I)) holds for all closed expressions e of 
t-vpe ct. 

Proof: Let I and J be interpretations such that sim,.,,[Q](I(fi), J(fi)) 
holds for all constantsf, of type ct,. The proof then amounts to showing by 
structural induction on expressions e that 

if tenv t e: et 
where dom(tenv) = {xi, . . . . xk} and tenv(xi) = ct: 
then sim ,,;.....~,;-,.,CQl(Irrell,JUeD). 

We omit the straightforward structural induction. (In the case of fix,., e we 
use Fact 2.) 1 

A similar use of relational functors and logical relations may be found in 
Nielson (19841, Abramsky (1985), and Mycroft and Jones (1985). 
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Later we shall study special instances of sim,.,[Q] in some detail and this 
motivates the use of special notation for these. The relation zz (, is obtained 
by taking Q, = 2(u’, u’) . true, i.e., 

K z L’I u 3 sim,.,[(%(u’, u’) true);](u, 0) 

and this expresses whether two elements are indistinguishable in the type 
system. Note that u z<,., u will not always be true (e.g., take ct = Ai). 
Assuming that each I(B,) equals J(B,) we may define the relation 6 (‘, by 

K <C,u=sim,,[(l(u’, u’).u’Eu’)~](u, a). 

This relation gives a structural way of extending the approximation 
relation to all types. Note that u d (, u will not always be UL u (e.g., take 
ct = A,). Finally, suppose there is a family mu of strict and continuous 
functions 

mv,: I(B,) + J(Bj) 

and define the relation mv,., by 

umv,., vzsim,.,[(1(u’, ~‘).mv,(u’)~u’)~](r4 v). 

It is not difficult to show that each mv,, is an admissible relation. One may 
view < CI as id,.,, where id is the family of identity functions and z L’I as IL,!, 
where I is the family of bottom functions. 

It is convenient to extend the relations mv, 6, and z to interpretations. 
In the case of mv we may define 

I mv Jo I(fi) mv,.,$ J(f)) for allf, of type ct, 

- IUel(l) mv,., JUeD (1) for all closed e of type ct, 

where the last implication is by Proposition 3. We define Id J and I z J in 
a similar way. 

4. ABSTRACT INTERPRETATION 

The interpretations of the metalanguage to be considered in this paper 
intuitively fall within two groups. One consists of the standard inter- 
pretation, S, that describes the input-output behaviour of expressions. The 
other consists of approximating interpretations, I, that describe various 
analyses of expressions. As motivated previously these will be lattice inter- 
pretations, i.e., the I(B,) will be complete lattices. In Section 6 we study an 
approximating interpretation that intuitively is as precise as possible; it is 
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FIG. 2. Safeness and correctness 

called the collecting interpretation, C. Intuitively this interpretation works 
on certain sets of values (from the standard interpretation) and it 
corresponds to the static semantics of Cousot and Cousot (1979).’ 

The relations between these interpretations also intuitively fall into two 
groups. The relations between S and C and between S and I express the 
correctness of some approximating interpretation, C or I, with respect to 
the ordinary input-output behaviour. The relation between C and I express 
the fact that one analysis, I, is a safe approximation of another analysis, C; 
i.e., I may not be as precise as C but will not give information that con- 
tradicts information given by C. These relationships are illustrated in Fig. 2 
and will be clarified shortly. 

For a more concrete example suppose that there is just one base type, 
B, , and just one function, ,f, : B, + B, . We shall assume that the standard 
interpretation interprets the base type as the flat cpo Z, of integers and the 
function as some monotonic function f: Z, -+ Z,. Concerning the 
collecting interpretation we assume that the base type is interpreted as the 
powerset P(Z) of integers ordered by subset inclusion E , and the function 
as some monotonic function g: P(Z) + .Y(Z). Finally, we must consider 
the approximating interpretation I, where we assume that the base type is 
interpreted as some complete lattice L and the function as some monotonic 
function h: L -+ L. A possible choice of L is 

anysign 

0 egative zero positive 

’ The term “collecting semantics” was introduced in Nielson (1982) as a variant of the stan- 

dard semantics that had sets of values col!ected at program points. However, the use of “static 
semantics” in Cousot and Cousot (1979) conflicts with a well-established use of that term and 
eventually the term “collecting semantics” came to mean “static semantics in the sense of 
Cousot and Cousot (1979)” (see Mycroft, 1981; Mycroft and Nielson, 1983). 
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i.e., the complete lattice with elements I, anysign, negative, zero, and 
positive and ordered by 

I G 1 c anysign when I is negative, zero, or positive. 

With these assumptions Fig. 2 specializes to Fig. 3 and we shall now 
explain the c(, ,!?, y, and c. 

The functions /I and (T are strict and continuous functions. They are ter- 
med representation functions since the intention is that P(z)E L and 
U(Z) E 9(Z) are the properties that best describe z E Z. Thus it is natural to 

Put 

P(l)=l 

/3(z) = negative if=<0 

B(O) = zero 

b(z) = positive ifz>O 

and 

i 

I- 
(T(z)= I’ i if Zfl 

QI if ;=I. 

Clearly this defines strict and continuous functions /? and 0. 
The correctness of h with respect to f may then be expressed by the 

condition that 

which says that 

whenever I correctly describes 2, h(l) also correctly describes f(z). 

FIG. 3. An instance of Fig. 2. 
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So if, e.g., z = 0, f(0) = 0, and 1= anysign we have /I(O) 5 anysign and thus 
h must satisfy that zero Lh(anysign). Note that the condition p(z)cl is 
nothing but z bs 1 so that the correctness of h with respect to f becomes 

fP h. B-B 

Similarly,the correctness of g with respect to f is captured by f cB j B g. 
The relationship between P(Z) and L is expressed using the framework 

of Abstract Interpretation (Cousot and Cousot, 1979). The fundamental 
ingredient is that of a pair (a, y) of abstraction and concretization functions. 
The intention with the concretization function y is to formalize the intuitive 
meaning of the properties in L, so one has y(negative) = {..., -2, - 1 }, 
;~(l) = 0, y(anysign) = Z, etc. Given a set S of integers the intention 
with the abstraction function CI is that cl(S) is the best safi description of 
S in L, so one would expect, e.g., tx( { - 3, - 2 >) = negative and 
a( { - 3,2}) = anysign. 

To be a bit more precise, by “S is safely described by I” we shall mean 
that 

SC y(l). 

So the set { - 3, -2) is safely described by any one of the properties 
negative and anysign. But y(negative) is a proper subset of y(anysign) and 
negative is therefore the better property. Actually it is more convenient if 
one could use the fact that negative c anysign to deduce that one should 
prefer negative. For this to succeed the partial orders of Y(Z) and L must 
be suitably related. Similarly, there must be a relation between c( and y in 
order that one can claim that a produces the best safe description (w.r.t. y). 
This is all captured by the adjoinedness condition (Cousot and Cousot, 
1979). 

v/s E P(Z): VIE L: sGy(l)occ(s)&I, 

which may be reformulated as 

c1 and y are monotonic 

We refer to Cousot and Cousot (1979) for a detailed motivation for 
demanding adjoinedness. Given adjoinedness one may formulate the 
safeness condition SE y(I) as 
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and this is nothing but See, 1. The safeness of h with repect to g then is 

which is nothing but go, j B h. Due to the adjoinedness of CI and y and the 
monotonicity of g and h it may be reformulated as 

as is illustrated in Fig. 4. 
In general one may use abstraction and concretization functions to relate 

arbitrary complete lattices of properties. So if L and M are complete lat- 
tices and CI: L + A4 and y: M -+ L we say that (x, y) is adjoined when 

This may be reformulated as above and the intention is that r([)cm holds 
whenever 1 is safely described by m. The function c1 is called a lower adjoint 
iff there exists a function y such that (a, y) is an adjoined pair. There need 
not exist such a y but if it does it is uniquely determined by the formula 
(Cousot and Cousot, 1979) 

(Adjoinedness is also studied in category theory (MacLane, 1971)) 
Whenever c( is completely additive (see Section 2) it is a lower adjoint and 
vice versa. Hence each a,, will be an admissible relation. Finally, y is called 
an upper adjoint iff there is an c1 such that (a, y) is an adjoined pair and 
then c( is uniquely determined by 

where n Y = u { y 1 Vy’ E Y: y cy’} is the greatest lower bound of Y. 
It follows that there is a one-one correspondence between a lower 

adjoint CI and an upper adjoint y. Turning to Fig. 3 this may be extended 
with a one-one correspondence to a representation function /I assuming 

L 

FIG. 4. h safely approximates g 
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that cr is fixed. For given LY we may define a strict and continuous function 
0 by p = LX . c and given /? we may define a completely additive function a 
by cr(S) = u (p(s) 1s ES}. It is not hard to show that these constructions 
are inverses of one another. 

Returning to the general setting of Fig. 2 we have already argued that 
P B+B is the proper predicate for relating elements of S[B -+ B] and 
I[B + B]. Extending this to all types we may express the correcrness of I 
with respect to S as 

SPI 

Similarly, 

sot 

expresses the correctness of the interpretation C and 

CaI 

states that I is a safe approximation to C. (Here each of p, rr, and o! stands 
for a family of functions, e.g., pi: S(B,) + I(Bi).) 

The Problem qf Inducing 

Assume now that I is a lattice interpretation describing some analysis 
and consider the task of defining another analysis J that safely 
approximates I, i.e., I a J. The choice of the complete lattices J(Bi) is 
intended to record a deliberate decision about certain aspects that are to be 
treated less precisely in J than in I, e.g., to use J(B,) = L whereas 
I(B, ) = P(Z). Given this choice there is still much freedom when defining 
J(.f,) as a safe approximation to I(fi). As an example let fi have type 
B, + B, so that the safeness condition 

I(fi ) aBj + BI J(fi) 
becomes 

(compare Fig. 4, suitably relabelled). It follows that J(f,) = cc, . I(f,) . y1 
will be the best choice. In particular it will be better than J(f,) = Iv .T, 
where T= u J(B,) is the greatest element of J(B,), as this choice would 
yield a rather uninformative analysis. So in general we want to define J(fi) 
in a best way, given J(B,) and I(fi), so that the resulting analysis will not 
be too uninformative. This is the problem of inducing J(,f;) from I(fi) and 
the criterion that J(fi) is best may be formulated as 

tfh E JlIct,ll: I(A) a(,, h =j J(f,) d,.,, h, 
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where, as usual, 

expresses the safeness condition. In particular it is important to observe 
that <cI rather than E is the proper relation to use for comparing 
analyses (as is clear when, e.g., ct = A i). 

So let I be a lattice interpretation, J a lattice type interpretation, and 
(c(, y) a family of adjoined functions 

(pi: l(B;) + J(Bi), yi : J(Bi) +I(B,)). 

The functions CQ and yi move elements from I(B,) to J(B,) and vice versa 
and we now consider how to extend this to all types and then later to inter- 
pretations. Let us abbreviate 

and note that (cr,, yi) is an element of IJIBi]. Consider next a type ct that 
mentions only Bis in the list B,, . . . . B,. We then define a function 

[ct]: (IJIB,] X ... X IJ[B/.,]) + IJ[ct] 

as follows, where we write #i for (cl;, y,) and where id is the identity, 

UAJl(d,, . . . . $N) = (id, id) 

IilW(dl> ...? #N)=di 
w + ctwh, . . . . dN) 

=(nu.is,(u)~in,(Ucr'D(~,, . . . . 4N)1 1 (out,(u))), 
in2(lct"n(d,,..., h)ll (ouW)h 

n~.is,(u)~in,(Uct'B(6~, . . . . d,)l2 (out,(u))), 
inz( i[d’n (4,) . . . . #N) 12 (out,(u)))) 

w x ~fw,,...,hd = (w, 4. mtxh, . . . . 4,) 1 w, 
wnb4, . . . . dd ww, 

w, ~7 adw,, . . . . hww, 
ww,, . . . . 4diww 

fd + cty (0 ,, . ..h)= uf. wwl, -., 4,di 1 .f. ww,,..., 4d-12, 
45. wnh .4ui2 3. iwnw, . . . . hdi 1). 

We now explain these equations. 
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The equation for Bi is straightforward, as is the one for Ai because 
I(Ai) = J(A,). The equations for ct’+ ct” and ct’ x ct” express a com- 
ponentwise definition that we shall illustrate for ct’ x ct” assuming that 
N = 0. Then 

so that 

[ct’]( ) 1 1: I[ct’] + J[ct’] 

[ct”]( ) 1 1: I[ct”] + J[ct”] 

44 own( 11 w, wn( )I u2.w 
has functionality 

I[ct’ x ct”] + J[cr’ x ctq 

and it is correct to define [ct’ x ct”]( ) i 1 to be this function. A similar 
explanation motivates the definition of [ct’ x ct”]l( ) 12 and hence of 
[ct’ x ct”]. The equation for ct’+ ct” may be surprising in that 
[ct’ + ct”]( ) 1 1 uses [ct’]( ) 12 and [ct”]( ) 1 1 rather than [ct’TJ( ) 11 
and [ct”]( ) 1 1. However, it will be seen from Fig. 5 that this is the correct 
thing to do. In particular if ct’ = B, = ct” then [ct’ + ct”]( ) 1 1 maps f to 
rr , .f. y1 (because [[ct’] ( ) 12 = :J, and [ct”] ( ) 11 = cc, ). A similar 
explanation motivates the definition of [ct’-+ ct”] 12 and hence of 
[Tct’+ ct”]. That the above equations do define a function [ct] of the 
stated functionality is a consequence of 

PROPOSITION 4. If ct mentions only B,‘s among B,, . . . . B, the equations 
define a monotonic function 

[cl]: IJ[B,] X ... x IJ[B,] -, IJ[ct] 

that satisfies the functor laws 

[ct]((id, id), . . . . (id, id)) = (id, id) 

[Ictn(~;.~,,...,d',.~N)=[lctn(~;,...,~',).cctn(~,,...,~,), 
where $‘.c$=(c$‘~ 1 .bll, #12.$‘12). 

JU =t’I] __------ ----------- -$ JD ct”jJ - 

I 
Uct’Il ( )J2 

1rlct'Il 

, T 
[I ct”Il ( )11 

Ill ct"D - - 
f 

FIG. 5. The definition of [et’ + ct]i( ) 1 1. 
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We shall begin by motivating the definition of 4 .b. Here 4 is (cr’, y’) 
and q3 is (c(, y) so the definition reads 

(a’,y’).(a,y)=(cr’.cr,y.y’). 

This is illustrated by Fig. 6, which shows that if (a, ‘J) and (CC’, y’) are pairs 
of abstraction and concretization functions then so is (CC’ . tl, y .;I’) and this 
pair may be regarded as the composition of (a’, r’) and (a, y). The proof is 
by a straightforward structural induction and is omitted. There are many 
more results one can show about [eta but we shall postpone this and 
instead consider the problems in passing from I[ctl to J[cta when we do 
not have pairs of adjoined functions that relate I(B,) and J(B,). An exam- 
ple of this setting is one in which we want to induce an analysis directly 
from the standard interpretation rather than from some other analysis 
(such as the collecting semantics). So let L be an interpretation and R a 
lattice type interpretation and let mu be a family of strict and continuous 
functions 

mu, : L(B,) + R(B,). 

Note that it is not assumed that L(B,) is a complete lattice nor is it 
assumed that mui is a lower adjoint. 

We are searching for a way to transform elements of L[ctl into R[ctlj ; 
i.e., we are looking for a suitable function 

move,,[mv]: L[ctj + R[ctlJ. 

Motivated by the definition of [ct](q51, . . . . dN) 11 it is natural for us to 
propose 

FIG. 6. The composition of pairs of functions. 
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move,,[mo] = II. I 

move,,[mu] = mu, 

move,.,. + (.,,* [mu] = IZ.is,(i) + in,(move,.,~[mu] (out,(l))), 

in,(move,,..[mu](out2(1))) 

move,.,. x Cf.l [mu] = A(ll, 1”). (move,,,[mu](l’), move,.,.[mu](l”)). 

It is more troublesome to handle the case ct = ct’ -+ ct”, as is illustrated by 
12 when defining Kc?’ + ct”~(~r, . . . . tiN) 1 1, the need to use [ct’J($,, . . . . dN) 

but we propose 

move,,. _ (.lII [mu] = Al. ha . u (move,,.~[mu](l(la)) 1 la mv,.,, ra>. 

Here 1 is a function from L[ct’J to L[ct”~ and la is an argument in L[ct’l] 
corresponding to an argument ra in R[ct’l]. One motivation for the above 
formula is the formula 

y(ra)= u {laIcc(la)gra} 

for an upper adjoint in terms of a lower adjoint, and another is that la 
mv,,. ra is the generalization of a(la)cra to all types (assuming cli = WIU~).~ 
The idea thus is that since we have no function to transform an element 
raE R[ct’j into an element of L[ct’J we must instead consider all 
la E L[ct’l that are safely described by ra and then combine the results for 
all these la’s. 

However, the above definition is not well-defined as it stands. The 
motivation for requiring R to be a lattice type interpretation is that the 
least upper bound in the definition of move,.,, _ C,., then exists if ct” is some 
Bi. But this is not enough to guarantee existence in general as the following 
example shows. Let T and 0 be the cpo’s given by 

true v false 

I 

1 

T: 0: 

I 0 

* Theorem 12 will give conditions for when la mv,.,, ra is equivalent to 

move,,Jmu](lo) Gc,. ra but note that in general (e.g., when CI’ = A,) this will not be equivalent 
to move,,,[mu](lo) E ra. 
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Suppose that L(B,) = T and that all other L(B,) and all R(B,) are 0. 
Define 

mu,(true) = 1, mo,(false) = 1, mu,(l)=0 

and otherwise mu,(x) = x. Finally consider 

U~)ELCBI +Bz+Bzl 

defined by 

L(f$)(true)=in,(l), L(d)(false) = in,(l), L(d)(l) = 1. 

When calculating move BI - BI + BI [mul(L(h)( 1 ) we have 

true mvB, 1, false mvB, 1, I mvB, 1 

and so must take the least upper bound of the subset 

of RIB, + Bin = 0 + 0. But this set has no least upper bound. 

Faithfulness 

To overcome the above problem we shall exclude functions like L(d) 
from consideration in the hope that this will be sufficient for move to be 
well-defined. Intuitively, the problem with L(d) is that different elements of 
type B, give rise to results (of type B, + B,) that can be distinguished in the 
type system, namely that one result is in the first summand and the other 
result is in the second summand. So the idea will be to impose as a con- 
dition that differences among elements of the Bi may lead to different 
results in the Bj but not differences that can be distinguished by the type 
system. This vague formulation is captured by the relation 

u x,.,u E sim,.,[(%(u’, u’) true)i](u, tl) 

defined earlier. As an example we shall show that 

L(4) ;c: B, - B2 + B2 L(d). 

It is straightforward to calculate that 

true z B, false 

and this proves the claim. 
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Given a type interpretation I we now define a type interpretation I, 
called the faith@ part of I. The aim is to restrict I[ct] to containing only 
well-behaved elements. The definition is 

I,[ct’ x ct”] = IJct’] x Irfct”] (Cartesian product ) 

I,[ct’ + ct”] = I,[cr’J + I,[ct”] (separated sum ) 

I,[c~’ -+ c2”n = if: IrFct’n + I,[ct”g 1 fis monotonic 

and f < c,.+crz.f and f z(.,. +,.,,.f]. 

The requirement that functions in I,[ct’ + ct”] must be monotonic is just 
as before and we have already motivated the requirement that f’ z Cl* _ ,,,,,f 
by the desire to exclude L(b) from consideration. The requirement that 
.f < ~ f, _ ,.,,,f amount to 

so that when v is a safe approximation of u then f(u) is also a safe 
approximation off(u). This may be expressed as the requirement that f be 
monotonic with respect to “safe approximation.” Finally, note that since 
< , (.,, _ <.,,, and z (.1, _ (.!., are admissible relations Ir[ct’ + cf”] is still a cpo 

and hence all IJct] are cpo’s. Also, the least upper bounds of chains in 
IJct] are calculated as in I[ct]. When I is an interpretation such that all 
constants I(fi) are elements of I,[ct,] we say that I is a faithfd inter- 
pretation. 

We now restrict our attention to the faithful part of a (type) inter- 
pretation I and study the families 6 and x of relations. 

DEFINITION. A subset Y of IJctJJ is a fuithful set iff 

V’?‘,,yzE y: y1 Z‘.,J’Z. 

An element y of Ir[ct] is faithful iff { JJ} is a faithful set and it is fuithful to 
the element y’ of I,[ct] iff { .v, -v’) is a faithful set. 

Faithful sets are of interest because they exclude the set 

{inIt L Ml ), I}, 

which caused problems previously. Some properties of faithful sets and 
elements are given by: 

643.76 1.4 
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is a faithful set. 

FACT 6. All elements of IJct] are faithful and <-monotonic; i.e., # 
v E IJet] then v z (‘, v and v <,., v hold. 

The proof of Fact 5 is straightforward and the proof of Fact 6 is by an 
easy structural induction. 

Recall that the composition R, R, of two relations R, and R2 is given 
by 

and that an equivalence relation is a reflexive, symmetric, and transitive 
relation. We then have 

PROPOSITION 7. Let L be a type interpretation and let us restrict our 
attention to the faithful part L,. Then 

<,., is a partial order on LJct] that implies E, 

zCr is an equivalence relation on LJct], and 

6,., . zcrr IS x (‘, and z (‘, Go, is z (‘, . 

Note that it trivially follows from this proposition that < (,I. Go, is 6 (‘f and 
zcz. Z<, 1s ZC,. 

Proof The proof is by structural induction on ct and most cases are 
straightforward. (In the case of ct = ct’ + ct” it is important that we use the 
separated sum rather than the coalesced sum.) We illustrate only the har- 
der case when ct = ct’-+ ct”. That 6,,, is reflexive on LJctJ is because 
LJct] is defined to include only functions f that satisfy f &J: To see that 
<Cl is transitive let fGC,gGCr h. If v 6,.,, w  we have v<:,.~~o<,<,.~~w by the 
induction hypothesis so that f(v) <Ct.< g(v) Go,,. h(w) and by the induction 
hypothesis f(v) <CIP, h(w), as was to be shown. For anti-symmetry let 
f<,., gGC,f: For v E LJct’] we have v dC,, u by the induction hypothesis so 
that f(v)<Ccl,.g(v)<C,..f(v). It follows that f(v)=g(u) for all u so thatf=g. 
Finally, 6 L’I implies c because if f <,,g and v E LJct’] we have v <(,. v and 
f(v) ~~~,,g(v); so by hypothesisf(v) c g(v) so that f 5 g. 

That z <I is reflexive is because L,[ct] is defined to mclude only faithful 
functions. For transitivity let f CC! g z:,,~ h. If v x,, w  we have v zC, v z,., w  by 
hypothesis so that f(u) zC,” g(v) zCrP, h(w) and hence f(v) z’,,,. h(w). That 
25 (‘I is symmetric is shown in a similar way. 
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Next consider the equation < =, . zC, = z,.~. That fzC, g implies 
f(G,,. =cr)g is because fGCrfzCtg since we have shown <<! to be 
reflexive. That f< (‘, g z LI h implies fzCr h is because u zC,.I, w  implies 
v 6,,, v Zc,’ w  so that f(u) 6.,,, g(u) zC,.l. h(w) and the result then follows by 
the induction hypothesis. The other equation is similar. 1 

For a partial order it is of interest to know whether least upper bounds 
exist. 

PROPOSITION 8. Let L be a type interpretation and let us restrict our 
attention to the faithfur part Lr. Zf Y c Lr[ctn 1s a non-empty andfaithful set 
such that u Y exists in Lr[ctJ then 

u Y is the least upper bound of Y w.r.t. <,,,, and 

Y u {u Y} is a faithful set. 

The requirement that Y be non-empty is because I = u 121 is not the 
least upper bound of @ c Lr[A,j with respect to ,< A,, which is =. 

Proof: The proof is by structural induction on ct and we illustrate the 
case where ct = ct’ -+ ct”. We know that u Y= 1,~. u Y[v], where 
Y[v] = { y(v)ly~ Y}. To see that u Y is an upper bound of Y w.r.t. 6,., 
consider some y E Y and show y 6,., u Y. For this let v <<,, MJ and show 
y(v) Gctss u Y[w]. Since y 6,., y we have y(u) <,,,, y(w). Since y(w) E Y[uq] 
we have y(w)) 6<,,, U Y[w] by the induction hypothesis. The result then 
follows by the transitivity of < C.ls,. To see that U Y is the least upper bound 
of Y w.r.t. <,., let gE Lr[ctj be an upper bound of Y. When IJ <<(, w  we 
have y(v) G<.,,. g(w) for all y E Y and by the induction hypothesis 
U Y[u] < C,,,g(w). This shows U Yd,.,g. 

To show that Y u (U Y} is faithful it suffices by transitivity of z C, to 
consider y E Y and show y x,.~ /J Y. When v % (.II w  we have y(v) zCtC, y( ~1) 
so by transitivity of zCt.. it suffices to consider w  ~Lr[ct’l and show 
y(w) z,.,.,( U Y) (IV). But (1 Y)(w) = U Y[ w] and the result follows because 
the induction hypothesis asserts that Y[w] u {U Y[w]} is faithful. 1 

For lattice type interpretations we do not need to assume that U Y 
exists: 

PROPOSITION 9. Let R be a lattice type interpretation. Zf Y G RJcta is a 
non-empty and faithful set then U Y exists in R,[ctl]. 

Proof. The proof is by structural induction on ct and we illustrate the 
case where ct = ct’ -+ et”. We first show that U Y exists in 
RJct’a -+ R,[[ct”lj. For DE Rr[ct’J we have u zC,.,! u and therefore the set 
YCul= {Y(U)lYE Y) is nonempty and faithful. Therefore 2~. U Y[u] exists 
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by the induction hypothesis and it equals u Y in RJct’j + RJct”j. 
(Clearly u Y is a monotonic function.) To show that u Y exists in Rr[crB 
we must show that u Y is faithful and d-monotonic. Let y be some 
element of Y. If u FZ~!. u’ we have J(U) zcr.. I. By Proposition 8, 
u Y[u] ~~.,~,y(o) and u Y[M>] z<~..J$MJ). By transitivity of z~,.~,~ we get 
(u Y)(u)z~,., (u Y) (w). Next if r<<,,, MI we have JJ(v)<~,,, II(+V). Since 
v(w) Gc,,. (U Y)(u*) by Proposition 8 we get y(u) d,.,,, (u Y) (w). By yet 
another application of Proposition 8 we get (U Y) (u) <,.,,(U Y) (w). 1 

Before we prove the existence of move we need some results about the 
behaviour of [[ctl. Let us write 

iJ,[ct] = (i,fcr] -+ Jf[ct] ) x (J[[ctl] + I,[ct] ) 

and begin by stating that [ctn specializes to a mapping between faithful 
parts: 

PROPOSITION 10. If ct mentions only B,‘s among B,, . . . . B, the equations 
for [[et] may be viewed as defining a monotonic function 

[ct]: I&[B,] X . X IJ,[B,] + I&[ct] 

that satisfies the functor laws of Proposition 4 and such that 

are faithful and < -monotonic u,hen all xi and ;‘, are monotonic. 

Proof The proof is by structural induction on ct and we illustrate the 
case where ct = rt’ + ct”. As a shorthand we shall write (c1,~) instead of 
((G(~, r,), . . . . (aN, Y,,,)). We concentrate on showing the correctness of the 
functionality of [ct](a, y) 1 1 and that it is monotonic, faithful, and 
<-monotonic. The results about [ctj (CI, y) 12 are similar and together with 
the proof of Proposition 4 the remaining results follow. 

Concerning the functionality we must show that whenever 
f~ I,[ct’ --f ct”j then 

Uc~ll (a, Y 11 l(f) = U4l (a, Y) 11 ..f- Udl (a, Y) 12 

is monotonic, faithful, and d-monotonic. But f is by assumption and 
[ct’] (a, y) 12 and [ct”n (c(, y) J 1 are by the induction hypothesis and the 
result then follows because monotonicity, faithfulness, and d -monotonicity 
are preserved under composition. Next suppose that f d ‘, g and show that 
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But if u GC,, v we get 

Uct’li (a, Y) 12(u) Gd EcfTi (4 Y) 12(o) 

by the induction hypothesis and hence 

so that by using the induction hypothesis once more we have 

which is the desired result. Faithfulness is shown in a similar way and 
monotonicity is straightforward. 1 

The primary use of [ct] ((a,, y, ), . . . . (a,, yN)) is in instances when all 
(ai, yi) are pairs of abstraction and concretization functions. Since it is 
customary to require these to be adjoined pairs it is of interest whether 
[ct]((a,, y,), . . . . (a,,,, yN)) is also an adjoined pair. 

PROPOSITION 11. If ct mentions on1.v B,‘s among B,, . . . . B, and if all 
(ai, yi) E IJ,[B,] are adjoined functions then 

~a,.,vou~,,UctD((a,,~,),...,(a,,~,))12(u) 

* ucta((a,, YIL ...? (a,, Y,V))l1(~)~~.,U 

holds for all u E l,[ct] and v E J,[ct]. 

Proof: The proof is by structural induction on ct and we illustrate the 
case where ct= ct’ + ct”. As a shorthand we write (a, y) instead of 
((a,, y,), . . . . (a,, yN)). The first condition becomes 

vu’ E Ir[dj, d E J,[dg : u’ a,.,, 0’ =c= u( 24’) a,.,.. v( v’), 

the second becomes 

vd, WI E I,[rctq: u’ d,.,, w’ 

-4~‘)~,.,44l(a, YWMU~I(~, ~)l l(w), 

and the third becomes 

VW’, 21’ E Jr[ct’] : w’ 6,,, u’ 

=- Ccf’l(a, Y) 1 lWcfl(a, Y) 12W))) +, v(d). 

There are now four implications to show. 
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To prove that the first condition implies the second condition we assume 
the first condition and that U’ and w’ are such that 

By Proposition 10 we have 

Ucfll(4 Y)l l(U’)6d ECfli(% Y)l l(w’) 

and by the induction hypothesis this is 

u’ a,.,. [ct’] (D., y) 1 1 (w’). 

By the first condition we get 

u(u’) a,.,,, U(UCfli(~, Y)l l(w’)) 

and by the induction hypothesis we get 

u(u’) G,,,, Ect”n(4 Y) 12(fd4(‘% Y) 1 1 (U”))), 

as was to be shown. 
To prove that the second condition implies the first condition we assume 

the second condition and that u’ and v’ are chosen such that 

u’ a,.,, v’. 

By the induction hypothesis this equals 

d 6,.,, rrctw, Y) 12w 

and using the second condition we get 

~(~‘)~~,.,u~t”n(~(,~)l2(~(~~t’D(~,~)ii(u~t’n(~,~)i2(~‘)))). 

Let us pause for a moment and note that 

uctw, Y) 12w c.!, u~tw, 14 1 w) 

holds by Proposition 7 and u’ E Jr[ct] so that by the induction hypothesis 

~~t’~(cr,y)ll(rrct’n(~r,~)12(~‘))~<,.,,~’. 

But we have assumed that u E Jr[ct] and by Proposition 10, [ct”] (CI, y) 12 
is d-monotonic so we get 

CCul(% Y)l2(v(ucfn(~, Y)l1(CCfD(~, Y)12(V')))) 

Q,.,,, rrCf”lJ(‘% Y) 12(dv’)). 
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Continuing the argument we get by Proposition 7 that 

u(d) d,.,,. [ct”](‘% y) 12(u(u’)) 

and by the induction hypothesis this amounts to 

u( u’) a, ,‘, u( u’), 

as was desired. 
We have now proved the equivalence of the first and second conditions. 

The proof that the first and third conditions are equivalent follows the 
same pattern and is therefore omitted. 1 

This result may be viewed as saying that when each (a,, 7,) is an 
adjoined pair then 

uctn((@l~ Yl)? ...1 (=/v3 YN)) 

is an adjoined pair with respect to the partial order of “safe 
approximation” (namely 6, ,). 

Returning to the existence of move we now have sufficient apparatus to 
show that the equations 

move,,[mu] = Al.1 

move,,[mu] = mui 

move ~r.+~,.~[mu]=~I.is,(l)~in,(move,.,.[mu](out,(I))), 

inz(move,,..[mu](out,(l))) 

move,.,, xc,,, [mu] = A(/‘, Y).(move,.,.[mu](1’), move,.,~.[mv](1”)) 

move,.,. _ (.,- [mu] = ll.J.ra. u { move,.,.,[rnu](l(la)) 1 la mv,.,. ra} 

do define a function when attention is restricted to the faithful parts of the 
interpretations. 

THEOREM 12. Let L be a type interpretation, R a lattice type inter- 
pretation, and mu a family qf strict and continuous functions 

mu;: L(B,) -+ R(B,). 

Then the equations for moue make sense and define a function 

move,.,[mu]: Lr[ctj + RJctJ, 

that is, 

strict, monotonic, <-monotonic, and faithful, 
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and satisfies 

umv,, u~move,.,[mv](u)d,., u 

u c2 (., move,.,[rnu](u) 

for all u E LJctJ and u E Rr[ctJ. 

We leave the rather complex proof to the Appendix. 
This theorem has some important implications. 

COROLLARY. move, ,[mv] constructs the best safe approximation with 
respect to mv,,. 

ProojY For 24~ Lr[ctD the claim that move,,[mu](u) is a safe 
approximation to u amounts to 

u mvct move,,[mo](u). 

But this follows from the double implication in the theorem by choosing 
u = move,.,[mu](u) and observing that u 6,., 11 follows by Proposition 7. 
That move,,[mo](u) is the best safe approximation means that all safe 
approximations to 24 also safely approximate move,.,[mv](u), i.e., 

u mv,, D * move,,[mu](u) 6,., 21 

but this follows from the double implication in the theorem. 1 

Furthermore we can compare the effects of [ctj and move,,. 

COROLLARY. If (a,, yi); are families of atljoinedfunctions and ct mentions 
only B,‘s among B,, . . . . B, then 

kctl((a,, yI 1, -., (a,, Y,~)) 11 = move,.,C(~j)jl. 

ProoJ: From the theorem we have, writing CI for (a,),, 

~a,,uomove,.,[a](u)6,.,u 

and from Proposition 11 we have 

ua,.,v* i[ctntta,, r,), ..., (a,, Y&J))1 l(U)Gc, v. 

Combining this we get 

move,,C~l(u),<,., o*lIctll((~,, rl), . . . . (a,,~,))1 1(~)6, u 

and as 6,, is a partial order the result follows. 1 
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Induced Interpretations 

We conclude this section by formulating the development of Abstract 
Interpretation in terms of interpretations. So let L be a faithful inter- 
pretation and R, a lattice type interpretation. Here L may be thought of as 
the standard interpretation or some interpretation that expresses a 
program analysis whereas R, is to be extended to a faithful lattice inter- 
pretation R that expresses some program analysis. The intended relation 
between L and R is based on a family mu of strict and continuous functions 

mui: L(B,) -+ R,(B,). 

The intention is that R should be a safe approximation to L, i.e., 

L mv R, 

and furthermore that R be as precise as possible, given that each R(B,) is 
R,(B,), i.e., 

LmvR’=c=RdR’, 

where each R’(B,) is also R,(B,). To accomplish this we define the induced 
interpretation 

R = induce(L, mu, R,) 

by 

W,) = R, (B,) for all Bi 

R(h) = move,.,,Cm~l(W)) for allf, of type cti. 

We then have the desired interpretation: 

THEOREM 13. Let L be a faithful interpretation, R, a lattice type inter- 
pretation, ma a collection of strict and continuous functions, and R’ a 
faithful lattice interpretation. Then 

induce (L, mu, R,) is a faithful lattice interpretation, 

L mv induce( L, mu, R,), 

L mv R’ o induce( L, mu, R,) 6 R’. 

This is a simple consequence of Theorem 12 and its first corollary and 
says that the induced interpretation is the best safe approximation to a 
given interpretation. This result is equally applicable to the definition of an 
analysis using the standard interpretation and to the definition of an 
analysis using a known analysis. 
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5. APPLICATIONS 

When applying the framework of the previous section one must make 
sure that only faithful interpretations need be considered. This is a semantic 
restriction to be fulfilled by the interpretations of the constants f, of type 
cti. To ensure the fullillment of this restriction it is therefore of interest to 
find a syntactic restriction on cti that will guarantee this, i.e., that will 
guarantee that I[ctJ = Ir[ctJ. 

We therefore begin defining the predicates pure (abbreviated p), impure 
(abbreviated imp) and level preserving (abbreviated lp). These are defined 
structurally on types ct with the definitions of impure and level preserving 
being mutually recursive. The definitions are: 

Ct p(ct) imp(&) lp(ct) 

Ai true false true 
B, false true true 
ct’ x ct” p(ct’) A p(cr”) imp(ct’) A imp(ct”) lp(cr’) A lp(ct”) 
ct’ + ct” p(ct’) A p(ct”) false lp(Ct’) A lp(Ct”) 

ct’ -+ ct” p(Ct’) A p(Ct”) lp(ct’) A imp(ct”) [P(cf’) A lP(ct”)] 
v [lp(ct’) A imp(ct”)] 

The motivation behind the definition of pure (i.e., p(ct)) is that the type ct 
is pure if it contains no Bi. The motivations for the predicates impure and 
level preserving are best explained by the following result. 

PROPOSITION 14. For a type interpretation I and a type ct we have 

(1) if ct is pure then it is level preserving and E(., and 6,., are both 
equality, 

(2) ifct is impure then it is level preserving and zC1 is a relation that is 
always true and < CI is c, 

(3) if ct is level preserving then I[ct] = I,[ct]. 

It is clear that the predicate level preserving can be used as the sufficient 
syntactic condition for ensuring that only faithful interpretations need be 
considered. Some examples of level preserving types are 

A,, B,> B, x B, x B, + B,, B,+(A,+A,+B,). 

One may reformulate the condition for ct’ + ct” to be level preserving to 
the requirement that ct’ and ct” be level preserving and that additionally ct’ 
be pure or ct” be impure. Concerning pure types one notes that they 



DENOTATIONAL ABSTRACT INTERPRETATION 61 

behave much as the Ai with respect to the definitions of %c, and <,, and, 
similarly, impure types behave much as the Bi. 

Proof. The proof is by structural induction on ct and we illustrate the 
case where ct = ct’ -+ cf’. Assume first that ct is pure, from which it follows 
that ct’ and ct” also are. By the induction hypothesis we have that ct” is 
level preserving and this shows that ct also is. The predicate fz(.[g 
amounts to 

and since (by the induction hypothesis) both cc.,. and z:,.’ are equality this 
reduces to f= g so that also z~, is equality. In a similar way it is shown 
that <‘I is equality. 

Assume next that ct is impure but not necessarily pure. Clearly ct is also 
level preserving. Using the induction hypothesis the relation fzclg 
amounts to 

which always holds so that also z:,., is a relation that is always true. 
Similarly f< c, g reduces to 

This implies that fEg, i.e., 

vu E I[ct’j = If[ct’]:,f(u) &g(u), 

since d,.,, is reflexive, as follows from Proposition 7. Next suppose thatfcg 
and u d,.,, u. By Proposition 7, I[ct’] = I,[ct’], and monotonicity offwe get 

f(u)c .f(v)cg(u) 

and this showsf(u)cg(u). It follows that 6,, is c. 
Finally, assume that ct is level preserving but not necessarily pure or 

impure. There are two cases to consider so suppose first that ct’ is pure and 
ct” is level preserving. Then fz,., g reduces to 

VU: f(u) = (./u g(u) 

as z:,. is equality and since z:,.. is reflexive by Proposition 7 and the fact 
I[ct”] = I,[ct”] it follows that z~., also is (over I[ctn). In a similar way it is 
shown that <,., is reflexive over I[ct]. This suffices to show that 
I[ct] = IJct]. Suppose next that ct’ is level preserving and ct” is impure. In 
fact ct is impure too and z(,, and d,., are then reflexive as a consequence of 
(2). Again this suffices to show that I[ctJJ = Ir[ct]. 1 
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The motivation for the present work, as well as that of Nielson (1984, 
1986a), is to formulate a general framework of Abstract Interpretation for 
denotational definitions. This means that it must be possible to formulate a 
wide class of program analyses using the framework. One may then con- 
sider how to implement the framework and this is currently being 
investigated. For this reason we shall concentrate on showing that actual 
analyses can be handled by showing that the setup used in various papers 
may be transformed to the present framework. 

We begin with a brief comparison of the present development with 
respect to its forerunners (Nielson, 1984, 1986a). The predicate level preser- 
ving generalizes the predicate contravariantly pure used in Nielson (1984) 
to constrain the types ctj of constantsf,. The definition of “contravariantly 
pure” (abbreviated cp) closely resembles that of “level preserving” with the 
exception that cp(ct’ + ct”) is defined as p(ct’) A cp(ct”). Proposition 3 is a 
simplified version of Theorem 3.3: 14 of Nielson ( 1984) and a version of 
Proposition 7, but restricted to contravariantly pure types, is given by 
Lemma 4.2:3 of Nielson (1984). Finally, the definition of move generalizes 
the definition of view in Nielson (1984). This means that Theorem 13 is 
more general than its analogue in Nielson (1984) (which is Theorem 4.2:7). 
On the negative side we have not treated recursive domains and have only 
shown monotonicity and not continuity. 

As a second example we consider the setup of Mycroft and Jones (1985). 
The language studied there is an untyped l.-calculus. Let Var be an 
unspecified countable set of variables X. Then the set Exp of expressions e 
is given by 

e ::= .Y 1 E.x.e 1 e e. 

In Mycroft and Jones (1985) the notion of an interpretation is defined, but 
to avoid confusion we prefer to call it a model. A model I is a triple con- 
sisting of cpo D and functions 

lam:(D-+D)-+D 

app: (DxD)-+D. 

Relative to a model I we define the cpo of environments 

Env,=Var+D 

and the semantic function 

E,: Exp + Env, + D. 
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The semantic equations are 

E,~j”x.elj(p)=lam(~.d~D.E,[ren(p[d/.~])) 

E,Ue e’l(P) = app(E,Uel(pL E,Ue’l(p)) 

and this clearly defines E,. In Mycroft and Jones (1985) various models are 
defined. One is a standard interpretation where D is the solution to the 
recursive domain equation 

D=(D+D)+Z+ {wrong;, 

and where Z is the integers. Another is a strictness analysis and the third 
model concerns the type analysis of Hindley and Milner. 

To handle this in the present framework we must do two things: one is 
to define a syntactic translation from expressions e of Exp into expressions 
of TMLb and the other is to construct an interpretation I from a model I. 
Concerning the syntactic translation it seems natural to let B, correspond 
to D and to let f, and fi correspond to lam and app, respectively. As for 
the variables x of Var there are two ways to view them: one is as elements 
of, e.g., A, and the other is to identify them with the variables of TMLb. 
We shall choose the former and hence Env, will correspond to the type 
A, -+ B, . We then define the syntactic translation function b: 

~[l.x.e~ =i.p: A, -B,.f,(M: B,.6[e~(p[~/.~])), 

where p[d/.u] abbreviates (j-v: A,.f,(u, x) + d, p(v))) 

g[ee’] =Ap: A, -B,.fi(&[e~(~), &[e’l(p)). 

Here we have assumed that p, d, and v are variables of TMLb and that J7, 
of type A,xA,+A,, where A, is the truth-values, stands for the test 
3.( I;, x). u = .Y. To be fully precise we should have replaced the use of x on 
the right-hand sides by Y ‘[sj where we had formally defined Y’[?sij =,f3 +, 
for each X, in Var. So the types ctj of the constants f, are 

ct, = (B, -+ B,) + B, 

ct2=(B,xB,)+B1 

ct,=A,xA,+A, 

ct -A, 3+i- for i>O 
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and these are clearly seen to be level preserving. (In fact ct, and ct, are 
impure and the remaining are pure.) 

Given a model I= (D, lam, app) we then specify an interpretation I by 
setting 

I(B,) = D 

and, e.g., I(B, + i) = D as well for i 2 1, and by setting 

I(fi) = lam 

UfJ = am 

I(f3)=l(u, o).u=a 

I(fX+i) an enumeration of the elements of Var. 

We take it for granted that A i = Var, and that A, = {true, false} 1 . This 
interpretation is faithful by Proposition 14. It should be clear that &[e] is 
always a closed expression of TMLb, i.e., no free variables, and that 

One small point is that we have only required functions to be monotonic 
whereas in Mycroft and Jones (1985) they are in fact assumed to be con- 
tinuous. Nonetheless it is correct to claim that this demonstrates that the 
setup of Mycroft and Jones (1985) is expressible in the present framework. 
As a specific example note that the Correctness Proposition of Mycroft and 
Jones (1985) corresponds to Proposition 3. 

As the final example we consider the strictness analysis of Burn et al. 
(1986). The language studied there is a typed l-calculus. The types t are 
given by the abstract syntax 

t::=A 1 t-t, 

where A is the type of atoms and t + t is a function space. The set Exp of 
expressions e is given by the abstract syntax 

e::=c’Ix’)Ax’.eI(e e))fix’e. 

Here each c’ is a constant c of type t, each x’ is a variable x of type t, i.x’.e 
denotes function abstraction, (e e) denotes application, and lix’e denotes 
an element of type t that is the fixed point of e. In Burn et al. (1986) this 
language is given two semantic definitions. One is 

sem: Exp -+ Env -+ D, 
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which defines the ordinary semantics and where D is an infinite sum 
(indexed by the types t) and Env is the cpo of environments, i.e., mappings 
from variables to D. The other is 

tabs: Exp -+ Env’ + B, 

which defines a strictness analysis and where also B is an infinite sum 
indexed by the types t and where Env’ contains mappings from variables to 
B. The definitions of sem and tabs take the form of semantic equations and 
the only difference is the way constants c’ are handled. 

To handle this /!-calculus we follow the general approach of the previous 
example. In the present case we need to define two syntactic translations. 
The function .F translates the types of the i-calculus into types of TMLb. 
It is given by 

and it is straightforward to verify that all F[tl] are impure and hence level 
preserving. Concerning expressions, we must decide how to treat variables 
and in this example we choose to identify them with the variables of 
TMLb. (To view them as elements of some type, e.g., A,, we would have to 
extend TMLb with infinite sums and construct a type that is the sum of all 
3[f].) A constant c’ will then be identified with a TMLb constant f, of 
type cti = F[t], where the index i is obtained from c. This motivates 

cT[c’] =f, for i obtained in a unique way from < 

S[x’] = x for each variable x 

a[i~cen = ~x~s[rtj .8fej 

mldn =mmmd~ 
&[fix' en = fix;FI,l(&[e] ). 

Clearly the expression e is closed iff &[e] is and then e has type t iff &[e] 
has type F[r]. In general for an expression e we define a type-environment 
tenv by setting 

tenv(x) = FT[t] 

for each free X’ in e and then 

tenv +- &Fe] : F [f,a 

iff e has type t,. 
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Next we define interpretations S and T corresponding to the semantic 
functions sem and tabs, respectively. These interpretations will be faithful, 
as required, because all F[t] are level preserving. Concerning S we define 
S(B,) to be some unspecified cpo of atoms, just as in Burn et al. (1986), 
and for completeness we may interpret the S(B, + ;) similarly. If we write D, 
for the summand of D that is indexed by t we essentially have 
D, = S[F[t] 1; the difference is that we have only insisted on monotonicity 
whereas Burn et al. (1986) insists on continuity. As for S(f,) we do not 
specify these in detail but assume that they are interpreted as the 
corresponding c’ in Burn et al. (1986). It then follows that for a closed 
expression e we have 

semITeD = Scalier II(J-) 

and a straightforward generalization of this when e is not closed. 
Concerning the strictness analysis we define T( B, ), and for completeness 

also T(B, +i), to be the cpo 

! 0 

with elements 0 and 1 and ordered by 0~ 1. The intention is that 0 means 
“undefined” and 1 means “possibly defined.” To formalize this we define 

mu, : S(B,) -+ T(B,) 

if d=l 
otherwise 

and similarly mu, 
+ I .  

Hence 

amounts to 

and thus expresses the statement that 4’ describes the “undehnedness” or 
“possibly definedness” of x. This motivates the demand that 
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(for closed expressions e of type t) should express the relation between S 
and T. Using Theorem 13 we obtain this by defining 

T=induce(S,mu,Ii). 

If we write B, for the summand of B that corresponds to t we get 

because monotonic functions on finite cpo’s are continuous. Furthermore 
we have 

whenever e is a closed expression and a straightforward generalization of 
this when e is not closed. 

As an example consider an expression e of type t = A -+ A -+ A and let us 
write ce = &[ej and ct = F[tt]. Then 

holds by Theorem 13 and amounts to 

m~,(d)cb A m~,(dl)~6’~mu,(Sj[rcen(l)(d)(d’))~T~cen(l)(b)(b’). 

Suppose next that 

T[cej(I)(O)(l)=O. 

Since mu,(d’)~ 1 holds for all d and mv,(d)rO holds iff d= i this gives 

v’d’: S[ce](l)(l)(d’) = 1. 

It follows that S[lcej (I) is strict in its first argument and this information 
may then be used as sketched in the Introduction. In Burn et al. (1986) the 
correctness of using tabs to infer strictness information about sem is 
expressed by the Soundness Theorem (Burn et al., 1986, Theorem). A key 
ingredient in the proof is Lemma 8 of Burn et al. (1986), which 
corresponds to our Theorem 13 (using Proposition 3). Another ingredient 
in the proof is Proposition 3 of Burn et al. (1986), which corresponds to 
stating that move,,, _ (.Ill [mu](j) is strict iff f is. 

643/76./l-5 
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6. THE COLLECTING SEMANTICS 

The intuition behind the collecting interpretation C is that it is the most 
precise Abstract Interpretation3 that is consistent with the standard inter- 
pretation. The consistency condition demands that C be correcf with 
respect to S, i.e., that 

sac 

for (T a suitable family of strict and continuous functions gi: S(B,) -+ C(B,). 
The preciseness condition demands that a faithful analysis I be correct with 
respect to S iff it is a safe approximation of C, i.e., 

(3/l: s p I)0 (3.x: c a I), 

where p ranges over families of strict and continuous functions and x 
ranges over families of lower adjoints. So far we have not assumed that a 
collecting interpretation exists although we have indicated that it would 
have C(B,) =P(Z), or something isomorphic to it, if S(B,) =Z,. Then 
each ~1, may be obtained from fl, by setting ai = u {Bi(s) 1 s E S} and 
each fli may be obtained from ~1, by setting fi, = xi. Ok, where ai( I) = 0 
and otherwise cr;(s) = {s). 

To enable a general definition of the collecting interpretation we must 
cover the theory of the relational power domain, $PR, also known as the 
lower or Hoare power domain. So let D be a cpo. A subset XC D is left- 
closed iff 

Vd,d’ED: d&d’EX-dEX 

and is Scott-closed iff 

VYsD: Y~XA Yisachainau YEX 

and X is left-closed. 

Given XG D there exists a least (w.r.t. c ) left-closed set containing X; it is 
called the left-closure of X and is given by 

LC(X)= (dEDI3d’~X: d&d’}. 

‘Here the Abstract Interpretations range over those that can be proved correct by the 
methods of the present paper and so do not include “second-order” analyses like “live 
variables analysis.” 
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Given Xc D there also exists a least (w.r.t. E ) Scott-closed set containing 
X; it is called the Scott-closure of X and is given by 

X* = n {xl ED ( Xc x’ A X’ is Scott-closed >. 

To see this note first that the intersection exists because D is a candidate 
for x’ and therefore we do not take an empty intersection. Clearly X& X* 
and X* is left-closed. To see that X* is Scott-closed let Y be a chain such 
that YE X*. Then Y g x’ for all Scott-closed X’ containing X and hence 
u YE x’ for all these x’ so that u YE X*. 

DEFINITION. For a cpo D the relational power domain &(D) is 

((Xs D 1 X Scott-closed and not empty}, E ). 

The associated singleton function IX D + PR(D) is 

3-d. {d}*. 

PROPOSITION 15. Let D he a cpo. 

(1) P,,(D) is a complete lattice with u Y = (U Y)* u {In) and 
I = {lo).. 

(2) CJ = id. LC( (d}) and is strict and continuous. 

(3) Whenever p: D + L is strict and continuous and L is a complete 
fattice there exists precisely one completely additive function a: PR(D) --f L 
such that /I’ = a . r~. It is given by a(S) = u {p(s) 1 s E S} and is written fl”. 

This is a version of a well-known result but for completeness a proof is 
given in the Appendix. 

With this information we can now define the collecting interpretation C 
from a faithful standard interpretation S. Writing (T for the family 

(0;: S(B;) + %dWi)))r 

of strict and continuous singleton functions we put 

C = induce(S, r~, (9$(S(Bj)))i). 

If S(B,) = Z, we now have C(B,) = (S s Z, 1 I E S}, which is isomorphic 
to the C(B,) = P(Z) suggested earlier. It follows that the collecting inter- 
pretation will not distinguish between programs that produce the same set 
of integers as results even if one program may not terminate although the 
other one always does. 
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To prepare the ground for showing that C behaves as desired we first 
show some functor-like properties of inducing and how the mv relations 
compose. 

PROPOSITION 16. Let L be a type interpretation and let R and R’ be 
lattice type interpretations. Furthermore, let mv be a family of strict and 
continuous functions 

mv,: L(B,) + R(B,) 

and let a be a family of lower adjoints 

a,: R(B,) -+ R’(B,). 

For all types et we have the functor-like equations 

move,.,[(Al.l)i] = 11.1 

move,.,[cc .mv] = move,.,[a] .move,.,[mv], 

where (a . mv)i = ai. mvi. Furthermore we have the composition law 

(a * mv),., = mvct . cq., 

and the adjoinedness-like formula 

l(a * mv),., r’ 0 move,.,[mu](l) a,., r’ 

*lmv,, Bctl(a, y)12(r’). 

Here y is the family of upper adjoints corresponding to a and we have restric- 
ted our attention to faithful parts of interpretations. 

ProoJ: The first equation for move follows from Proposition 10, the 
second corollary to Theorem 12, and the fact that (U.l)i is a family of 
lower adjoints. The second equation for move is proved by a structural 
induction on ct and we illustrate the case where ct = ct’ + ct”. We write 
(a, y) for ((a,, y,), . . . . (aN, yN)), where each yI is the upper adjoint 
corresponding to ai and where N is the maximal index i of any Bj occurring 
in ct. We then calculate as follows, 

move,.,[a .mv](f) = 

2ra.U {move,.,..[a~mv](f(la))(move,.,~[a~mv](la)~~,~ra} =, 
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where we have used Theorem 12. For the next step we use the induction 
hypothesis 

ha. u {move,.,~~[~](move,.~~~[~~](~(kz))) I 

move,.,~[~](move,,~[mu](la)) GC,, ra> = 

and then one of the corollaries to Theorem 12 to get 

h. U { llcfD(~r, Y) 1 l(move,.,,,[mul(f(Zua)))l 

[ct’](cr, y) 1 l(move,.,,[mu](la)) <,.,.ru} =. 

Using Proposition 11 we may continue 

h. U { hcf”il(4 Y) 11 (move,.,~Cmul(f(lu)))l 

move,.,,[mu](lu) GC,,[ct’j(~, y) J2(ru)} =, 

which equals 

[ 
ha'. U { ww, Y) 1 1 (move,.,,,Cmul(f(la)))I 

move,.,.[mu](lu) Gc,, ru’} 1 . [dn(ct, y) 12 =. 

The next step is to rewrite this to 

. Aru’.U {moveC,~~[mu](f(kz))~move,.,~[mu](Zu) 6,,, ru’} 
i 1 

. iktw, w= 
and we shall justify this shortly. But having done so we may continue 

which shows the result. 
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It now remains to show the correctness of the step that was not justified 
above. For this write 

Y= (move,.,.,[mu] (f/a)) 1 move,.,,[mu](la) GC,, ra’} 

(abs, con) = [ct”~ (~1, y) 

Z= {abs(y)l~~~ YJ. 

Since f~ L,[ctl and ru’ E RJct’l it follows by the reasoning in the proof of 
Theorem 12 that Y is a non-empty and faithful set. Similarly abs and 2 are 
faithful, and we are claiming that 

abs u Y = u Z, 
( 1 

where by Proposition 8 the u are the least upper bound operators with 
respect to Q,.,,,. Hence we are claiming that 

vzez: 

(Vz E z: z d,.,,, u) a abs 
( > 

u Y c~,,. U. 

But the first result is immediate as each z E Z is of the form abs(y) for 4’ E Y 
and y G~,,,U Y follows by Proposition 8 and abs is <-monotonic by 
Proposition 10. Next suppose that 

By Proposition 11 and the definition of Z this amounts to 

Vy E Y: y <c,ss con(u) 

so that 

/J Y 6c,ps con(u), 

from which we get the desired 

In fact we could have justified this step more tersely by just saying that u 
is the least upper bound operator with respect to GCr,, and abs is a lower 
adjoint by Proposition 11, and hence it is completely additive with respect 
to Q,,,, . 
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We have now proved the equations for move and turn our attention 
towards the composition law and the adjoinedness-like formula. We 
calculate 

/(a - mv),., r’ 

0 by Theorem 12 
move,.,[cc .mv](1) <<, r’ 

0 by the equations for move 
Ectl(h Y 11 l(move,.,lImvl(O) d,., r’ 

0 by Proposition 11 
move,.,[lm~l(O ~ctlIc~I(4 Y) -13r’). 

By Theorem 12 this is equivalent to 

l mv,., Ictli (4 Y )12(r’ ) 

and by Proposition 11 to 

move,.,[mu](l) a,., r’ 

and this proves the adjoinedness-like formula. For the composition law we 
continue the calculation: 

move,.,[m~l(O C,BctI(~, Y) 12Cr’) 
0 by Proposition 7 

Jr: move,.,[mu](1) Gc, r A r Gc,IlctIl(cc, y) 12(r’) 

0 by Proposition 11 and Theorem 12 
3: 1 mv,., r A r a,., r’ 

0 
I(mv,., . a,.,) r’. 

This completes the proof of the composition law. 1 

The intuitive contents of Proposition 16 is more clearly expressed when 
reformulating it for interpretations. 

THEOREM 17. Let L be a faithful interpretation, let R and R’ be faithful 
lattice interpretations, and let mu and CI be as aboue. Then inducing behaves 
much like a .functor, i.e., 

induce(L, (Al./),, (L(B,)),) = L 

induce(induce(L, mu, (R(Bi)),), a, (R’(B,)),) = 

induce(L, CI ‘mu, (R’(B,)),). 
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Furthermore correctness and safeness compose, i.e., 

mv’ _= (a . mv) where mu’ = mu a 

and inducing giues a result that is as precise as possible, i.e., 

L(a * mv) R’ o induce(L, mv, (R(B,)),) a R’. 

The functor-like properties of inducing means that an Abstract Inter- 
pretation may be built by inducing in small steps and still give the same 
result as if induced in one big step. This supports a “stepwise coarsening” 
methodology for the design of Abstract Interpretations. The composition of 
correctness and safeness implies that if R is safe/correct with respect to L 
(i.e., L mv R) and if R’ is safe with respect to R (i.e., R a R’) then also R’ is 
safe/correct with respect to L (i.e., L a * mv R’). The final result of the 
theorem says that inducing does not lose information and it is a 
strengthening of the final statement in Theorem 13. The proof of Theorem 
17 is an easy consequence of Proposition 16 and is therefore omitted: it 
merely amounts to a “componentwise” application of Proposition 16 
(where the “components” are the A). 

We can now prove the desired result about the collecting interpretation. 

THEOREM 18. The collecting interpretation C is a faithful lattice inter- 
pretation that is correct with respect to S, i.e., 

s a c, 

and that is as precise as possible, i.e., 

(y?:S~I)o(3a: c a I), 

where each pi is strict and continuous and each tli is a lower adjoint. 

Proof The first half of the result is a consequence of Theorem 13 so 
consider the second half. If C a I it follows from S o C and Theorem 17 
that S fl I with /?= a. a. Conversely suppose that S p 1. Define a as 
designated in Proposition 15, i.e., aj = pi, and note that a then is a family 
of lower adjoints. Then fi = a. a so S a * o I and the last statement in 
Theorem 17 gives 

induce(S, 6, (C(B,)),) a I, 

which is the desired C a 1. 1 

Returning to the application in Section 5 to the strictness analysis of 
Burn et al. (1986), this theorem answers a problem left open in that paper, 
namely how to construct a collecting semantics. 
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We conclude with a few examples of the collecting interpretation. Sup- 
pose that the standard interpretation has S(B,) = 2, and interprets f, : 
B, x B, -+ B, as S(f,) = ,I(u, u).u + u, where + is strict in each of its 
arguments. Then 

c(fl) = moveBl x BI - Bl[Ol( + ) 

so C(f, ) is the element-wise application of + . 
For a more involved example consider the function twice defined by the 

TMLb expression 

Lx:B, -B,.Ly:B,.x(x(y)). 

First note that 

move B,-B,bl(fkAX.U {a(fb))~o(ukx} 

=~x.{f(u)IuEX}u {I}, 

which equals Ix. {f( ) I u u E x} iffis strict. We shall write PR(f) for this, i.e., 
~aCf)Cx) = u-(4 I u E x> ” 1 -L 1, since this is the standard way of extending 
gR to a functor (Arbib and Manes, 1975). We then have, omitting environ- 
ments, 

So C[twice] (g) combines the effects of the “primitives” less than g; this is 
somewhat similar to the use of the function lin in Nielson (1984), where the 
“primitives” are the irreducible elements. 

Another way to write the result is 

WwiceIl = kg.Ax. (J- 1 u UI%(f)(%(f)(x)) I b: %UW) ~dy)I 

=4Gx.{+J W-WI UEX A Yv %u-)(YEs(Y)J 

and one could avoid the explicit “{I } u ” if g, and hence f, is strict. 
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Clearly Cjrtwicej c1g.g .g but we do not have the converse inequality. 
To see this let 

gWH= w  

‘!d{L 4)= {l) for uEZ 

g(x) = .x otherwise 

and note that Vy: Pi(f)(y) E g(y) then reduces to f= 1. Then 
C[twiceJ(g) = I, which clearly differs from g. g. This may be somewhat 
surprising but is just an instance of the general phenomenon in Abstract 
Interpretation that the induced version may be more precise than expected 
(see Nielson, 1986b, 1984). 

7. CONCLUSION 

The motivation behind the present work as well as that of its forerunners 
(Nielson, 1984, 1986a) is to formulate a general theory of program analyses 
that is based on Abstract Interpretation and denotational language 
definitions. Such a development potentially has two benefits. One is that 
the theoretical justification of correctness need not be performed for each 
analysis. We believe that our examples show that this goal has been 
achieved. The present development is already contained in the development 
of Nielson (1984, 1986a) except that the syntactic restriction “con- 
travariantly pure” has now been weakened to the syntactic restriction “level 
preserving” or the semantic restriction “faithful.” The other potential 
benefit is that it might be possible to construct a system that facilitates per- 
forming program analyses whose results are guaranteed to be correct. This 
possibility is currently being explored. 

On a more technical side the present development should be extended to 
allow recursive domains; i.e., the types of TMLb should be given by 

Before this can be accomplished we must replace monotonic function space 
by continuous function space as otherwise recursive domain equations need 
not have solutions. But this boils down to requiring move,, +c,-[mu] to 
preserve continuity and the remark in the Appendix shows that this does 
not hold in general. So one would search for conditions on the mu strong 
enough to guarantee this. One candidate is the backward continuity of Bar- 
buti and Martelli (1983) but their proof, Theorem A.3, is not convincing. 
Another candidate might be a requirement that mu map compact (or finite 
or isolated; Stoy, 1977) elements to compact elements but then one would 
probably need to identify the compact elements in I,[Ilct’ -+ ct”%. However, 
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the present development should be sufficiently general that we can handle a 
restricted version of recursive domains where ret X.ct does not allow ct to 
contain function spaces and this would suffice for lists, trees, etc. 

APPENDIX 

In this appendix we give the proofs promised in the main text. The first 
result to be proved is Theorem 12 and to do so it is convenient first to state 
a strengthening of some of the results from Proposition 7. 

LEMMA. The following equations hold in general upon fathful parts of 
interpretations: 

Note. In Proposition 7 it was assumed that I, J, and K were the same. 

Proof. Assume for a moment that the third equation has been proved. 
If u<,.twz:,.,u we have UZ., w  by Proposition 7 and hence uzcI u by the 
third equation. Conversely if u E t, v we have u <,, u zcz u by Proposition 7. 
This shows that the first equation follows from the third and in a similar 
way it is shown that the second equation follows from the third. The third 
equation will be a consequence of the result 

u zct w  z,., u =a u x,., u (*I 

~~mnu~ ww, (#I 
where (I, 1) abbreviates ((I, I ), . . . . (I, I)). To see this, note that (*) is 
one-half of the result and that if u x,, u then 

24 z(., v kzcr UctD(-L 1)1 l(v) 

by ( # ) and we then get 

u~:,.,w~c,u for )v= fctn(I, 1)J I(V) 

using (*) and the symmetry of z~,. 
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We prove the conjunction of (*) and (# ) by structural induction on ct. 

Case ct = A i. This is straightforward as z(,, is = and [ct]( 1, I ) J 1 is 
111.1. 

Case ct = Bi. This is straightforward as zcl is the relation that is always 
true. 

Case ct = ct’ x ct”. This follows from the induction hypothesis due to the 
componentwise definition of zct and [ct]( I, I) 1 1. 

Case ct = ct’ + ct”. This follows from the induction hypothesis by case 
analysis, e.g., on whether is, (0) is 1, true, or false. 

Case ct = ct’ + ct”. We first prove (*) so suppose that 

f*ctg=:th 

and show f zct h. For this let UZ~,,O and note that for 
w  = [ct’] (I, I) 1 l(u) it follows from the induction hypothesis that 

u Z:,’ w  Z(,’ u. 

From this we have 

f(u)z<,ug(w)z:,.,.. h(w) 

and by (*) of the induction hypothesis we get f(u) z~,,, h(w). This com- 
pletes the proof of (*) and for ( # ) note that 

[ct](l, 1)J l(h)= [ct”](l, I)1 1 .h.[ct’](I, 1)J 1 

since [ct](l, 1)12= [ct](l, 1)J 1. To show 

hz,.,[rctll(L 1)1 l(h) 

let 24z(,, v. By the induction hypothesis (# ) 

U+~d7](1, 111 I(~) 

so that by (*) 

U+jrdlj(l, 111 I(U). 

Since h z~, h we have 

h(u)=2:,.,-h(5cfl(L 1)1 l(v)) 
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and by the induction hypothesis we get 

h(u)=,.,*uct”n(L 1)1 l(h(uct’n(L I)1 l(v))). 

This completes the proof of (# ). 1 

THEOREM 12. Let L be a type interpretation, R a lattice type inter- 
pretation, and mu a family of strict and continuous functions 
mui: L(B,) + R(B,). Then the equations 

move,,[mv] = Al.1 

moveg, [mu] = mu, 

move, I x (.fI [mu] = A(/, I’).(move,.,[mu](l), move,.,.[mv](l’)) 

move,, + cfI [mu] = IlZ.is,(f) + in,(move,.,[mv](out,(I))), 

in,(move,.,.[mu](out,(l))) 

move,., j (.,, [mu] =Af.ha.U{ move,.,,[mv](l(fa)) 1 la mv,, ra} 

make sense and define a function 

move,.,[mv]: L,[ctl] -+ R,[ctj 

that is strict and monotonic, <-monotonic, and faithful and satisfies 

u mv,., v 9 move,.,[mv](u) d,., v 

as well as 

u x,., move,.,[mv](u) 

for all u E LJctl and u E RJctj. 

Proof. The proof will be by structural induction on ct but to be able to 
conduct the proof for function space we need a stronger induction 
hypothesis. This is obtained by also claiming that 

down,,[mv](l, r) = r 

down,,[mv](l, r) = 1 

down,.,.,.,.[mv](l, r)= (down,,[mu](Zl 1, rl l), down,.,S[mv](l12, rJ2)) 

down,,+,.,S[mv](l, r) =is,(r) -+ in,(down,,[mv](outl(l), out,(r)), 

in,(down,.,.[mv](out,(l), out,(r)) 

down,., _ C,I [mv](l, r) = Ua.down,.,.[mv](Z(la), r(move,.,[mv](la))) 
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define a function 

down,.,[mu]: L,[ctTj x RJctJ + LJctj 

that is monotonic, <-monotonic, and faithful in each argument and 
satisfies 

as well as 

move,.,[mu](l)cr~lcdown,.,[mv](l, r) A down,.,[mu](/, r) mv,, Y. 

Case ct = Ai. Clearly 11.1 is a function of the stated functionality and it is 
strict, monotonic, and Q-monotonic (as < is = ) and faithful (as z is = ). 
The double implication 

reduces to u = v o u = v, which clearly holds. Analogously 

2.4 z:,.! move,.,[mu](u) 

reduces to u = U, which is trivially true. 
The function n(l, T).Y has the stated functionality because 

L,[AJ = R,[AJ. Clearly it is monotonic in each argument and it is B- 
monotonic in each argument because < is =. Similarly it is faithful in each 
argument as x is =. The implication 

Iz.,.Ir*l zC, down,,[mv](l, r) zCcr r 

reduces to I = r =S I= r = r, which holds. Analogously the implication 

move,,[mu](,) c r + 1 c down,,[mo](l, r) A down,.,[mv](l, r) mv,, r 

reduces to 1~ r * 1zr A r = r, which is also the case. (Note that this result 
would not hold if we had defined down,,[mu](l, r) to be 1.) 

Case ct = Bi. Clearly mvj is a strict and monotonic function of the 
stated functionality. It is also <-monotonic and faithful as < is c and z 
is always true. The condition 

u mv,, 0 0 move,,[mu](u) G,, v 

reduces to mu,(u) c v o mu,(u) c u, which clearly holds, and 

u z:,( move,,[mv](u) 

is true because = is constantly true. 
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The function A(/, r).l has the stated functionality and is monotonic in 
each argument. It is clearly <-monotonic in its left argument and also in 
its right argument. Similarly it is faithful in both arguments. The condition 

is true because z is constantly true. The condition 

move,.,[mu](/) c r = 1~ down,,[mu](l, r) A down,,[mv](l, r) mv,, r 

reduces to mu,(f) E r * I E 1 A mu,(l) c r, which clearly holds. (Note that 
this result would not hold if we had defined down,,[mu](l, r) to, e.g., I in 
L~llBili .I 

Case ct = ct’ x et”. The equation for move,.,[mo] defines a function of 
the stated functionality given that the induction hypothesis holds for 
move,.,. and move,,.. . Also, move,,[mu] is strict and monotonic, 6- 
monotonic, and faithful because of the componentwise definition of d (‘, (in 
terms of < C,i and d C,,,) and zCr (in terms of zC,’ and z~,,~). It is then easy to 
see that the two conditions on move.,[mv] are indeed true. 

The equation for down,.,[mu] defines a function of the stated 
functionality given that the induction hypothesis holds for down,.,, and 
down,.,,, Monotonicity, d -monotonicity, and faithfulness in each 
argument follow from the induction hypothesis and the componentwise 
definition of 6,., and zC,. The condition 

I~;,.tY*I~:,.I down,.,[inu](l, r) zCr r 

holds by the induction hypothesis and the componentwise definition of zzC.t. 
For the condition 

move,.,[mu](l)Er=l & down,,[mu](/, I) A down,.,[mu](l, r) mv,., r 

note that 

move,,[mu](Z) c r 

and 

I c down,.,[mu](l, r) 

iff move,.,,[mu](lJ 1) c rl 1 

and move,.,..[mu](112) L r12 

iff ZJ 1 cdown,.,.[mu](lJ 1, rll) 

and1J2cdownC,.[mu](IJ2,rJ2) 



82 FLEMMING NIELSON 

and 

down,,[mu](/, r) mv,., r iffdown,.,.[mo](lJ 1, rJl)mv,,.rJ 1 

and down,.,.[mu](lJ 2, r 12) mv,.,. r J 2 

so that the condition follows from the inductive hypothesis. 

Case ct = ct’ + ct”. The equation for move,.,[mo] defines a function of 
the stated functionality given that the induction hypothesis holds upon 
move,,. and move,,. . Clearly the function is strict and monotonic. For <- 
monotonicity and faithfulness let Q be < or z as appropriate. If I, Ql, we 
consider three cases depending on I,. When I, = I also I, = I so 
move,,[mu](I,) = move,.,[mu](Z2) and move,.,[mo](l,) Q,., move,.,[mu](l,) 
follows because Q (i.e., < or zz ) is reflexive by Proposition 7. When 
I, = ini also I, = in,(&) for some 4 such that 1; Q,,, 1;. By the induction 
hypothesis we get 

move,.,S[mu](l;) Qc,, move,.,.[mo](/“) 

and the result then easily follows. When I, = in,(&‘) the proof is similar. 
The conditions 

u mv,, uomove,,[mu](u) Gc, 0 

24 zccr move,.,[mu](u) 

are shown by a similar case analysis upon U. 

The equation for down,,[mu] defines a function of the stated 
functionality given that the induction hypothesis holds for down,,, and 
down,,... Monotonicity in the left and right arguments are straightforward 
as is G-monotoncity in the left argument. As for d-monotonicity in the 
right argument note that rl d,., r2 implies that is,(r,) = is,(r,) and the result 
easily follows from the induction hypothesis. A similar argument shows 
that it is faithful in each argument. The condition 

1~~~ r+lz:,.,down,.,[mu](1, r)xCt r 

is proved by cases of 1, assuming that 1 z:, r. If I = I also r = I and the 
result follows because down,,[mu](/, r) = I. If I= in,(a) there is an r’ such 
that 11~~~. r’ and r = in,(r’). Hence I’ z~,, down,.,,[mu](P, r’) zC,, r’ follows 
by the induction hypothesis. From this the result easily follows and the 
case I = in*(Z”) is similar. Finally, assume that 

move,.,[mu](l)Er (i) 
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and show that 

1 E down,,[mu](l, r) (ii) 

down,,[mv](1, r) mv,, r. (iii) 

If l= I we clearly have (ii). Then (iii) is immediate if r = I as then 
down,,[mu](l, r)= 1. If r =in,(r’) then condition (iii) reduces to 
down,,.[mu](l, I’) mv,.,, r’, which holds by the induction hypothesis 
because move,,,[mu](l)cr’ as move,,.[mu](1)= 1. (Note that it is here 
we need each mu, to be strict.) The case r = in2(r”) is similar. Next assume 
l=in,(l’). Then (i) implies that there is r’ such that r =in,(r’) and 
move,,.[mu](l’)gr’. Hence (ii) and (iii) follow from the induction 
hypothesis for down,,.[mu]. The case I= inz(/“) is similar. 

Case et = ct’ -+ cf. We now come to the case where the assumptions 
about faithfulness will pay off by allowing us to show that the least upper 
bound in the equation for move,,[mu] does exist. We begin by stating an 
auxiliary result along the lines of the lemma preceding Theorem 12 in this 
appendix. 

FACT. u mv,,, u z:[, w implies u z5,, w. 

Proof: If u mv,,. u it follows by the induction hypothesis that 
move,.,,[mu](u) <,,, u. By the lemma we get move,,,[mu](u) z~~,w if also 
0 z:,,. w. By the induction hypothesis we also have u zCtL move,,.[mu](u) so 
that u=~,, w  follows by the lemma. 

Given IKE LJcta and ra E RJct’J we must show that the set 

Zz = (move,,~j[mu](Zf(la))~ la mv,,. ra) 

has a least upper bound in RJct”]. For this it is convenient to name the 
sets 

Yz = { lf(la) 1 la mv,,. ra} c Lr[ct”l 

X,, = {la 1 la mv,.,, ra} G Lf[ctq. 

First note that X,, is not empty because it contains down,,,[mu](l, ra) 
as follows from the induction hypothesis for down,,,. Also, X,, is a faithful 
set for if la mv,,, ra we get la zcrf ra by the above fact and if also la’ mv,, ra 
we have la’ zct. ra and hence la z C18 la’ by the lemma and symmetry of zC,,. 
Next Y$J is also a non-empty and faithful set because lf is faithful. Finally, 
Z% is non-empty and faithful because move,,.,[mu] is faithful. Hence u Zc 
exists in R,([ct”J by Proposition 9. Thus move,..[mu](lf)(ra) is well-defined 
and is an element of RJct”J. 

643:76/l-6 
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To show that move,.,[mu](Ef) is an element of R,[[ctJ we must show 
that ha. u Zif, is monotonic, <-monotonic, and faithful. Suppose that 
ra&rb and that la E X,,. Then move,.,.[mo](la) G,,, ra so that 
move,,,[mo](la)cra by Proposition 7 and hence move,.,s[mu](fa)~rb. 
Define lb = down,.,,[mu](la, rb) and note that la E lb and lb E X,, follows 
from the induction hypothesis for down,.,. . It follows that u .Zg c u 2% 
because If and move,,,,[nzu] are monotonic. Next suppose that ra d,.,, rb 
and that la E X,,. Then la E X,, follows by 

la mv,.,, ra 0 move,.,.[mu](la) Gcrs ra 

and Proposition 7. It follows that X,,c X,, and hence 2;: GZ$,. Then 
u zz is an upper bound of Zc w.r.t. d,.,,, and hence U Zz d,.,,, U Z$ . 
Finally suppose that ra zc,, rb. Then each .?a E X,, and lb E X,, satisfy 
la z c.II lb by the above fact. It is possible to choose elements rxE Zz and 
ry E ZLi and it follows that rx z:,.. ry. As rx z.,.,., U Zg and rv zcls, U Z$, by 
Proposition 8 we get /J ZFL z(,,,, U Z$, by Proposition 7. 

Clearly move,.,[mo] is a strict function. For monotonicity suppose that 
Ifc lg. Then for all ra 

VXE Y’f . 3yE Y’g : ru . ra XCY 

and a similar condition relates Zu and Z$. It follows that 
ha. U Zc c ha. /J Z$. For ,< -monotonizty suppose that If& fg and that 
ra 6,.,! rb. Then 

VXEX,,: 3yEXr,: x Gcf y 

and a similar condition relates Zt/, and Z$,. But then U Z$, is an upper 
bound of 2: w.r.t. d,.,,, and U Z% &, U Zs follows. This shows 
ha. /JZc 6,, h-a. U Z,, ‘g. Finally, for faithfulness, suppose that lf z,.! lg and 
that ra z:,.,. rb. Then 

VXEX,,: 3yEXr,: x Z:,.f y 

and a similar condition relates Zg and Zs. It follows that U Z$ x,.,. U Z$ 
and hence ha. U Zg zc, Ira . U Zz. 

For the implication concerning move,.,[mu] we note first that If mv,, rf 
amounts to 

la mv,,, rb - move,,~8[mu](Zf(la)) d.,,, rfrb), 

using the induction hypothesis for move,,... Similarly move,,[mu](lf) <<,* rf 
amounts to 

ra <,,, rb * (la mv,.,, ra =S move,,~~[mu](lf (la)) Gc,- rf(rb)), 
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using the fact that u (...} is the least upper bound of {...I w.r.t. <<,., 
whenever {...I is non-empty and faithful. It is then immediate that the 
second condition implies the first as one may choose ra = rb. That the first 
condition implies the second follows from 

la mv,.,. ra <<,, rb - la mv,,, rb, 

which was shown previously. 
Finally If% ( f move,.,[nzo](lf) may be shown as follows. Let la zcr. ra and 

choose lb such that lb mv,.,. ra. Then 

by a previous fact. Then 

and by the induction hypothesis for move,.,9.[muJ we get 

lf(la) z~.,.~ move,.,,.[mu](lf(lb)). 

But move,,[mv](lf)(ra) z (.,- move[mu](lf(fb)) follows by Proposition 8 so 
that 

If(h) zc.,ps move,.,[mu](lf)(ra), 

as was to be shown. 
We now turn our attention towards down,.,. Clearly 

down,,[mu](lf, f)(h) is well-defined and is an element of Lr[ct”~. To 
prove that down,,[mu](lf, rf) is an element of Lr[ctJ we must show that 

ilu.down,.,,~[mu](lf(fu), rf(move,.,,[mu](lu))) 

is monotonic, <-monotonic, and faithful. Let Q be any one of L, <, or 
z:. If la Q,,. lb then 

If(la) Q,.,- If(lb 1 

by assumptions about rf; and 

rf(move,.,~[mu](la)) Q,.,,, rf(move,.,.[mu](lb)) 

by assumptions about rf and move,.,.[mu]. Since down,.,..[mu] preserves Q 
in each argument we have 
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down,.,~,[mu](,f(kz), rf(move,.,.[mv](Za))) 

Qc,,, 
down,.,.[mv](lf(&), rfmove,.,.[mu](la))) 

Q,.,,, 
down,.,,.[mu](lf(Zb), rfmove,.,.[mu](lb))), 

from which the result follows as Q,.,,, is transitive. 
Next we must show that down,.,[mu] is monotonic, <-monotonic, and 

faithful in each argument. Let Q be c, 6, or z as appropriate and sup- 
pose that ,f Q,., lg and la Q,.,, lb. It was argued above that 

down,.,~~[mu](lf(la),rfmove,.,.[mo](lu))) 

Q,.P 
down,.,..[mu](lf(1b),rfmove,.,,[mv](lb))). 

Since down,.,,, preserves Q in its left argument we may extend this with 

Qd 
down,.,.[mv](lg(lb), rfmove,.,,[mu](~b))). 

Since Q is transitive it follows that down,.,[mu] preserves Q in its left 
argument. Preservation in its right argument is shown in a similar way. 

Suppose next that If%:, rf and let us show that 

If=?, down,,[mu](lf, rf) %c,.l rf 

Actually,, by the lemma it suffices to prove the left half. So suppose that 
la zCcC lb. Then 

lb x,.,, move,.,,[mu](lb) 

by the inductive hypothesis so that 

If(lb) zcrsz rf(move,.,,[mu](fb)). 

Hence 

If (16) zC,,, down,.,.[mu](u(lb), rf(move,.,,[mu](lb))) 

follows by the induction hypothesis. Since laz:,,. lb we get y(/a)zC,,, If(lb) 
so that 

as was to be shown. 
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Finally suppose that move,,[mv](lf) E rf, i.e., that 

move,.,.[mu](la) Gc,, ra *move,.,..[mu](lf(la))~rf(ra). 

By setting ra = move,.,,[mu](fa) and using the fact that &,, is reflexive we 
have 

(*) 

Using the induction hypothesis we have 

If(la)~down,.,.,[mu](If(la), rfmove,.,.[mu](la))). 

Since this holds for all la E LJct’l we have 

Ifcdown,.,Cmvl(lf, dI 

and this was the first conjunct we had to show. To show the other conjunct 
we assume that 

move,.,,[mu](la) d,.,, ra (**I 

and must show 

move,.,.[mu](down,.,.[mu](lf(la), rfmove,.,,[mu](fa))) Gcr,, rf(ra). 

From (*) and the induction hypothesis we get 

move,.,,.[mu](down,.,..[mu](lf(la), rf(move,.,.[mu](/a)))) 

6,.,., rf(move,.,,[mu](la)) 

but by (w) we may continue 

Gc,,! rjlra), 

which shows the result. m 

Remark. To stay within the traditional theory of denotational seman- 
tics we should have worked with continuous functions rather than 
monotonic functions. In particular we should show that move,,[mu](f) is 
continuous wheneverf is. Unfortunately this need not be so. For an exam- 
ple of this let 
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where 
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and 

l 2 

R(B,)=((I, 1,2 ,..., o}, <)= 1 

and 

i 

1 

L(B,) = R(B,) = 
0 

Furthermore, let 

mvi = 2x.x 

f=Ax.(x=~)+l,O EL(B~)+L(BJ 

and note that this defines strict and continuous functions. Then 

move,,[mv](f) = Ax.(x= o) + 1,O E R(B,) --f R(B,), 

which is not continuous. (In the case where all R(B,) are finite we do have 
continuity, as is implied by monotonicity.) 

PROPOSITION 15. Let D be a cpo. 

(1) YR(D) is a complete lattice with ~GY=(UCY)*U(~~} and 
I= {ID}. 

(2) u = Id. LC( {d)) and is strict and continuous. 

(3) Whenever fl: D -+ L is strict and continuous and L is a complete 
lattice there exists precisely one completely additive function ~1: PR(D) + L 
such that p = a. a. It is given by u(S) = u {p(s) 1 s E S} and is written p”. 
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Proof We first show that Pk(D) is a complete lattice. For this let Y be 
some subset of PR(D). Clearly (U g)* u {ID} is an element of PR(D) and 
is an upper bound of Y. Next let YE PR(D) be an upper bound of Y. We 
have u Y G Y and IDe Y so that (lJY)*u {ID} c Y. This shows that 
&(D) is a complete lattice with u Y as stated. Then also 
I=U@={I,} follows. 

To see that (T = Ad.LC( {d}) note that LC( {d}) is already Scott-closed: if 
YE LC( {d}) is a chain then d is an upper bound of Y and hence u Y E d 
so that u YE LC( Cd}). T o see that CJ is continuous let Yc_ D be a non- 
empty chain. Then 

and we must show 

(u w~gJ))-=q{uyI)~ 
?E Y 

Clearly E holds so consider 2. It suffices to show that 

and this follows from 

yc u LC({YH ve Y  

and the Scott-closedness of (UyE y LC( { y} ))*. That (T is strict is evident. 
Finally, let L be a complete lattice, let /I? D + L be a strict and con- 

tinuous function, and let c(: gk(D) -+ L be as stated in (3). That CI is com- 
pletely additive amounts to showing 

cl UY =u {ct(Y)IYEY} 
( ) 

for u?I c Yk(D). Since p is strict we have 
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and we have 

From this u(U g) 2 u { c(( Y) I YE %} easily follows so consider 
cr(u g) c u (u.( Y)l YE%}. It suffices to show that 

whenever s E (U Y)*. It follows from Markowsky (1976, Sect. 6) that 
(u ?V)* = W, for some ordinal number 6 where 

W,=LC u CJCisachainandC&U,,A W, for A>O. 

It thus suffices to show that 

SE wA*/J(s) E u 
i 

P(OIS’E 0 y 
I 

by translinite induction on 1. For ;I = 0 this is evident and for A > 0 we 
have 

P(s) c ,l(u c)=u UwW~C~ for C as above 

E u 1 a(s’) u w, y < i. I 
5 u P(OlS’EU y 

i 1 

This proves that c( is completely additive. To see that fl= a . cr note that 
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It remains to show that ~1’ = a whenever a’ is a completely additive function 
such that a’ . B = fi. For YE P?(D) we calculate 

and this shows the result. 1 
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