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We consider a multiobjective fractional programming problem (MFP) involving
vector-valued objective n-set functions in which their numerators are different
from each other, but their denominators are the same. By using the concept of
proper efficiency, we establish optimality conditions and duality relations for our
problem (MFP) under convexity assumptions on objective and constrained func-
tions.  © 1998 Academic Press

1. INTRODUCTION

The general theory for optimizing set functions was first developed by
Morris [14]. This type of problem arises in various areas and has many
interesting applications in mathematics, engineering, and statistics, for
example, in fluid flow, electrical insulator design, and optimal plasma
confinement [1,5]. Many results of Morris [14] are confined only to set
functions of a single set. Corley [6] started to give the concepts of partial
derivatives and derivatives of real-valued n-set functions. In [10-12] and
[18], the optimality and duality results for vector-valued n-set functions are
studied. For details, the readers may consult [2-4, 9, 13, 15-17, 19].

In particular, Jo, Kim, and Lee [8] considered a multiobjective fractional
programming problem involving vector-valued objective n-set functions in
which their denominators are different from each other, and they estab-
lished duality theorems by using the concepts of efficiency.
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Let (X, T, n) be a finite atomless measure space with L (X, T, u)
separable and let F: I'* - R?, G: T" — R, and H: I'" = R™ be differen-
tiable n-set functions.

In this paper, we consider the multiobjective fractional problem

Fi(S) £,(S)
G(S)' T G(S) (MFP)
subjectto S = (S;,...,S,) €I'", H(S) <0,

where G(S) > 0 forall S € T'".

To optimize (MFP) is to find properly efficient solutions.

We notice that in (MFP) each denominator of the objective function is
the same single-valued n-set function. Geoffrion [7] introduced the defini-
tion of the properly efficient solution in order to eliminate the efficient
solutions causing unbounded trade-offs between objective functions.

Corresponding to (MFP), we consider the parametric multiobjective
problems

Minimize

Minimize (F,(S) — AG(S),..., F,(S) — 1,G(S))

: (MP,)
subjectto § = (S,,...,S,) €I'", H(S) <0,

p
Minimize Y u,[F,(S) — A,G(S)]

i=1 (MPA)Lt
subjectto S = (S,,...,S,) €I'", H(S) <0,

where u; > 0,i=1,2,...,p,and XF_, u;, = 1 are fixed.

In this paper, we prove that (MFP) and (MP,) have equivalent properly
efficient solutions. For (MFP), necessary and sufficient conditions for a
feasible solution to be properly efficient are established. These results are
used to characterize proper efficient solutions for (MFP) by associated
parametric problems (MP,) and scalar problems (MP,), under convexity
assumptions. Moreover, we establish the Mond-Weir type dual problem
(MFD) of the program (MFP). We prove the weak and strong duality
theorems by using the concept of proper efficiency.

2. PRELIMINARIES

We give some definitions and results from [6, 18] which are used in our
later results. We define a pseudometric d on I'" as

n 1/2
d(S,T) = {; [ (S, An)]z} ,
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where S = (S,,...,8), T =(T,,...,T,) € ', and S, AT, denote the sym-
metric difference for S, and 7. For fe L(X,I',w) and S, €T, the
integral [g fdu will be denoted by (f, xs», where x; denotes the
characteristic function of S,.

DerINnITION 2.1. A set function F: T — R is said to be differentiable at
S €T if there exists f € L(X, T, w), the derivative of F at S, such that
F(T)=F(S) +{f.xr — x5 + w(SAT)E(S,T) forall TeT,
where lim s \7y, o E(S,T) = 0.
We define the partial derivatives of n-set functions.

DEerINITION 2.2. Let F: " - R and S € I'". Then F is said to have
the partial derivative with respect to T; if the set function

L

H(T) =F(Sy,.... S TS0, 0 S,)
has derivative hg at ;.

In this case we define the ith partial derivative of F at S to be F{ = Hy.
Using the partial derivative of the n-set function, we can define the
derivative of the vector-valued n-set function.

DerINITION 2.3 [18]. Let F: " — R™ and S € I'". Then F if said to
be differentiable at S if the partial derivatives f¢/, i =1,2,...,n, of F,
exist for each j e m ={1,2,..., m} and satisfy

F(V) =F(S) + Z<flleV ‘ _Z<f;va1/[_Xs,>

+ WF(S,V)

for all Ve I'", where (W,(S,V))/(d(S,V)) — 0 as d(S,V) = 0. If F is
differentiable at each point S of I'", we say that F is differentiable on I'".

Throughout this paper, if F: I'" - R, G: I'"" - R, and H: I'" - R"
are differentiable on I'", we will denote the ith partial derivatives of F;, G,
and H; at S by f/, g5, and kY, respectively.

In the sequel we shall always denote the sets {1,2,...,p} and
{1,2,,...,m} by p and m, respectively.

The nonnegative orthant and the nonpositive orthant in R” are denoted
by R?={x € R’: x>0} and R?” = {x € R?: x < 0}, respectively. For a
set E in R7%, the set of all interior points of E will be denoted by int E.

DerFINITION 2.4. A set function F: I'" — R is said to be convex if, for
each A €[0,1]and §,T € T'",

im F(SfUTf U (S, NTy),....,Sy UT U (S, NT,))

k— o

< AF(S) + (1 — A)F(T)
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for any sequence of sets S¥cS,\7, and T* c T,\S,, k=1,2,..
satisfying

Xst = Axsar, and  xpe = (1= M xps, fori=1,2,...,n

W*
where — stands for the w*-convergence.

LEMMA 25 [6]. Let F: T" — R be a differentiable convex function. Then
foreach S, T €T",

F(S) = F(T) + Y {ff.xs,— xr,7-
i=1

DEFINITION 2.6. A subset @ of I'" is convex if for any §, T SHONP WS
[0,1] and sequences of sets S¥ c S\T and TF CcT\S;, k=12,...,

satisfying x« 5 Axsar, and xrx 5 (1 Mxrps, fori=1,2,... n,there
eX|sts a subsequence {V} } of {V,} such that V} € ® for aII n, where
=(SFUTFUGS, NTY,...,S"UTFU(S, N'T)).

DerINITION 2.7. A feasible solution S° of (MFP) is a regular solution
of (MP,) if there exists a feasible solution S for (MFP) such that H(SO) +
27 1<hsjo XS +XS°> <0, ] € m.

3. OPTIMALITY
The vector minimum problem (MFP) is the problem of finding all
(properly) efficient solutions.

DeriNnITION 3.1. A feasible solution S° of (MFP) is an efficient solution
of (MFP) if there is no other feasible S for (MFP) such that

F(S) _ F(S%)
G($) = G(sY)

forall i € p, (1)
and
F(S) _ F(S°)
G(S) ~ G(5%)

for some j € p. (2)

By eliminating efficient solutions causing unbounded trade-off between
objective functions, we can define the properly efficient solutions as
follows.

DeriNITION 3.2 [7]. A feasible solution S° of (MFP) is a properly
efficient solution of (MFP) if it is efficient and if there exists a scalar
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M > 0 such that, for each i,
(F(5%)/(G(S%)) = (F(5))/(G(S)) oy
(F(8))/(G(8)) = (E(S°))/(G(S%)) ~

for some j such that (F($))/(G(S)) > (F(5°)/(G(S°)) whenever S is
feasible for (MFP) and

F(S)  F(5°)
< .
G(S) ~ G(S%)
An efficient point that is not properly efficient is said to be improperly

efficient. Thus for S° to be improperly efficient means that for every scalar
M > 0 (no matter how large) there is feasible point S and an i such that

F(S)  F(S") (Fi(5%))/(G(5%) = (F(5))/(G(S))
< o~ and 5 o >
G(S)  G(S) (F(8))/(G(S)) — (F(5)/(G(S%)
for all j such that (F($))/(G(S)) > (F(5%)/(G(S°).
The following theorem connects (MFP) and (MP,).

THeEoREM 3.3, S° is a properly efficient solution of (MFP) if and only if
S° is a properly efficient solution of (MP,o), where A} = (F,(5°)) /(G(S°)) for
allj € p.

Proof. Let S° be a properly efficient solution of (MFP) and let
o F(5)
] G(SO)

If S° is not an efficient solution of (MP,o), then there exists a feasible
solution S of (MP,) such that

F(S) — X°G(S) < F(8°) — X°G(S8°) foralliep

forall j € p. (3)

and
F(S) — A)G(S) <F(8°) — A)G(S°) forsomej € p.
It follows that

F(S F(S°

(;ES; < GIESO; foralliep (4)
and

5 EGSY for some j € p, (5)

G(S) = G(s%)
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contradicting the efficiency of S° in (MFP). Hence S° is an efficient
solution of (MP,o).

Now we shall show S° is a properly efficient solution of (MP,). If S° is
not properly efficient for (MP,o), then, for every sufficiently large scalar
M > 0, there isan § € I'" and an i such that

F(S) = XG(S) <0 (6)
and

[F(5°) = A°G(S°) — F(S) + XG(S)]

[F(S) = NG(S) - F(S°) + AG(S°)] ()
for all j such that
F(S) = A)G(S) >0 (8)
ie.,
E(S)  F(S°) ,
G(S) ~ G(SY) (&)
—F(8) + XG(5) ,
Fi(S) = MG(S) (7)
for all j such that
F.(S F(S°
]( ) ]( ) (8,)

G(S) ~ G(S%)
Now (7’) can be rewritten as
(F(59)/(G(87) = (F())/(G(S))
(F(8))/(G(8)) = (F(5°))/(G(5%))

So (6"), (7"), and (8") imply that S° is not properly efficient for (MFP).
Hence S° is properly efficient for (MP,o).
Conversely, let S° be a properly efficient solution of (MP,,), where

RS
NGty

J €D (3)

Then we shall show that S° is properly efficient for (MFP). If S° is not an
efficient solution of (MFP), then there exists a feasible solution S for
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(MFP) such that

F(S F(S°
GES; < GESO; foralli €p (4)
and
) B(S) for some j € p. (5)

G(S)  G(SY)

Now (3) together with (4) and (5) contradict the efficiency of S° in (MP,o).
Thus S° is an efficient solution of (MFP).

Now we shall show that S° is properly efficient for (MFP). If S° is not
properly efficient for (MFP), then for every sufficiently large M > 0, there
isan § € I'" and an i € p such that

F(S)  F(S5°)
G(S) = G(sY) ®)
and
(F(S))/(G(S") = (F($))/(G(S) (10
(F(8))/(G(8)) = (F(59)/(G(8))
for all j such that
E(S) _ F(S°)
G(S) ~ G(sY (11)
i.e.,
F(8) = X'G(S) <0 (9)
and
—F(8) + XG(S) ,
F(S) — XG(S) (107
for all j such that
F(S) — AMG(S) > 0. (117)

So (9", (10", and (11') imply that S° is not properly efficient for (MP,o).
Hence S° is properly efficient in (MFP).

THEOREM 3.4. (@) Let u € int RY be fixed. If S° is an optimal solution
of (MP,),, where A} = (Fi(S°))/(G(S®)) for all j € p, then S° is a properly
efficient solution of (MP,o).
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(b) Let F,— NG, i € p, and H,, j € m, be convex set functions, where
(F(SO))/(G(SO)) forall j € p If S° is a properly efficient solution of
(MP,\o) then §° is an optimal solution of (MP,0), for some u € int RY.

Proof.  The proof of (a) follows from Theorem 3.1 [7]. For part (b), if S°
is a properly efficient solution for (MP,o), there exists M > 0 such that for
each i € p, the system

F(S°) = A2G(S°) > F(S) — \2G(S)
and

F(S%) = M/G(8°) — F(S) + X G(S)
> M[F(S) = XG(S) — F(8°) + A’G(5°)]

for j # i has no solution in ®, where ® = {S € T'"| H(S) < 0}. We can
check that & is a convex subset of I'”. By Farkas—Minkowski theorem [4],
for the ith system, there exist uj- >0, Xr uj. = 1 such that

W[ F(S) = AG(S) = F(5°) + A)G(5%)]
+Xu [F(S) = XG(S) = F(S°) + A°G(S°)

+M(F(S) = X°G(8)) — M(F(S°) — X°G(59))]
>0 forall S € ®.

Rearranging terms of this inequality and summing the p-inequalities, we
have

p
Y (1 + MZu;i)[Fj(S) - NG(9)]

j=1 i#j

> i (1 +M2u;i)[Fj(S°) - NG(8)]

j=1 i+]

for all S€®. Let u = (uy,...,u,), where u; =1 +M2i¢ju§, jE€p.
Then S° is an optimal solution of (MP,o),,.
THEOREM 3.5. Let S° be a regular properly efficient solution of (MFP),

and let F, — /\?G, i €p, and Hj, j € m, be convex set functions, where
= (F{(8°)/(G(8%) for all j € p. Then there exist u® € int RY, £¢_, u?
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=1, and v° € R} such that

n P m
Z< 3 ul(fh = A% ) + ZU,Qh’s’o,Xs,,—Xsp>20 forany S € T",

Y uf[F(S8°) - ¥G(89)] =

j=1
and
p
Y vPH(S%) = 0.
j=1
Proof. By Theorem 3.3, S is a properly efficient solution of (MP,). By

Theorem 3.4(b), there exists u° € int R? such that S° is an optimal
solution of (MP,0),0. By Corollary 3.9 in [6], we can obtain the result.

THEOREM 3.6.  Suppose that there exists a feasible solution S° of (MFP)
and there exist u’ € int R?, ©¢_ u? = 1, A’ € R?, and v° € R"! such that

Y < Y uf(fsl'é - )\;’ggo) + Z v o, x5, — Xs,.o> >0 foranySeT",
i=1\j j=1
ul[F(S°) = NG(S%)] =0 forj<p,
and
P
Z vPH,(8°) = 0.
Further, assume that F, — )\OG i €p, and H;, j € m, are convex.
Then S° is a properly eﬁ‘zczent solution of (MFP)
Proof. Let S be an arbitrary feasible solution of (MP,o),.. By the

convexity of F; — A)G, j € p, and H,, j € i,

X w[(F(S) = MG(S)) — (F(5°) = NG(S))]

j=1

v

i<iu( L i), x —Xs,o>

i=1 =1

Y
M:
/\

I
-

m
20l bj s°:Xs Xs?
j=1

2

J J

IOk

1U~0[H.(S) - H(5%] =0

J
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Hence S° is an optimal solution of (MP,0), 0. By Theorems 3.3 and 3.4, S°
is a properly efficient solution of (MFP).

4. DUALITY

The dual of (MFP) is defined as
F(T) F(T)
G(T)" ' G(T)

Maximize ( ) subject to for any B, (MFD)

m

i<£ (f}j_/\o ) Z TIXB XT[>ZO’ (12)

i=1\j=1 =

w|F(T) — /\?G(T)] =0 foriep, (13)

v'H(T) = 0, (14)
p

u € int R?, Yu =1 A"€R’, and veR?. (15)
j=1

Let u € int R? such that ¥7_, u; = 1 and A° € R”.

p
Maximize Y. u,[F.(T) — A?G(T)] subject to forany B,  (MDy),
i=1

n p
Z<Z (f%]_/\o ) + ZUthlXB XT,>ZO’ (12)
i=1\j=1 j=1

v'H(T) = 0, (14)

and
v € R (15)
Before we prove duality between (MFP) and (MFD), we first give a

sufficient condition for properly efficient solution in (MFD) in terms of
solutions of (MD,o),.

THEOREM 4.1.  If for fixed i € int R%, (T, D) solves the program (MDo),,
A) = (F(T) /(G(T)), then (T, i, ) is a properly efficient solution of (MFD).

Proof.  First we show that (T, u,v) is efficient for (MFD). Suppose to
the contrary that (T, &, 7) is not efficient for (MFD). Then there exists a
feasible (T, u, v) for (MFD) such that for some i € p,

E(T) . F(T) and () F(T)
G(T) =~ G(T) G(T) = G(T)

forall j € p.
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Now, F(T) — A}G(T) > 0 for some i € p and F(T) — A’G(T) > 0 for
all j €p.
Since u; > 0 for all i € p,

M~

1

p

[ F(T) - NG(T)] > 0= L u[F(T) - NG(T)],
i i=1
which contradicts optimality of (T, %) in (MD,o)... Hence, (T, &, 1) must be
efficient for (MFD).

Now we show that (T, &, ) is properly efficient for (MFD). Assume that
p=2andlet M = (p — Dmax; {u,;/u}. Suppose, to the contrary, that for
some criterion i and a feasible T for (MFD) we have

F(T) F(T)
G(T) G(T)

E(T)  F(T)

G(T) G(T)

for all j such that (F(7))/(G(T)) < (F(T))/(G(T)).
It follows directly that

F(T) F(T) (p-1)_

F(T)  F(T)
- —_— > — u;
G(T)  G(T) 0,

G(T) G(T)

forall j #i.

Multiplying through by &, /(p — 1) and summing over j # i yields

F(T)  F(T)

F(T) F(T)
G(T) G(T)

G(T) G(T)

U;

> ), .

J#Fi

Rearranging terms of this inequality, we obtain

poF(T) 2 F(T)
LGy T BheE)
that is,
Y @,[F(T) = XG(T)] >0 = Zlai[E-(T) - XG(T)].
i=1 i=

which contradicts the optimality of (T,7) in (MD,o)..

THEOREM 4.2 (Weak duality). Let S be feasible in (MFP) and let
(T, u,v) be feasible in (MFD). If also F; — \)G, i € p, is convex, and H,,
jem, is convex at T, then LP_, u,(F(S) — AG(S)) = XF_, u(F(T) —
N G(T)).
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Proof. Since S is feasible in (MFP) and (T, u, v) is feasible in (MFD),
v'H(S) — v'H(T) < 0, and since v'H is convex at T,

_i <§UhiTj!Xs,._XT,.>SO- (16)

j=1

Now using (12) is feasible, (16) gives

4

and since Y7, u,(F, — A’G) is convex at T,

™M=
M=

“j( - )\OgT) - XTi> >0,

i 1

u (F(S) - NG(S)) = ; (F(T) = XG(T)).

M~

1

i

THEOREM 4.3 (Strong duality). Let S be a regular properly efficient
solution of (MFP) and assume that F, — \)G, i € p, and H,, j € m, are
convex. Then there exists U € int R%, Z P iu;=1and 0 R’f such that
(S, @, 7) is feasible in (MFD) and properly efficient for (MFD).

Proof.  From Theorem 3.5, there exists u € int R, XF_, u; =1, and
U € R™ such that (S, , v) is feasible in (MFD).

Now since for each feasible S in (MFP) and each feasible (T, u, v) in
(MFD), by the weak duality theorem,

u'(F—2G)(S) =u'(F - AG)(T),

and since S is feasible in (MFP) and (S, &, 7) is feasible in (MFD), we
obtain

M~

lﬁi(Fi(T) - XG(T)) < _;ﬁi(Fi(g) - NG(9))

for all feasible (7', v) in (MDyo) .

Hence (S,7) solves (MD,o),. Since @ > 0, the result now follow from
Theorem 4.1.
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