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a b s t r a c t

In this work, we derive a general class of multistep composite elementary landscapes and
present the first non-trivial lower (upper) bounds on local minima (maxima) associated
with elementary landscapes.
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1. Introduction

In earlier work [1,2], authors of this work have developed a general theory for elementary landscapes with arbitrary
neighborhood definitions. In this work, we extend that theory by deriving a general class of multistep composite elementary
landscapes and presenting the first non-trivial lower (upper) bounds on local minima (maxima) associated with elementary
landscapes.
For the reader’s convenience, we now summarize the notation and nomenclature used in [1,2].
A landscape for a combinatorial optimization problem (COP) is defined by L = (X, f ,N ) [1,2], where X = {xi} is the

finite solution space, f = [f (xi)] = [fi] is the real objective function vector over X, and N is the search neighborhood
defined by a digraph whose nodes are the xi ∈ X . The neighborhood digraph has an associated adjacency matrix A and
transition matrix T . For each xi ∈ X , a non-zero aij designates xj as a neighbor of xi and tij gives the probability of moving
to xj in the next move. The transition matrix is defined to be T = [tij] = [aij/di] where di =

∑
∀j aij, the degree of node i,

and the α-normalized objective function vector is defined to be fα = [f (xi) − α] = [fαi]. An elementary landscape, which
may be smooth or rough, satisfies the Laplacian equation, Lf α = λf α , where Laplacian L = I − T and α is the expected value
of f [1,2].

2. Composite elementary landscapes

Let L1 = (X, f ,N1) and L2 = (X, f ,N2) be landscapes differing only by their neighborhood definitions [3,4]. If L2 is
the composite landscape generated by performing n sequential moves under N1, then N2 has associated transition matrix
T2 = T n1 . Barnes et al. [1] termed such a neighborhood an ‘‘n-step neighborhood’’. However, from the perspective ofL2, such
anN2 is simply an alternative ‘‘one-step’’ neighborhood. Similarly, a new composite landscape,L21, could be generated by
first performing a move according toN2 and then one according toN1, yielding T21 = T2T1 [5].

Proposition 1. For any connected elementary landscapeL having transitionmatrix T and objective function f , the corresponding
two-step landscape is smooth elementary.
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Proof. For π the steady state of T , π is also that of T 2, the transition matrix of the two-step landscape. Thus, α = π f is the
expected value of f for both landscapes. SinceL is elementary, Lfα = (I − T )fα = λf α which implies

Tfα = (1− λ)fα. (1)

The two-step landscape is elementary because, using the above result,

(I − T 2)fα = fα − T 2fα = fα − (1− λ)2fα = (2λ− λ2)fα.

The landscape is smooth because 2λ− λ2 cannot exceed 1. �

Lemma 1. In an arbitrary landscape with transition matrix T , Laplacian L, and objective function f , Lf = Lfb for any real b.

Proof. For a column vector, e, of ones, noting that each T -row sums to 1, we have

Lfb = L(f − be) = Lf − bLe = Lf − b(I − T )e = Lf − be+ bTe = Lf − be+ be = Lf . �

Proposition 2. The composite landscape formed by two elementary landscapes that share objective function f and expected value
α is elementary.

Proof. For Ti the transition matrix of elementary landscape i,

Lifα = (I − Ti)fα = (I − Ti)f = λιfα

which implies that

Tif = f − λιfα. (2)

T2T1 is the transition matrix of the composite landscape, which, if elementary, is defined by L21fα = λ21fα . Consider the
following derivation in which e is a column vector of ones:

L21fα = (I − T 2 T1)f = f − T2T1f = f − T2(f − λ1fα) = f − T2f + λ1T2fα
= f − T2f + λ1T2(f − αe)
= f − T2f + λ1T2f − αλ1e
= f − (f − λ2fα)+ λ1(f − λ2fα)− αλ1e
= λ2fα + λ1f − λ1λ2fα − αλ1e
= λ2(f − αe)+ λ1f − λ1λ2(f − αe)− αλ1e
= λ2f − αλ2e+ λ1λ2f + αλ1λ2e− αλ1e
= (λ2 + λ1 − λ2λ1)f − (λ2 + λ1 − λ2λ1)αe
= (λ2 + λ1 − λ2λ1)fα
= λ21fα.

Thus, the composite landscape is elementary. �

Corollary 1. The composite landscape formed by two elementary landscapes that share an objective function is elementary.

Proof. By allowing the landscapes to have different expected values, the above proof is slightly modified to yield this
result. �

This corollary may be used to determine the required properties of elementary landscapesL1 andL2 that causeL21 to
be smooth or rugged:

(1) IfL1 andL2 are smooth thenL21 is smooth (0 ≤ λ21 ≤ 1).
(2) IfL1 andL2 are rugged thenL21 is smooth (0 ≤ λ21 ≤ 1).
(3) IfL1 is smooth andL2 is rugged (or vice versa) thenL21 is rugged (1 ≤ λ21 ≤ 2).

Corollary 2. The composite landscape formed by any number of elementary landscapes is elementary.

Proof. Follows from Corollary 1. �

Alternate proofs for Propositions 1 and 2, making use of the relationships between elementary landscapes and AR(1)
processes [3], are presented in [2].
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3. Lower bounds on local minima and upper bounds on local maxima

In [1,3], it is proven that all local minima (maxima) of an elementary landscape are bounded above (below) by α. Using
results from Vassilev et al. [6], we now derive a simple lower (upper) bound on local minima (maxima) for any elementary
landscape. We also identify time series concepts that may enhance ongoing research into elementary landscapes.
Vassilev et al. [6] use information theory to analyze the time series generated from a randomwalk [3] and first transform

the time series using the mapping S(ε) = {s1 , s2 , . . . , sn}:

si =

1̄ if fα(xi)− fα(xi−1) < −ε
0 if |fα(xi)− fα(xi−1)| ≤ ε
1 if fα(xi)− fα(xi−1) > ε.

The constant ε is a non-negative number taken from the interval [0,max∀i fα(xi)]. The idea behind this transformation
is to extract information from the landscape by ignoring some non-essential features. The value of εmeasures the accuracy
of the calculations of the string, S(ε) = {s1, s2, . . . , sn}.
Vassilev et al. [6] characterize the ruggedness or ‘‘information content’’ of the landscape by introducing an entropy

measure of the ensemble associated with sub-blocks of length 2 of the string S(ε) = {s1, s2, . . . , sn}. In addition, they
measure the ruggedness of the landscape via themodality of the time series path using the following construction. Consider
a compression of S(ε) deleting all 0 values and all the elements whose right adjacent element has equal value. This yields a
new set whose elements alternate between 1 and 1 (the set can begin with either) and is the shortest string that represents
the slopes of the neighboring landscape path. The length of the compressed string is themodality,µ. The ‘‘partial information
content’’ is defined asM(ε) = µ

n , 0 ≤ M(ε) ≤ 1, whereM(ε) = 0 implies a flat landscape andM(ε) = 1 implies maximal
modality. The relative accuracy of the estimation of the information content and partial information content is inversely
proportional to ε. Information stability is characterized by the smallest value of ε, ε∗, such that S(ε) is a string of zeros.

Proposition 3. Local minima of non-flat elementary landscapes are bounded below by α − ε∗

λ
, where λ is the eigenvalue of the

associated L.

Proof. For a local minimum x∗i , let fαi,max be the maximum value of fα inN (x∗i ) and Avgy∈N (x∗i )fα(y) be the average value of
fα inN (x∗i ). Thus,

∣∣fα(x∗i )− fαi,max∣∣ ≤ ε∗.
Hence,

Avg
y∈N (x∗i )

fα(y) ≤ fαi,max (11)

and

fα(x∗i )− fαi,max ≤ fα(x
∗

i )− Avg
y∈N (x∗i )

fα(y)

which implies

− ε∗ ≤ fα(x∗i )− fαi,max ≤ fα(x
∗

i )− Avg
y∈N (x∗i )

fα(y) (12)

and, therefore,

− ε∗ ≤ fα(x∗i )− Tifα. (13)

Since the landscape is elementary, Tifα = (1 − λ)fα(xi). Substitution into Eq. (13) yields−ε∗ ≤ fα(x∗i ) − (1 − λ)fα(x
∗

i ),
where 0 < λ ≤ 2. Therefore− ε∗

λ
≤ fα(x∗i )which implies α −

ε∗

λ
≤ f (x∗i ). �

Corollary 4. Local maxima for elementary landscapes are bounded above by α + ε∗

λ
.

Proof. For any solution x, let gx be theminimum value of fα over N(x), and let x = Txfα be the average of fα over N(x), where
Tx is the T -row corresponding to x. Thus, |fα(x)− gx | ≤ ε∗ and since x ≥ gx, it follows that fα(x)− x ≤ fα(x)− gx ≤ ε∗. Thus,

ε∗ ≥ fα(x)− Txfα = fα(x)− (1− λ)fα = λfα(x) = λ(f (x)− α)

and so f (x) ≤ α + ε∗

λ
for all solutions x (and in particular, for any local maximum). �

4. Concluding remarks

In this work, we have described a general class of composite elementary landscapes and have presented the first
non-trivial lower (upper) bounds on local minima (maxima) associated with elementary landscapes.
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