

WWW.MATHEMATICSWEB.ORG

Journal of Algebra 265 (2003) 200-210

www.elsevier.com/locate/jalgebra

Hasse–Schmidt derivations and coefficient fields in positive characteristics ☆

M. Fernández-Lebrón and L. Narváez-Macarro*

Department of Algebra, Faculty of Mathematics, University of Sevilla, c/Tarfia s/n, 41012, Sevilla, Spain

Received 23 June 2002

Communicated by Craig Huneke

Abstract

We show how to express any Hasse–Schmidt derivation of an algebra in terms of a finite number of them under natural hypothesis. As an application, we obtain coefficient fields of the completion of a regular local ring of positive characteristic in terms of Hasse–Schmidt derivations. © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Regular local ring; Coefficient field; Hasse-Schmidt derivation

Introduction

Let $k \to A$ be a ring homomorphism. Hasse–Schmidt derivations of A over k are generalizations of usual derivations, but they do not carry an A-module structure. Nevertheless, Hasse–Schmidt derivations have a non-Abelian group structure lifting the addition of derivations.

In this paper we show how to express any Hasse–Schmidt derivation in terms of a finite number of them under very reasonable conditions. In proving our result, we find a natural way of producing "non-linear combinations" of Hasse–Schmidt derivations which, to some extent, could play the role of the *A*-module structure of derivations.

^{*} Both authors are partially supported by DGI, BFM2001-3207, and FEDER. * Corresponding author.

E-mail addresses: lebron@algebra.us.es (M. Fernández-Lebrón), narvaez@algebra.us.es (L. Narváez-Macarro).

As an application, we express coefficient fields of the completion of a regular local ring of positive characteristic in terms of Hasse–Schmidt derivations, generalizing a similar result in characteristic zero.

Let us now comment on the content of this paper.

In Section 1 we recall the notions of Hasse–Schmidt derivation and differential operator. Section 2 deals with the main result of this paper, namely that any Hasse–Schmidt derivation $\underline{\mathfrak{D}}$ can be expressed as "non-linear combination" of a finite number of them $\underline{D}^1, \ldots, \underline{D}^n$ whenever their degree 1 components D_1^1, \ldots, D_1^n generate the module of usual derivations.

In Section 3 we apply our main result to generalize a well-known theorem of Nomura and to obtain coefficient fields of the completion of Noetherian local regular rings in the positive characteristics case.

Our results seem related to some results in [8]. We hope to return to this relationship in a future work.

1. Preliminaries and notations

All rings and algebras considered in this paper are assumed to be commutative with unit element.

1.1. Hasse-Schmidt derivations (cf. [2] and [6, Section 27])

Let $k \xrightarrow{f} A \xrightarrow{g} B$ be ring homomorphisms. Let *t* be an indeterminate over *B*, and set $B_m = B[t]/(t^{m+1})$ for $m \ge 0$ and $B_{\infty} = B[t]$. We can view B_m as a *k*-algebra in a natural way (for $m \le \infty$).

A *Hasse–Schmidt derivation* (over *k*) of length $m \ge 1$ (respectively of length ∞) from *A* to *B*, is a sequence $\underline{D} = (D_0, D_1, \dots, D_m)$ (respectively $\underline{D} = (D_0, D_1, \dots)$) of *k*-linear maps $D_i : A \to B$, satisfying the conditions:

$$D_0 = g, \qquad D_i(xy) = \sum_{r+s=i} D_r(x) D_s(y)$$

for all $x, y \in A$ and all i > 0. In particular, the first component D_1 is a k-derivation from A to B. Moreover, D_i vanishes on f(k) for all i > 0.

Any Hasse–Schmidt derivation \underline{D} is determined by a ring homomorphism

$$E: x \in A \mapsto \sum_{i=0}^{m} D_i(x)t^i \in B_m$$

with $E(x) \equiv g(x) \mod t$.

When A = B and $g = 1_A$, we simply say that \underline{D} is a Hasse–Schmidt derivation of A (over k). We write $HS_k(A, B; m)$ for the set of all Hasse–Schmidt derivations (over k) of length m from A to B, $HS_k(A, B) = HS_k(A, B; \infty)$, $HS_k(A; m) = HS_k(A, A; m)$, and $HS_k(A) = HS_k(A, A; \infty)$.

We say that a k-derivation $\delta: A \to B$ is *integrable* [5] if there is a Hasse–Schmidt derivation $\underline{D} \in \mathrm{HS}_k(A, B)$ such that $D_1 = \delta$. The set of integrable k-derivations from A to B, denoted by $\operatorname{IDer}_k(A, B)$, is a submodule of the k-derivations B-module $\operatorname{Der}_k(A, B)$.

1.2. Differential operators (cf. [1, Sections 16, 16.8])

Let $f: k \to A$ be a ring homomorphism.

For all $i \ge 0$, we inductively define the subsets $\mathcal{D}_{A/k}^{(i)} \subseteq \operatorname{End}_k(A)$ in the following way:

$$\mathcal{D}_{A/k}^{(0)} := A \subseteq \operatorname{End}_k(A), \qquad \mathcal{D}_{A/k}^{(i+1)} := \left\{ \varphi \in \operatorname{End}_k(A) \mid [\varphi, a] \in \mathcal{D}_{A/k}^{(i)}, \, \forall a \in A \right\}.$$

The elements of $\mathcal{D}_{A/k} := \bigcup_{i \ge 0} \mathcal{D}_{A/k}^{(i)}$ (respectively of $\mathcal{D}_{A/k}^{(i)}$) are called *linear differential operators* (respectively *linear differential operators of order* $\le i$) of A/k. The family $\{\mathcal{D}_{A/k}^{(i)}\}_{i\geq 0}$ is an increasing sequence of (A, A)-bimodules of $\operatorname{End}_k(A)$ satisfying

$$\mathcal{D}_{A/k}^{(1)} = A \oplus \operatorname{Der}_k(A), \qquad \mathcal{D}_{A/k}^{(i)} \circ \mathcal{D}_{A/k}^{(j)} \subset \mathcal{D}_{A/k}^{(i+j)},$$

and $[P, Q] \in \mathcal{D}_{A/k}^{(i+j-1)}$ for all $P \in \mathcal{D}_{A/k}^{(i)}$, $Q \in \mathcal{D}_{A/k}^{(j)}$. Hence, $\mathcal{D}_{A/k}$ is a filtered subring of End_k(A). Moreover, linear differential operators of A/k are *I*-continuous for any *I*-adic topology. In particular, for any linear differential operator P of A/k, there is a unique extension $\widehat{P} \in \mathcal{D}_{\widehat{A}/k}$ to the completion \widehat{A} of A for some separated I-adic topology.

For each $\underline{D} \in \mathrm{HS}_k(A; m)$, one easily proves that $D_i \in \mathcal{D}_{A/k}^{(i)}$ and then there is a unique extension $\widehat{D} \in \mathrm{HS}_k(\widehat{A}; m)$.

In a similar way, if $S \subset A$ is a multiplicatively closed subset, any Hasse–Schmidt derivation of A/k extends uniquely to a Hasse–Schmidt derivation of $S^{-1}A/k$.

1.3. Taylor expansions (cf. [7])

Let $n \ge 1$ be an integer. We write $X = (X_1, \dots, X_n)$, $T = (T_1, \dots, T_n)$, $X + T = (X_1 + T_1, \dots, X_n + T_n)$ and, for $\alpha, \beta \in \mathbb{N}^n$, $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\alpha! = \alpha_1! \cdots \alpha_n!, \text{ and } \begin{pmatrix} \beta \\ \alpha \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \alpha_1 \end{pmatrix} \cdots \begin{pmatrix} \beta_n \\ \alpha_n \end{pmatrix}.$ We consider the usual partial ordering in $\mathbb{N}^n: \beta \ge \alpha$ means $\beta_1 \ge \alpha_1, \dots, \beta_n \ge \alpha_n$. We

write $\beta > \alpha$ if $\beta \ge \alpha$ and $\beta \ne \alpha$.

Let *A* be the formal power series ring $k[\![X]\!]$ (or the polynomial ring A = k[X]). For any $f(X) = \sum_{\alpha \in \mathbb{N}^n} \lambda_\alpha X^\alpha \in A \text{ we define } \Delta^{(\alpha)}(f(X)) \text{ by } f(X+T) = \sum_{\alpha \in \mathbb{N}^n} \Delta^{(\alpha)}(f(X))T^\alpha.$ It is well known that (cf. [1, Sections 16, 16.11]):

$$\Delta^{(\alpha)} \in \mathcal{D}_{A/k}^{(|\alpha|)}, \quad \Delta^{(\alpha)}(f \cdot g) = \sum_{\beta + \sigma = \alpha} \Delta^{(\beta)}(f) \Delta^{(\sigma)}(g),$$
$$\alpha! \Delta^{(\alpha)} = \left(\frac{\partial}{\partial X_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial X_n}\right)^{\alpha_n} \quad \text{and} \quad \mathcal{D}_{A/k}^{(i)} = \bigoplus_{|\alpha| \leqslant i} A \cdot \Delta^{(\alpha)} = \bigoplus_{|\alpha| \leqslant i} \Delta^{(\alpha)} \cdot A.$$

1.4. If we denote
$$\Delta^{(0,\ldots, \stackrel{(j)}{i},\ldots,0)} = \Delta^j_i$$
, then $\underline{\Lambda}^j = (1_A, \Delta^j_1, \Delta^j_2, \ldots) \in \mathrm{HS}_k(A)$.

Finally, let us recall the notion of quasi-coefficient field of a local ring.

1.5. Definition (cf. [4, 38.F]). Let (R, m) be a local ring, K = R/m, and k_0 a subfield of *R*. We say that k_0 is a *quasi-coefficient field* of *R*, if the extension K/k_0 is formally étale (cf. [1, 17.1.1] and [4, 38.E]).

In the case of characteristic 0, a field extension is formally étale if and only if it is separably algebraic (cf. [4, 38.E]). On the other hand, any extension of perfect fields of characteristic p > 0 is formally étale.

The following proposition is well known.

1.6. Proposition. Let $k_0 \to k \xrightarrow{f} A \xrightarrow{g} B$ be ring homomorphisms and let us suppose that the extension $k_0 \to k$ is formally étale. Then, $HS_{k_0}(A, B; m) = HS_k(A, B; m)$ for any integer $m \ge 1$ or $m = \infty$.

2. Generating Hasse–Schmidt derivations

Throughout this section, let $k \xrightarrow{f} A$ be a ring homomorphism.

We consider the following partial ordering in \mathbb{N}^n : $\beta \geq \alpha$ means that $\beta \geq \alpha$ and if $\alpha_i = 0$ then $\beta_i = 0$.

Let us denote by \mathbb{N}_+ de set of strictly positive integer numbers.

Let $N \ge 2$ be an integer and $\mathfrak{D}, \underline{D}^1, \dots, \underline{D}^n \in \mathrm{HS}_k(A; N)$. For each $\mu \in \mathbb{N}^n$ we write $D_{\mu} = D_{\mu_1}^1 \circ \cdots \circ D_{\mu_n}^n$. Let C_{ld} be elements in $A, 1 \le d \le n, 1 \le l \le N-1$, such that

$$\mathfrak{D}_{i} = \sum_{m=1}^{i} \left(\sum_{\substack{|\lambda|=i \\ |\mu|=m \\ \lambda \succcurlyeq \mu}} \prod_{\substack{d=1 \\ |l|=\lambda_{d}}}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}} \\ |l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) D_{\mu}$$
(1)

for all i = 1, ..., N - 1, where we write

$$\sum_{\substack{l \in \mathbb{N}_{d}^{\mu_{d}} \\ |l| = \lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} = 1 \quad \text{if } \mu_{d} = \lambda_{d} = 0.$$
(2)

Observe that the set \mathbb{N}^0_+ $(=\mathbb{N}^{\emptyset}_+)$ has only one element and convention (2) follows by defining |l| = 0 for $l \in \mathbb{N}^0_+$. Then we have $|l| \geq r$ for any $r \geq 0$ and any $l \in \mathbb{N}^r_+$.

2.7. Proposition. Under the above hypothesis, the k-linear map

$$\delta = \mathfrak{D}_N - \sum_{m=2}^N \left(\sum_{\substack{|\lambda|=N\\|\mu|=m\\\lambda \succeq \mu}} \prod_{d=1}^n \sum_{\substack{l \in \mathbb{N}_+^{\mu_d}\\|l|=\lambda_d}} \prod_{q=1}^{\mu_d} C_{l_q d} \right) D_\mu$$

is a k-derivation of A.

Proof. Let us take $a, b \in A$. Since

$$D_{\mu}(ab) = \sum_{\rho+\sigma=\mu} D_{\rho}(a) D_{\sigma}(b),$$

we obtain

$$\begin{split} \delta(ab) &= \mathfrak{D}_{N}(a)b + a\mathfrak{D}_{N}(b) + \sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \mathfrak{D}_{v}(a)\mathfrak{D}_{w}(b) \\ &- \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\\mu|=m\\\lambda\succcurlyeq\mu}} \prod_{\substack{d=1\\\mu|=m}}^{n} \sum_{\substack{l\in\mathbb{N}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) \cdot \left(\sum_{\substack{\rho+\sigma=\mu\\\rho\neq\sigma=\mu}} D_{\rho}(a)D_{\sigma}(b) \right) \\ &= \mathfrak{D}_{N}(a)b + a\mathfrak{D}_{N}(b) + \sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \mathfrak{D}_{v}(a)\mathfrak{D}_{w}(b) \\ &- \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\\mu|=m}} \prod_{\substack{d=1\\\mu|=m}}^{n} \sum_{\substack{l\in\mathbb{N}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) \cdot \left(D_{\mu}(a)b + aD_{\mu}(b) \right) \\ &- \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\\mu\mid=m}} \prod_{\substack{d=1\\\mu|=m}}^{n} \sum_{\substack{l\in\mathbb{N}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) \cdot \left(\sum_{\substack{\rho+\sigma=\mu\\\rho,\sigma>0}} D_{\rho}(a)D_{\sigma}(b) \right) \\ &= \delta(a)b + a\delta(b) + \sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \mathfrak{D}_{v}(a)\mathfrak{D}_{w}(b) \\ &- \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\\mu\mid=m}} \prod_{\substack{d=1\\\mu\mid\in\mathbb{N}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) \cdot \left(\sum_{\substack{\rho+\sigma=\mu\\\rho,\sigma>0}} D_{\rho}(a)D_{\sigma}(b) \right). \end{split}$$

We need to prove that

$$\sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \mathfrak{D}_v(a)\mathfrak{D}_w(b) = \sum_{m=2}^N \left(\sum_{\substack{|\lambda|=N\\\mu|=m\\\lambda\succcurlyeq\mu}} \prod_{\substack{d=1\\l\in\mathbb{N}_+^{\mu_d}\\|l|=\lambda_d}}^n \sum_{\substack{q=1\\l\in\mathbb{N}_+^{\mu_d}\\|l|=\lambda_d}} \prod_{\substack{q=1\\\rho,\sigma>0}}^{\mu_d} C_{l_qd}\right) \cdot \left(\sum_{\substack{\rho+\sigma=\mu\\\rho,\sigma>0}} D_\rho(a)D_\sigma(b)\right).$$

But

$$\begin{split} &\sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \mathfrak{D}_{v}(a)\mathfrak{D}_{w}(b) \\ &= \sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}} \left[\sum_{r=1}^{v} \left(\sum_{\substack{|r|=v\\|\rho|=r}}^{n} \prod_{d=1}^{n} \sum_{\substack{l'\in \mathbb{N}_{q}^{n} \\ |l'|=r_{d}}}^{n} \prod_{q=1}^{q} C_{l'_{q}}^{l}\right) D_{\rho}(a)\right] \\ &\quad \times \left[\sum_{s=1}^{w} \left(\sum_{\substack{|\alpha|=w\\|\rho|=s}}^{n} \prod_{d=1}^{n} \sum_{\substack{l'\in \mathbb{N}_{q}^{n} \\ |l'|=r_{d}}}^{n} \prod_{q=1}^{q} C_{l'_{q}}^{l}\right) D_{\sigma}(b)\right] \\ &= \sum_{\substack{v+w=N\\1\leqslant v,w\leqslant N-1}}^{N} \sum_{\substack{m=2\\ l\neq s=w}}^{N} \sum_{\substack{l'\in \mathbb{N}_{q}^{n} \\ l\in \mathcal{T}_{s}^{v} \\ v \neq p, o \gg \sigma}}^{N} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{N} \sum_{\substack{l'\in \mathbb{N}_{q}^{n} \\ l\neq r \\ v\neq p, o \gg \sigma}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{\rho+\sigma=\mu\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{r+s=m\\|\nu'|=r_{d}}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{\rho+\sigma=\mu\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} C_{l'_{d}}^{l} D_{\sigma}(b) \right) \\ &= \sum_{m=2}^{N} \sum_{\substack{|\lambda|=N\\|\lambda'|=m\\|\lambda\neq p}}^{N} \sum_{\substack{\rho+\sigma=\mu\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{r+\sigma=p\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} C_{l'_{d}}^{l} D_{\sigma}(b) \right) \\ &= \sum_{m=2}^{N} \sum_{\substack{|\lambda|=N\\|\lambda'|=m\\|\lambda\neq p}}^{N} \sum_{\substack{\rho+\sigma=\mu\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{r+\sigma=p\\ r\neq p, o \gg \sigma}}^{n} \prod_{\substack{|\alpha|=1\\ r\neq p, o \gg \sigma}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} C_{l'_{d}}^{l} D_{\sigma}(b) \right) \\ &= \sum_{m=2}^{N} \sum_{\substack{|\lambda|=N\\|\lambda\neq p}}^{N} \sum_{\substack{\rho+\sigma=\mu\\ r\neq p, o \gg \sigma}}^{n} \prod_{\substack{r+\sigma=p\\ r\neq p, o \gg \sigma}}^{n} \prod_{\substack{|\alpha|=1\\ r_{d}+oq=\lambda}}^{n} \sum_{\substack{|\alpha|=v\\|\nu'|=r_{d}}}^{n} \sum_{\substack{|\alpha|=v\\|\alpha|=1}}^{n} \sum_{\substack{|\alpha|=v\\|\alpha$$

$$=\sum_{m=2}^{N}\sum_{\substack{|\lambda|=N\\ |\mu|=m\\ \lambda \succcurlyeq \mu}}\sum_{\substack{\rho+\sigma=\mu\\ \rho,\sigma>0}}\prod_{d=1}^{n}\sum_{\substack{l\in\mathbb{N}_{+}^{\mu_{d}}=\mathbb{N}_{+}^{\rho_{d}}\times\mathbb{N}_{+}^{\sigma_{d}}\\ |l|=\lambda_{d}\\ [l=(l',l'')]}} \left(\prod_{q=1}^{\mu_{d}}C_{l_{q}d}\right)D_{\rho}(a)D_{\sigma}(b)$$
$$=\sum_{m=2}^{N}\left(\sum_{\substack{|\lambda|=N\\ |\mu|=m\\ \lambda\succcurlyeq \mu}}\prod_{d=1}^{n}\sum_{\substack{l\in\mathbb{N}_{+}^{\mu_{d}}\\ |l|=\lambda_{d}}}\prod_{q=1}^{\mu_{d}}C_{l_{q}d}\right)\cdot\left(\sum_{\substack{\rho+\sigma=\mu\\ \rho,\sigma>0}}D_{\rho}(a)D_{\sigma}(b)\right),$$

and the proposition is proved. \Box

2.8. Theorem. Let $m \ge 1$ be an integer or $m = \infty$. Let $\underline{D}^1, \ldots, \underline{D}^n \in HS_k(A; m)$ be Hasse–Schmidt derivations of A/k such that their components of degree 1, D_1^1, \ldots, D_1^n , form a system of generators of the A-module $Der_k(A)$. Then, for any Hasse–Schmidt derivation $\underline{\mathfrak{D}} \in HS_k(A; m)$ there exist $C_{ld} \in A$, $1 \le d \le n$, $1 \le l < m + 1$, such that Eq. (1) holds for all $i \ge 1$. Moreover, if $\{D_1^1, \ldots, D_1^n\}$ is a A-basis of $Der_k(A)$, then the $\{C_{ld}\}$ are unique.

Proof. We proceed by induction on *i*. For i = 1, \mathfrak{D}_1 is a derivation and so there exist $C_{11}, \ldots, C_{1n} \in A$ such that

$$\mathfrak{D}_1 = C_{11}D_1^1 + \dots + C_{1n}D_1^n.$$

Let *N* be an integer ≥ 2 and suppose we have elements $C_{ld} \in A$, $1 \le l \le N-1$, $1 \le d \le n$, such that relation (1) is true for $1 \le i \le N-1$.

By Proposition 2.7, the k-linear application

$$\delta = \mathfrak{D}_N - \sum_{m=2}^N \left(\sum_{\substack{|\lambda|=N\\|\mu|=m\\\lambda \succcurlyeq \mu}} \prod_{\substack{d=1\\|l|=\lambda_d}}^n \sum_{\substack{l \in \mathbb{N}_+^{\mu_d}\\|l|=\lambda_d}} \prod_{q=1}^{\mu_d} C_{l_q d} \right) D_\mu$$

is a *k*-derivation of *A*. Then, there exist $C_{Nd} \in A$, $1 \leq d \leq n$, s.t.

$$\delta = C_{N1}D_1^1 + \dots + C_{Nn}D_1^n,$$

$$\mathfrak{D}_{N} = \delta + \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\ |\mu|=m\\ \lambda \succeq \mu}} \prod_{d=1}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}} \\ |l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) D_{\mu} = \sum_{m=1}^{N} \left(\sum_{\substack{|\lambda|=N\\ |\mu|=m\\ \lambda \succeq \mu}} \prod_{d=1}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}} \\ |l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d} \right) D_{\mu},$$

and Eq. (1) holds for i = N.

Obviously, the C_{ld} are unique if $\{D_1^1, \ldots, D_1^n\}$ is an A-basis of $\text{Der}_k(A)$. \Box

206

207

2.9. Remark. The C_{ld} in Theorem 2.8 depend on the order of the $\underline{D}^1, \ldots, \underline{D}^n$.

3. Applications: coefficient fields in positive characteristics

3.10. Let (R, \mathfrak{m}, k) be a Noetherian regular local ring of dimension $n \ge 1$ containing a field, $X_1, \ldots, X_n \in \mathfrak{m}$ a regular system of parameters of R, $k_0 \subset R$ a quasicoefficient field and \widehat{R} the completion of R. We can identify $\widehat{R} = k[\![X_1, \ldots, X_n]\!]$ by means of a canonical k_0 -isomorphism. Let $\partial/\partial X_1, \ldots, \partial/\partial X_n$ be the usual basis of $\operatorname{Der}_k(\widehat{R})$ and $\underline{\Delta}^1, \ldots, \underline{\Delta}^n$ the Hasse–Schmidt derivations of \widehat{R} over k defined in Section 1.4.

Let us recall the following result of M. Nomura [3, Theorem 2.3], [6, Theorem 30.6].

3.11. Theorem. Under the hypothesis above, the following conditions are equivalent:

- (1) $\partial(R)/\partial X_i \subset R$ for all i = 1, ..., n.
- (2) There exist $D_i \in \text{Der}_{k_0}(R)$ and $a_i \in R$, i = 1, ..., n, such that $D_i(a_j) = \delta_{ij}$.
- (3) There exist $D_i \in \text{Der}_{k_0}(R)$ and $a_i \in R$, i = 1, ..., n, such that $\det(D_i(a_j)) \notin \mathfrak{m}$.
- (4) $\operatorname{Der}_{k_0}(R)$ is a free *R*-module of rank *n* (and $\{D_1, \ldots, D_n\}$ is a basis).
- (5) rank $\operatorname{Der}_{k_0}(R) = n$.

The proof of the following corollaries is straightforward.

3.12. Corollary. Under hypothesis and equivalent conditions of Theorem 3.11, for any basis $D_1, \ldots, D_n \in \text{Der}_{k_0}(R)$, their extensions $\widehat{D}_1, \ldots, \widehat{D}_n$ to \widehat{R} form a basis of $\text{Der}_k(\widehat{R})$. Moreover, the restrictions $\partial/\partial X_i|_R : R \to R$, $i = 1, \ldots, n$, form a basis of $\text{Der}_{k_0}(R)$.

3.13. Corollary. Under hypothesis of Corollary 3.12, let us suppose that k_0 is a field of characteristic 0. Then, the set $\{a \in \widehat{R} \mid \widehat{D}_j(a) = 0 \forall j = 1, ..., n\}$ is a coefficient field of \widehat{R} (the only one containing k_0).

The following theorem is an improvement of Theorem 3.11 and is based on the results of Section 2.

3.14. Theorem. Under the hypothesis of Section 3.10, the following conditions are equivalent:

- (1) $\Delta_i^j(R) \subset R$, for all $j = 1, \ldots, n$, $i \ge 0$.
- (2) There exist $\underline{D}^i \in \mathrm{HS}_{k_0}(R)$ and $a_i \in R$, i = 1, ..., n, such that

$$D_i^j(a_l) = \begin{cases} 0 & i \ge 2, \ \forall j, \\ \delta_{jl} & i = 1, \ \forall j, l. \end{cases}$$

(3) There exist $D_i \in \text{IDer}_{k_0}(R)$ and $a_i \in R$, i = 1, ..., n, such that $\det(D_j(a_l)) \notin \mathfrak{m}$.

- (4) $\operatorname{Der}_{k_0}(R)$ is a free *R*-module of rank *n* and $\operatorname{IDer}_{k_0}(R) = \operatorname{Der}_{k_0}(R)$ (and $\{D_1, \ldots, D_n\}$ is a basis).
- (5) rank $\operatorname{IDer}_{k_0}(R) = n$.

Proof. (1) \Rightarrow (2) \Rightarrow (3), (4) \Rightarrow (5) are straightforward. (3) \Rightarrow (4) comes from theorem 3.11.

(5) \Rightarrow (1). Let $\underline{D}^1, \ldots, \underline{D}^n \in \mathrm{HS}_{k_0}(R)$ such that D_1^1, \ldots, D_1^n are linear independent over R. Let us consider the extensions $\underline{\widehat{D}}^1, \ldots, \underline{\widehat{D}}^n \in \mathrm{HS}_k(\widehat{R})$, whose degree 1 components $\widehat{D}_1^1, \ldots, \widehat{D}_1^n$ are also linear independent over \widehat{R} .

Following the lines of the proof of Theorem 2.8, we are going to prove the following result.

For any j = 1, ..., n, there exist $C_{ld}^j \in K = Q(R), 1 \le d \le n, 1 \le l < +\infty$, such that

$$\Delta_{i}^{j} = \sum_{m=1}^{i} \left(\sum_{\substack{|\lambda|=i\\ |\mu|=m\\ \lambda \succcurlyeq \mu}} \prod_{\substack{d=1\\ |l|=\lambda_{d}}}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}} \\ |l|=\lambda_{d}}} \prod_{q=1}^{l} C_{l_{q}d}^{j} \right) \widehat{D}_{\mu} \quad \text{for all } i \ge 1.$$
(3)

For i = 1, the Δ_1^j are k-derivations of \widehat{R} and then there exist $C_{1d}^j \in L = \mathbb{Q}(\widehat{R})$ such that¹

$$\Delta_1^j = \sum_{d=1}^n C_{1d}^j \widehat{D}_1^d.$$

Then, for any $m = 1, \ldots, n$ we have

$$\delta_{jm} = \Delta_1^j(X_m) = \sum_{d=1}^n C_{1d}^j \widehat{D}_1^d(X_m)$$

and the matrix $(\widehat{D}_1^j(X_m))$ with entries in *R* has a non-zero determinant. In particular, $C_{1d}^j \in K$.

Let us suppose that for $N \ge 2$ there exist $C_{ld}^j \in K$, $1 \le d, j \le n, 1 \le l \le N - 1$, such that Eq. (3) holds for i = 1, ..., N - 1. We can consider $HS_k(\widehat{R}) \subset HS_k(L)$. By Proposition 2.7, for any j = 1, ..., n the k-linear map

$$\delta^{j} = \Delta_{N}^{j} - \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\|\mu|=m\\\lambda \succcurlyeq \mu}} \prod_{\substack{d=1\\|l|=\lambda_{d}}}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} C_{l_{q}d}^{j} \right) \widehat{D}_{\mu}$$
(4)

¹ This is the same argument as used in the proof of Theorem 3.11.

is a *k*-derivation of *L*. Let $a \in R$ be a common denominator for the C_{ld}^{j} , $1 \leq d, j \leq n$, $1 \leq l \leq N - 1$. Then,

$$a^{N}\delta^{j} = a^{N}\Delta_{N}^{j} - \sum_{m=2}^{N} \left(\sum_{\substack{|\lambda|=N\\|\mu|=m\\\lambda \succcurlyeq \mu}} \prod_{d=1}^{n} \sum_{\substack{l \in \mathbb{N}_{+}^{\mu_{d}}\\|l|=\lambda_{d}}} \prod_{q=1}^{\mu_{d}} (a^{l_{q}}C_{l_{q}d}^{j})\right) \widehat{D}_{\mu}$$

maps \widehat{R} into \widehat{R} and $a^N \delta^j \in \text{Der}_k(\widehat{R})$. There exist $\overline{C}_{Nd}^j \in L$, $1 \leq d, j \leq n$, such that

$$a^N \delta^j = \sum_{d=1}^n \overline{C}^j_{Nd} \widehat{D}^d_1.$$

Since $(a^N \delta^j)(X_m) \in R$ and the matrix $(\widehat{D}_1^j(X_m))$ with entries in R has a non-zero determinant (notice that $\Delta_N^j(X_m) = 0$), we deduce that $\overline{C}_{Nd}^j \in K$. By setting $C_{Nd}^j = a^{-N} \overline{C}_{Nd}^j \in K$, we obtain Eq. (3) for i = N.

From Eq. (3) we deduce that

$$\Delta_i^J(R) \subset K \cap \widehat{R} = R$$

for all $j = 1, ..., n, i \ge 0$, and (1) is proved. \Box

3.15. Remark. As noticed in [4, p. 289] for Theorem 3.11, Theorem 3.14 also holds for $HS_k(\widehat{R}) \cap HS(R)$ instead of $HS_{k_0}(R)$, $Der_k(\widehat{R}) \cap Der(R)$ instead of $Der_{k_0}(R)$, and $\{\delta \in Der(R) \mid \exists \underline{D} \in HS_k(\widehat{R}) \cap HS(R) \text{ s.t. } D_1 = \delta\}$ instead of $IDer_{k_0}(R)$, and the mention of a quasi-coefficient field can be avoided.

3.16. Remark. We do not know any example of a Noetherian regular local ring (R, \mathfrak{m}, k) containing a quasi-coefficient field k_0 (of positive characteristic) such that $\operatorname{IDer}_{k_0}(R) \neq \operatorname{Der}_{k_0}(R)$.

The following theorem generalizes Corollary 3.13 to the case of characteristic $p \ge 0$.

3.17. Theorem. Under the hypothesis of Section 3.10, let $\underline{D}^1, \ldots, \underline{D}^n \in \mathrm{HS}_{k_0}(R)$ such that their degree 1 components $\{D_1^1, \ldots, D_1^n\}$ form a basis of $\mathrm{Der}_{k_0}(R)$. Let $\underline{\widehat{D}}^1, \ldots, \underline{\widehat{D}}^n$ be the extensions of $\underline{D}^1, \ldots, \underline{D}^n$ to \widehat{R} . Then, the set $\{a \in \widehat{R} \mid \widehat{D}_i^j(a) = 0 \ \forall j = 1, \ldots, n, i \ge 1\}$ is a coefficient field of \widehat{R} (the only one containing k_0).

Proof. Since $\widehat{R} = k[[X_1, ..., X_n]]$, we have $k = \{a \in \widehat{R} \mid \Delta_i^j(a) = 0, j = 1, ..., n; i \ge 1\}$. By Corollary 3.12, we deduce that $\{\widehat{D}_1^1, ..., \widehat{D}_1^n\}$ is a \widehat{R} -basis of $\text{Der}_k(\widehat{R})$, and from Theorem 2.8 we can express the Δ_i^j in terms of \widehat{D}_i^j . In particular,

$$\left\{a \in \widehat{R} \mid \widehat{D}_i^j(a) = 0 \; \forall j = 1, \dots, n, \; i \ge 1\right\} \subset k.$$

The opposite inclusion comes from Proposition 1.6. \Box

Acknowledgment

We thank Herwig Hauser for pointing out a gap in the statement of Proposition 2.7 in an earlier version of this work.

References

- A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV: Étude Locale des Schémas et de Morphismes de Schémas (Quatrième Partie), in: Inst. Hautes Études Sci. Publ. Math., Vol. 32, Press Univ. de France, Paris, 1967.
- [2] H. Hasse, F.K. Schmidt, Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkorper einer Unbestimmten, J. Reine Angew. Math. 177 (1937) 223–239.
- [3] H. Matsumura, Formal power series rings over polynomial rings I, in: Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 511–520.
- [4] H. Matsumura, Commutative Algebra, 2nd Edition, Benjamin-Cummings, Reading, MA, 1980.
- [5] H. Matsumura, Integrable derivations, Nagoya Math. J. 87 (1982) 227-245.
- [6] H. Matsumura, Commutative Ring Theory, in: Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge Univ. Press, Cambridge, 1986.
- [7] K. Mount, O.E. Villamayor, Taylor Series and Higher Derivations, Universidad de Buenos Aires 18, 1969 (reprinted 1979).
- [8] W.N. Traves, Tight closure and differential simplicity, J. Algebra 228 (2000) 457-476.