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Abstract Diabetes and periodontitis are common chronic diseases in the world, and abun-
dant epidemiological evidence implies a bidirectional relationship between the two diseases.
It appears that diabetes is a risk factor for greater periodontal destruction, whereas managing
periodontitis can also contribute to better glycemic control. The underlying regulatory mech-
anisms are also bidirectional. The hyperglycemic status may directly alter subgingival micro-
bial compositions, impair cellular function, and change collagen metabolism. The formation
of advanced glycation end-products (AGEs) can further modify the extracellular matrix, and
establishment of cellular receptor binding can amplify inflammation. Moreover, periodontitis
also induces hyperlipidemia and insulin resistance. This cyclical relationship converges via
overproduction of proinflammatory cytokines, such as tumor necrosis factor-a and inter-
leukin-1b. Thus, this article highlights the importance of maintaining periodontal health to
eliminate systemic complications and meticulous metabolic control to prevent further peri-
odontal destruction. From a systemic aspect, targeting proinflammatory cytokines or receptors
of AGEs could be a potential modality for treating periodontitis.
Copyright ª 2012, Association for Dental Sciences of the Republic of China. Published
by Elsevier Taiwan LLC. All rights reserved.
Introduction

Diabetesis a disease of metabolic dysfunction characterized
by hyperglycemia, giving rise to the risk of several
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complications including retinopathies, neuropathies,
nephropathies, cardiovascular complications,1 and delayed
wound-healing.2 It is associated with a reduced life expec-
tancy, significant morbidity due to specific diabetes-related
microvascular complications, increased risk of macro-
vascular complications, such as ischemicheart disease,
stroke, and peripheral vascular disease, and a diminished
quality of life. Currently, there are three types of diabetes
recognized by the World Health Organization (WHO)3: (1)
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type I diabetes, previously known as insulin-dependent or
childhood-onset diabetes (IDDM), is characterized by a lack
of insulin production due to destruction of b-cells; (2) type II
diabetes, formerly termed non-insulin-dependent diabetes
(NIDDM), or adult-onset diabetes, is caused by increasing
insulin resistance. It is themajor type of diabetes in the adult
population and is closely related to obesity4; (3) a third
category, hyperglycemia secondary to systemic diseases or
conditions,5 includes gestational diabetes3 and diabetes
associated with diseases involving the pancreas and
destruction of b-cells,6 endocrine diseases,7 tumors,8

a pancreatectomy,9 and drug- or chemical-induced insulin
insensitivity or resistance.10

Periodontitis is the consequence of local infections in
the oral cavity resulting in irreversible destruction of the
tooth attachment apparatus (i.e., alveolar bone, root
cementum, and the periodontal ligament).11 One clinical
manifestation of periodontitis is the appearance of peri-
odontal pockets, enabling further microbial colonization
and challenge. Other manifestations include redness and
gingival swelling, pain, and tooth hypermobility. At
present, periodontitis is one of the major reasons for adult
tooth loss. Based on the 1999 American Association of
Periodontology (AAP) classification, periodontitis can be
further divided into six categories: (1) aggressive peri-
odontitis; (2) chronic periodontitis; (3) periodontitis as
a manifestation of systemic diseases; (4) necrotizing peri-
odontal diseases; (5) periodontitis associated with
endodontic lesions; and (6) periodontitis from the devel-
opmental or acquired deformities and conditions.12

An epidemiological link between diabetes and peri-
odontitis was established in 1960, and the interaction is
classified by age and type of diabetes in most studies.13 For
example, studies showed that when comparing diabetic and
non-diabetic Pima Indians, higher-aged diabetic individuals
had greater periodontal attachment and bone loss than
younger diabetic subjects.14 Findings from the Third
National Health and Nutrition Examination Survey (NHANES
III) in the US indicated that the prevalence of diabetes
among people with periodontal disease was about two-fold
higher than that of periodontally healthy diabetic
subjects.15 Studies also showed an association between the
severity of periodontitis and glucose intolerance, signs of
metabolic syndrome, and additional diabetes-related
complications, such as cardiovascular problems.16,17 As
such, some have proposed periodontal disease as the sixth
complication, due to the almost omnipresence of diabetes
along with periodontal disease,18e21 and some evidence
also supports a marked bidirectional correlation between
periodontal disease and diabetes.13,22,11
Epidemiological evidence of an association of
diabetes with periodontitis

Attachment loss is frequently used as one of the parameters
to measure periodontal health, and numerous studies
agreed that patients with poorly managed type I or II dia-
betes have significantly worse periodontal health, including
increased attachment loss, compared to patients with
better or well-managed diabetes and healthy individ-
uals.14,18,23 Other factors, such as the bleeding index and
pocket depth, were also considered in those studies, which
also pointed towards poorer periodontal health in diabetic
patients (Table 1).24e38 Furthermore, those studies indi-
cated that there were other diabetes-associated factors
that also affected attachment loss: (1) the duration of the
patient being afflicted with diabetes appeared to affect
periodontal health, namely, the longer the duration is, the
worse the periodontal health and more clinical attachment
loss there is.31,23 However, Sandberg and co-workers39

demonstrated that the duration of diabetes was more
closely correlated with the number of caries lesions than
the periodontal status; and (2) patients with diabetic
complications (i.e., retinopathies, neuropathies, nephrop-
athies, and cardiovascular complications), also showed
increased susceptibility to periodontal disease with
increased attachment loss.18

Although some studies found no statistical difference in
probing depths or attachment loss between diabetics and
non-diabetics, most investigators agreed that some peri-
odontal changes like increased gingivitis could be
observed in diabetic subjects. One must also note that in
those studies, most used type I diabetes (IDDM) as
a selection criterion, implying a weak correlation between
type I diabetes and periodontal breakdown. However,
more extensive research needs to be conducted to support
this claim. Other variables that may have confounded the
results of those studies include a younger-than-average
age (adolescents as test subjects) and a small sample
size.27,34 With regard to other studies, most of them sug-
gested a correlation between diabetes and increased
periodontal breakdown (i.e., increased bone loss and
probing depths).

Some studies were not able to confirm a link between
diabetes causing increased periodontal breakdown,
possibly due to the presence of confounding factors such as
the age of the patients, the duration of diabetes, the
presence of calculus, and smoking. Furthermore, some
subjects, whose diabetes was under control, still experi-
enced periodontal problems, implying that diabetes-
induced periodontal alterations may be irreversible and
cannot be recovered with glycemic control.40
Effects of periodontal therapy on periodontal
health and glycemic control

Perhaps the good news is that studies also showed that
subjects with good metabolic control [measured in terms of
glycated hemoglobin levels (HbA1c) exhibited a slower rate
of attachment loss than their poorly controlled counter-
parts. By contrast, studies also revealed that better gly-
cemic control could be achieved after periodontal
treatment (Table 2),41e46 and the relevance was further
confirmed by several recent meta-analyses.47,48 Those
studies addressed the importance of controlling infection in
diabetic patients, where a combination of mechanical
debridement (i.e., scaling and root planing) and systemic
antibiotics allowed better glycemic control.44,46 Doxycy-
cline, a tetracycline derivative, appeared to be the most
potent modifier of all antibiotics, possibly due to the effect
of preventing glycation of the extracellular matrix (ECM).11

However, there are also studies that demonstrated no



Table 1 Susceptibility of periodontal diseases in accordance with glycemic control (HbA1c level).

Research Team Periodontal
parameters

Sample size and physiological
conditions (age)

Periodontal response

Arrieta-Blanco et al24 PI 70 (T1DM&T2DM)
74 healthy (25e81 y/o)

PI[ in DM subjects, and no significant
difference between T1DM and T2DM.
HbA1c level did not significantly influence PI

Campus et al25 TN, PPD, PI, GI,
Microbiology

49 (T2DM, good control)
22 (T2DM, poor control)
141 healthy (35e75 y/o)

TNY, PPD > 4 mm[, PI[, GI[,
P. gingivalis[, T. forsythus[ in
T2DM patients
PPD > 4 mmY in well-controlled
than poorly-controlled subjects

Cianciola et al26 CAL 263 (T1DM)
208 healthy (11e18 y/o)

Prevalence of periodontitis is 9.8% T1DM
and 1.7% in healthy controls. CAL[ in T1DM

de Pommereau et al27 ABL, CAL, PI, GI 85 T1DM adolescents
38 healthy (12e18y/o)

None of the subjects demonstrated signs
of periodontitis
GI[in T1DM

Emrich et al28 CAL, ABL, PI, GI, CI 1324 Pima Indians
254 with T2DM
158 with impaired glucose
tolerance (> 15 y/o)

CAL[, ABL[, and CI[ in T2DM subjects

Guzman et al29 CAL 100 DM (19e78 y/o) 66% had 2 or more CAL > 5 mm,
of which 43% had 2 or more CAL > 7 mm
Prevalence of severe CAL increased
in higher HbA1c subjects

Hove & Stallard30 PPD, CAL 28 DM, 16 healthy (20e40 y/o) PPD[ and CAL[ in DM patients.
Severity of diabetes had little effect
on periodontal breakdown. Duration
of diabetes not related to increased
breakdown

Hugoson et al31 PPD, ABL 82 (long duration T1DM)
72 (short duration T1DM)
77 healthy (20-70 y/o)

ABL[ in long duration T1DM;
PD > 6 mm[ in both groups of T1DM

Pinson et al32 PPD, CAL, PI, GI,
GCF flow, BOP

26 T1DM children
24 healthy (7e18 y/o)

Overall no statistically significant
differences between cases and controls;
GI[, PI[ in T1DM subjects

Safkan-Seppala
and Ainamo33

PPD, CAL, ABL, PI,
GI, BOP, GR

T1DM, 44 poorly controlled and
27 controlled (17e63 y/o)

With similar plaque control, CAL[
and ABL[ in poorly-controlled DM

Sastrowijoto et al34 PPD, CAL, PI, GI,
Microbiology

6 T1DM receiving insulin
treatment (18e50 y/o)

PIY, GIY, Streptococcus[ in with
improved glycemic control, but has no
effect on other periodontal parameters

Shlossman et al35 CAL, ABL 3219 T2DM Pima Indians CAL[ and ABL[ in T2DM subjects
Silva et al36 TN, Medical diagnosis 86 (T1DM)

212 (T2DM) (>30 y/o)
Gingivitis (68%) and periodontitis (25.3%)
among DM individuals. Higher prevalence
of periodontitis among T2DM, males,
and those with more than 8 years DM history

Tervonen &
Knuuttila37

PPD, CAL, BOP 50 DM
53 healthy (30e40 y/o)

No significant difference between
DM and healthy
Well-controlled DM demonstrated
improved PPD than poorly-controlled DM
Poorly controlled diabetes increased
attachment loss

Tervonen & Oliver38 PPD, CAL, PI, GI, CI 75 DM for 2e5 years HbA1c
monitoring

CI[, PPD[, CAL[ in
poorer-controlled DM subjects

ABL Z alveolar bone loss from radiograph; BOP Z bleeding on probing; CAL Z clinical attachment loss from probing; CI Z calculus
index; DM Z diabetic mellitus; FBG Z fasting blood glucose; GI Z gingival index; GR Z gingival recession; HbA1c Z glycated hemo-
globin; N/A Z not available; PI Z plaque index; PPD Z probing pocket depth; T1DM Z type I DM; T2DM Z type 2 DM; TN Z number of
tooth; y/o Z year-old.
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Table 2 Glycemic response to periodontal intervention (all in type II diabetes).

Research Team Sample size (physiological
condition-periodontal treatment

Time points (mo) Glycemic
parameters

Periodontal
parameters

Periodontal response Systemic response

Faria-Almeida et al41 Exp: 10 (DM-SRP)
Con: 10 (Healthy-SRP)

3, 6 FBG
HbA1c

CAL
PPD
GR

PPDY, CA Y, and GRY
(in both groups)
No significant difference
between groups

Hb1Ac in DM subjectsY
No significant change in FBG

Grossi et al42 Exp 1: (DM-SRP þ doxycycline)
Exp 2: (DM-SRP þ CHX þ
doxycycline)
Exp 3: (DM-SRP þ povodine
iodine þ doxycycline)
Exp 4: (DM-SRPþCHX)
Con: (DM-SRP)

3, 6, 12 Serum glucose
HbA1c

PPD
CAL
Microbiology

PPDY, CALY, and
P. gingivalisY in all
Exps.Doxycycline
treated group (Exp 2)
showed greatest
improvement

HbA1cY in all groups
without significance

Katagiri et al43 Exp: 32 (DM-SRP þ minocycline)
Con: 17 (DM-OHI)

1, 3, 6 FBG
HbA1c
Hs-CRP

PPD
BOP

PPDY and BOPY
Significant improvement
in Exp group

HbA1c and FBG Y in Exp but
no significant change in Con
No significant change in Hs-CRP

O’ Connell et al44 Exp: 15 (DM-SRP þ doxycycline)
Con: 15 (DM-SRP)

3 FBG
HbA1c
systemic
inflammatory
markers

PPD
CAL
PI
BOP
Suppuration

PPDY, CALY, PIY, BOPY,
and no suppuration
in both groups
No significant difference
between groups

HbA1c in both groupsY, and
significant decrease in Exp
than Con
No significant change in FBG
Reduction in levels of 16 of
24 inflammatory markers,
including IL-6, IP-10, sFasL,
G-CSF, RANTES, and IL-12

Rodrigues et al45 Exp: 15 (DM-SRPþ amoxicillin)
Con: 15 (DM-SRP)

3 FBG
HbA1c

CAL
PPD

PPD in both groupsY
No significant change in CAL
No significant difference
between groups

HbA1c in both groupsY
No significant change in FBG

Singh et al46 Exp 1: 15 (DM-SRP)
Exp 2: 15 (DM-SRP þ doxycycline)
Con: 15 (DM-No Tx)

3 FBG
HbA1c
PPBG

PI and GI
CAL
PPD

All parameters
improved in both
Exp groups but no
significant difference
between Exp groups

FBGY, HbA1cY, and PPBGY
in both Exp groups.
HbA1c in Exp 2 significantly
lower than Exp 1

BOPZ bleeding on probing; CALZ clinical attachment loss; CHXZ chlorhexidine; ConZ control group; DMZ diabetic mellitus; ExpZ experimental group; FBGZ fasting blood glucose;
GI Z gingival index; GR Z gingival recession; HbA1c Z glycated hemoglobin; Hs-CRP Z high-sensitivity C-reactive protein; OHI Z oral hygiene instruction; PI Z plaque index;
PPBG Z postprandial blood glucose; PPD Z probing pocket depth; y/o Z year-old; SRP Z scaling and root planing.
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significant alteration in glycemic control after periodontal
treatment.49,50 A 4-month report from Christgau and co-
workers demonstrated that periodontal treatment
improved clinical periodontal parameters, reduced peri-
opathogenic bacteria, and reduced the oxidative burst
response of inflammatory cells.51 However, no significant
difference existed between systemically healthy and dia-
betic subjects. A meta-analysis from Janket and co-workers
showed a tendency, but no significant improvement, in
HbA1c levels after weight adjustment.52 A long-term, large-
scaled follow-up study in Japan indicated no significant
difference between periodontal treatment and the inci-
dence of diabetes, but did suggest periodontitis as an
increased risk for developing diabetes.53 Taken together, of
clinical relevance to us is that dentists should treat the
periodontal condition in a patient’s mouth and manage the
patient’s diabetic condition, in order to achieve optimal
results after periodontal therapy. While good periodontal
health might not necessarily be accompanied by a change in
glycemic control, an improvement can potentially modify
metabolic control, leading to an overall enhancement in
the quality of life.

Proposed mechanisms of how diabetes affects
periodontal health (Fig. 1)

Arising from the epidemiological association, diabetes was
thought to affect the periodontal status through direct
effects of hyperglycemia and be indirectly modulated by
advanced glycation end-products (AGEs), adducts from the
glycation and oxidation of proteins and lipids,54 leading to
an overall impairment of wound healing and changes in
periodontal tissues.

Direct effects of hyperglycemia

Firstly, diabetes results in a rise of the concentration of
glucose and a decrease in the level of epidermal growth
Figure 1 Mechanisms of diabetes-mediated periodontal tissue
favorable environment for the growth of Gram-negative periodon
induce overproduction of proinflammatory cytokines and secretio
formation of advanced glycation end products (AGEs), diabetes ca
(gray lines) as well as the cellular activities to amplify inflammatory
healing impairment and potential vascular change (dash black line
factor (EGF) in the saliva and gingival crevicular fluid
(GCF),55,56 which contributes to alterations in the microbial
profile in periodontal pockets. Clinical investigations
demonstrated that the modified environment is more
favorable for the growth of gram-negative anaerobes,
including the periodontal pathogens Capnocytophaga spp.,
Actinomyces spp., and Campylobacter spp., and black-
pigmented species including Prevotella intermedia and
Porphyromonas gingivalis.57e60 However, results from
in vitro studies revealed that the bacterial microflora at
periodontally diseased sites in diabetic subjects is similar to
that of non-diabetic subjects.59,60 The apparent lack of
significant differences in the bacterial microflora suggests
that alterations in the host immunological response may
have a stronger influence on the increased prevalence and
severity of periodontal destruction seen in diabetes.1

Therefore, it was proposed that diabetes may elicit
a cytokine-induced acute-phase response through activa-
tion of the innate immune system, which contributes to the
pathogenesis of this disease and its associated complica-
tions such as dyslipidemia, atherosclerosis, and host
inflammatory responses.61 One of the mechanisms causing
periodontal destruction involves activation of the innate
immunity, mainly by upregulation of proinflammatory
cytokines in the presence of gram-negative microorgan-
isms, potentially indicating that periodontitis can be
systemically modulated by proinflammatory cytokines.62

Thus, Salvi and co-workers63,64 demonstrated the hyper-
responsiveness of monocytic proinflammatory cytokines,
including tumor necrosis factor (TNF)-a, interleukin (IL)-1b,
and prostaglandin (PG)E2, in diabetic patients with peri-
odontal diseases. In their later study, results revealed an
elevation of proinflammatory cytokines in the GCF of dia-
betic patients, without significant changes in the microbial
or plaque compositions.65 Further investigations also
demonstrated prolonged expression of TNF-a, resulting in
greater periodontal damage and alteration of the lipo-
polysaccharide (LPS)-associated signaling pathways in dia-
betic animals.66,67 Taken together, cytokine dysfunction in
destruction. The hyperglycemic status can directly provide
tal pathogens, impair cellular function and host defense, and
n of collagenolytic enzymes (black lines). By facilitating the
n also indirectly alter the crosslink of the extracellular matrix
reactions and decrease cell viability, leading to further wound
s) in periodontal tissue (gray box).
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diabetes plays a more-predominant role in causing peri-
odontal destruction than microbial changes.

As such, hyperglycemia appears to decrease the effect
of chemotaxis and phagocytosis and increase apoptosis, the
production of reactive oxygen species (ROS), and the
expression of adhesion molecules of polymorphonuclear
neutrophils (PMNs)68e70 and monocytes/macrophages.67,71

It is also known to reduce the proliferation, migration,
and differentiation potential of periodontal ligament cells
(PDLCs),72,73 gingival fibroblasts (GFs),74 and mesenchymal
stem cells (MSCs).75,76

Hyperglycemia also triggers a variety of collagen
changes. One study showed reduced synthesis of both
collagen and glycosaminoglycan in hyperglycemic culture
conditions and fibroblasts from diabetic patients.77 In vivo
studies also demonstrated impaired production of collagen
and the osseous matrix in a diabetic condition.78 Increased
collagenase and gelatinase activities in gingival tissues
were also noted in some animal studies.79,80 The alteration
of collagen metabolism can influence wound healing and
the turnover capability and it also results in micro-
angiopathy due to impaired metabolism of type IV
collagen, which is the main component of basement
membranes.81 Disruption of the basement membrane can
impede oxygen diffusion, metabolic waste elimination,
PMN chemotaxis, and diffusion of growth factors. In
conclusion, vascular changes can result from the cumula-
tive effects of altered collagen metabolism, glycation of
the ECM, overproduction of ROS, and immune
dysfunction.77,81
Modulation by AGEs

In prolonged hyperglycemic states, AGEs form as a conse-
quence of extensive glycation of proteins and lipids, with
ROS as byproducts.54,82 Accumulation of AGEs in plasma and
tissues was also reported in several pathophysiological
conditions including metabolic dysfunctional, chronic
inflammatory, and neurodegenerative diseases.83 AGEs can
modify the cross-linking of matrix molecules, impair the
efficiency of growth factors, and contribute to oxidative
stress in diabetic conditions.84

Studies demonstrated that AGEs arrest cell cycles in
fibroblasts85 and attenuate the viability and differentiation
potential of MSCs.86 Increased levels of AGE-cross-linked
collagen lead to altered osteoblastic activity and ECM
productivity, which affects bone formation production.87,88

This alteration in collagen metabolism leads to a rapid
degradation of newlyformed collagen. AGEs crosslink with
collagen, making it less soluble and less likely to be
repaired or replaced. As a result, collagen in tissues of
poorly controlled diabetics is aged and more susceptible to
breaking down.89 The storage of AGE-modified collagen
molecules in tissues leads to decreased wound healing of
the periodontium and accelerated degradation of both non-
mineralized connective tissue and mineralized bone.90

Impaired osteoblastic cell growth and collagen production
cause bone formation reduction and a decrease in the
strength of newly formed bone by osteocytes.91e93 As
a result, AGEs undermine wound healing and lead to more-
severe tissue destruction.
Therefore, AGEs are regarded as inflammatory initiators
or amplifiers when binding to their cellular receptors,
RAGEs.54 Monocytes, macrophages, endothelial cells, and
epithelial cells possess high-affinity RAGEs,77,94 and in our
recent investigation, elevated expression of RAGEs was also
noted in PDLCs and MSCs when seeded on a glycated
matrix.95 This binding of AGEs to RAGEs will activate the
nuclear factor (NF)-kB-regulated pathway, resulting in the
release of cytokines and induction of inflammation.96

Upregulation of RAGEs in endothelial cells results in
hyperpermeability and enhanced expression of vascular cell
adhesion molecule (VCAM)-1, which further induces
chemotaxis of monocytes.97 AGE-RAGE binding can also
lead to increased intracellular oxidant stress and reductions
in detoxifying mechanisms.98 Thus, the presence of RAGE is
capable of converting transient proinflammatory reactions
into sustained cellular dysfunction and impairment of
immune responses.96
Effects of diabetes on bone healing

Diabetes is also associated with skeletal complications, i.e.,
diabetic osteopathy,99 which is characterized by a reduction
in the bonemineral density, an increased risk of osteoporosis
and osteopenia,100 an increased risk of fracture,101 and
impairment of osseous healing and regeneration poten-
tials.102 For dental implant osseointegration, however, the
results from clinical studies are still equivocal, whereas
a positive correlation between the implant failure rate and
a diabetic status was only seen in some studies103,104 but not
in another one.105 In animal models, a diabetic status led to
50% loss of bone-implant contact.106 The failure rate tended
to rise after functional loading, presumably associated with
impaired bone remodeling.107 The occurrence of these
skeletal complications are high in type 1 but not obvious in
type 2 diabetic subjects,100 suggesting that these complica-
tions can be accounted for by systemic insulin levels. Clinical
studies demonstrated that the fracture healing capability
can be recovered after insulin treatment,108 and animal
studies demonstrated that insulin treatment is capable of
maintaining the level of dental implant osseointegration for
a longer period.108e110

With regards to the micro-architecture of diabetic bone,
poor trabecular connectivity, increasing porosity, a lower
bone spicule/marrow ratio,111 a lower calcium-to-phosphate
composition,112 and reduced ash content were found in
experimental diabetic animals. Decreasing levels of matrix
proteins and minerals,113 diminished alkaline phosphatase
activity, disruption of hydroxyapatite crystal formation,114

and reduced collagen synthesis78 were noted in diabetic
rodents. Therefore, elevation of AGEs in osseous tissues
alters interactions of the cell matrix and also disrupts the
cross-linking of the ECM.54 As a result, inferior mineralization
and poor matrix formation properties can contribute to
deteriorating biomechanical properties of diabetic bone.115

Histologically, decreased osteoblasts were found,
presumably associated with deficits in the recruitment and
proliferation of mesenchymal stem cells of an osteoblastic
lineage.115 The activity of osteoblasts also decreased,
resulting in reductions in collagen synthesis and osteoid
surface formation.116 Excessive osteoclastic markers were
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found in the urine, suggesting progressive bone loss in
diabetic patients.117 However, in animal studies, many
subjects displayed reductions in osteoclast numbers and
activities,118,119 indicating the inability of bone turnover.
On the other hand, Hie and co-workers also demonstrated
an increasing number and activity of osteoclasts leading to
bone resorption.116
Figure 2 Mechanisms of periodontitis-mediated metabolic
dysfunction. In response to LPS of periodontal microorganisms,
elevation of systemic proinflammatory cytokines can disturb
the lipid metabolism and insulin resistance, consequently
leading to hyperlipidemia and hyperglycemia (solid lines). The
systemic metabolic disturbance can further deteriorate local
infection, such as periodontitis, via hyperlipidemia and proin-
flammatory cytokines (dashlines).
Alterations of periodontal tissues with
diabetes

Morphological changes in periodontal tissues under experi-
mental diabetes were reported by Tesseromatis and co-
workers.120 Their results revealed mild inflammation
limited to the lamina propria and perivascular region, with
gingival epithelial hyperplasia and moderate-to-severe
angiitis 90 days after inducing diabetes. With the pres-
ence of plaque retentive factors (i.e., subgingival ligature
placement), Silva and co-workers demonstrated a thick-
ening of the gingival epithelium, with elongated dermal
papilla, and the collagen alignment in connective tissue
was loose and disorganized, with more prominent inflam-
matory cell infiltration in diabetic animals.121 Furthermore,
in our current investigation, we also demonstrated that
a diabetic condition can prolong the period of periodontal
breakdown and delay mitogenesis.122

Healing of periodontal destruction in diabetic animals was
investigated by Liu and co-workers.123 They reported that
adiabetic conditioncan inducegreaterbone losswith ligature
placement andmay impair new bone formation after ligature
removal. They also found that recovery from inflammation
was delayed, apoptotic bone-lining cells exhibited prolonged
expression, and the numbers of osteoblasts and periodontal
ligament fibroblasts decreased in diabetic animals. Devlin
and co-workers also evaluated the pattern of alveolar bone
after tooth extraction.124 They showed extensive necrosis of
alveolar bone after extraction, and that reepithelization,
mineralization, and tissue remodeling were delayed in dia-
betic animals. Desta and co-workers also suggested that the
delayed healing of gingival wounds may have originated from
decreased numbers of fibroblasts, due to increased apoptosis
and reduced proliferation.74 Taken together, preclinical
studies confirmed that a diabetic status can augment and
prolong periodontal destruction, while at the same time,
impairing repair capabilities.
Proposed mechanisms for periodontitis
affecting glycemia control (Fig. 2)

While the effects of diabetes on periodontal health are
more clearly elucidated, there is still limited information
regarding how periodontal diseases influence diabetic
states. Periodontitis is primarily an oral infection caused by
gram-negative anaerobes. The main virulence factors of
these microorganisms are endotoxins in the form of lipo-
polysaccharides (LPSs),125 and pathogenesis is triggered by
recognition of pathogen-associated molecular patterns
from Toll-like receptors (TLRs), which release ROS from
defending cells and subsequently induce oxidative
stress, proinflammatory cytokines, and immunoregulatory
complexes through the NF-kB pathway.126,127 Periodontitis
may induce systemic conditions through translocation of
periodontal microorganisms and their products from peri-
odontal biofilms or direct cytokinemia from the GCF into
the circulation.128 Investigations showed the coincidence of
elevated serum proinflammatory cytokines and attachment
loss,129,130 implying the systemic involvement of periodon-
titis. Moreover, periodontal treatment not only reduced
oral inflammation, but also decreased systemic levels of IL-
6, TNF-a, and C-reactive proteins (CRP), indicating that
periodontal diseases induce systemic alterations beyond
the local periodontal environment.131 Since elevation of
TNF-a and IL-1b was observed in both the GCF and serum of
subjects with periodontitis and diabetes, TNF-a and IL-1b
are thought to play major roles in developing systemic
conditions.40 TNF-a was shown to induce insulin resistance
and potentially links the progression of periodontal disease
destruction with worsening of the diabetic state.

There is evidence that exposing serum from periodontitis
patients to LPS of periodontal pathogens leads to increased
triglycerides and lower levels of high-density lipoprotein
(HDL),132,133 which suggests that local infection, such as
periodontitis, can alter systemic lipid metabolism. The
mechanism is possibly due to activation of the ‘cytokine
cascade’ in response to LPS.40 The elevation of serum lipids
may also influence immune cell function by upregulating
proinflammatory cytokines and superoxide production by
PMNs and altering surface marker antigens of monocytes.134

In the meanwhile, periodontitis can potentially induce
insulin resistance by the overproduction of systemic proin-
flammatory cytokines, such as TNF-a, IL-1b, and IL-6. These
cytokines will further ameliorate insulin insensitivity by
destroying pancreatic b-cells, antagonizing insulin action, or
altering intracellular insulin signaling through the NF-kB and
c-Jun N-terminal kinase (JNK) axes.13,40,135,136

Potential applications

Based on the epidemiological link between diabetes and
periodontitis, clinical guidelines were developed to predict
undiagnosed diabetes cases based on the waist circumfer-
ence, age, oral health status, ethnicity, and weight infor-
mation.137 The potential mechanistic interrelationships



Interrelationships of periodontitis and diabetes 279
between diabetes and periodontitis may also direct future
therapeutic interventions from two aspects. Firstly,
systemic glucose and lipid levels can be reduced to atten-
uate the systemic influence on periodontal health, and this
can be achieved by medication or dietary changes. Peri-
odontal treatment to control colonization of microbial
pathogens and simultaneously reduce the level of proin-
flammatory cytokines is also essential to prevent a wors-
ening of diabetic conditions. Secondly, while
proinflammatory cytokines, such as TNF-a and IL-1b, play
key roles in this bidirectional relationship, it is also of
interest to develop immunomodulators that target these
cytokines. However, one must be cautious, because
modulating these cytokines may also affect the body’s
homeostasis.

By contrast, while both TLRs and RAGEs solicit inflam-
matory reactions via NF-kB-regulated pathways, recent
studies demonstrated that RAGEs also interact with
endogenous ligands other than AGEs to induce inflammation
and regulate disease progression,138 and the expression of
RAGEs was also observed even in periodontally diseased
gingival tissues from physiologically healthy subjects.139

Furthermore, blockade of RAGEs in diabetic animals can
significantly suppress periodontal bone loss without
affecting the systemic metabolic status.140 Those findings
imply that RAGEs may be involved in the pathogenesis of
periodontitis, and utilizing an antagonist of RAGEs may be
a potential treatment modality to manage periodontal
diseases.

In summary, an in-depth understanding of the possible
mechanisms linking periodontal disease and diabetes, in
terms of periodontal destruction and periodontal healing,
is essential to the future development of treatment
strategies for patients with diabetes and periodontal
disease.
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