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A generic expression of double-parton scattering cross sections in high-energy nucleus–nucleus (A–A)
collisions is derived as a function of the corresponding single-parton hard cross sections and of the
A–A event centrality. We consider the case of prompt- J/ψ production in lead–lead (Pb–Pb) at the CERN
Large Hadron Collider and find that about 20% (35%) of the J/ψ events in minimum-bias (most central)
collisions contain a second J/ψ from double-parton interactions. In Pb–Pb at 5.5 TeV, in the absence
of final-state effects, about 240 double- J/ψ events are expected per unit midrapidity and per inverse-
nanobarn in the dilepton decay modes. The implications of double- J/ψ production on the interpretation
of the observed J/ψ suppression in A–A collisions are discussed.
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1. Introduction

The production of heavy-quark bound states of the charmo-
nium ( J/ψ ) and bottomonium (Υ ) families in high-energy proton–
proton (p–p) and nucleus–nucleus (A–A) collisions is governed by
both perturbative and non-perturbative aspects of Quantum Chro-
modynamics (QCD) and has been extensively studied at fixed-
target and collider energies [1]. For the most part, a pair of charm
or bottom quarks (cc̄, bb̄) is first produced in a hard gluon–
gluon collision with cross sections computable via perturbative
QCD (pQCD) calculations. The subsequent evolution of the QQ pair
towards a colour-singlet bound state is a non-perturbative pro-
cess described in various theoretical approaches including colour-
singlet and colour-octet mechanisms, non-relativistic QCD effective
field theory, or colour evaporation models (see e.g. [2] for a re-
view).

In the case of A–A collisions, quarkonium has been proposed
as a key probe of the thermodynamical properties of the hot QCD
medium produced in the course of the collision [3]. Analysis of
quarkonia correlators and potentials in finite-temperature lattice
QCD [4] indicate that the different cc̄ and bb̄ bound states dis-
sociate at temperatures T for which the colour (Debye) screening
radius of the medium falls below their corresponding QQ bind-
ing radius. Experimental confirmation of such a quarkonia disso-
ciation pattern should provide a direct means to determine the
temperature of the produced quark-gluon plasma (QGP) [5]. Sur-
prisingly, J/ψ production in lead–lead (Pb–Pb) collisions at the
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LHC [6–9] is observed to be less suppressed – compared to base-
line p–p collisions at the same energy – than at the Relativis-
tic Heavy-Ion Collider (RHIC) [10] despite the fact that the aver-
age medium temperature at LHC nucleon–nucleon centre-of-mass
(c.m.) energies (

√
sNN = 2.76 TeV) is at least 30% higher than at

RHIC (
√

sNN = 200 GeV) [11]. Approaches combining J/ψ dissoci-
ation in a deconfined phase plus regeneration due to charm-quark
recombination [12,13] can reproduce the observed trends in the
data although the model parameters (σcc̄ cross section, medium
density, . . . ) need to be validated with other LHC observations.

In this Letter we discuss and quantify for the first time in
the literature the role of double-parton scattering (DPS) processes
in ultrarelativistic heavy-ion collisions, considering specifically the
case of double- J/ψ production in Pb–Pb at LHC energies. Due
to the fast increase of the parton flux at small parton fractional
momenta, x ≡ pparton/phadron, the probability of having multiple
hard parton interactions (MPI) occurring simultaneously at differ-
ent impact parameters increases rapidly with collision energy and
constitutes a significant source of particle production at semihard
scales of a few GeV in p–p and, in particular, A–A collisions [14].
The evidence for DPS processes producing two independently-
identified hard particles in the same collision is currently based
on p–p and p–p̄ measurements of final-states containing multi-
jets, and jets plus photons [15,16] or W± bosons [17] showing an
excess of events in various differential distributions with respect
to the expectations from contributions from single-parton scatter-
ings (SPS) alone. LHC p–p measurements of double- J/ψ produc-
tion [18] as well as of single- J/ψ production as a function of the
event multiplicity [19] have been also interpreted in the context of
DPS [20–23] and MPI models respectively.
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Fig. 1. Schematic DPS contributions in A–A collisions: (a) The two colliding partons belong to the same pair of nucleons, (b) partons from one nucleon in one nucleus collide
with partons from two different nucleons in the other nucleus, and (c) the two colliding partons belong to two different nucleons from both nuclei.
We investigate DPS in A–A collisions following a similar study
for p–A collisions [24], extending it to also include the centrality-
dependence of the DPS cross sections. The larger transverse parton
density in nuclei compared to protons results in enhanced A–A DPS
contributions coming from interactions where the two partons be-
long or not to the same pair of nucleons of the colliding nuclei
(Fig. 1). Consequently, in Pb–Pb at LHC energies we expect a non-
negligible probability of two parton–parton interactions indepen-
dently producing two J/ψ mesons in the same nuclear collision.

2. Cross sections for double-parton scattering in proton and
nuclear collisions

The DPS cross section in p–p collisions can be theoretically
computed from the convolution of parton distribution functions
(PDF) and elementary cross sections summed over all involved par-
tons (see e.g. [25])

σ DPS
(pp→ab) =

(
m

2

) ∑
i, j,k,l
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i j
p
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jl
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2d2b1d2b2d2b,
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where Γ
i j
p (x1, x2;b1,b2; Q 2

1 , Q 2
2 ) are double-PDF which depend on

the longitudinal momentum fractions x1 and x2 and transverse
positions b1 and b2 of the two partons undergoing the hard pro-
cesses at scales Q 1 and Q 2, σ̂ ik

a and σ̂
jl

b are the parton-level
subprocess cross sections, and b is the impact parameter vector
connecting the centres of the colliding protons in the transverse
plane. The combinatorial factor m/2 accounts for indistinguish-
able (m = 1) and distinguishable (m = 2) final-states. In a model-
independent way, the cross section of double-parton scattering can
be expressed in the simple generic form

σ DPS
(pp→ab) =

(
m

2

)
σ SPS

(pp→a) · σ SPS
(pp→b)

σeff,pp
, (2)

where σ SPS is the inclusive single-hard scattering cross section,
computable perturbatively to a given order in αs,
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and σeff,pp is a normalisation cross section that encodes all “DPS
unknowns” into a single parameter which can be experimentally
measured. A numerical value, σeff,pp ≈ 14 mb, has been obtained
empirically from fits to p–p and p–p̄ data [15–17]. One can iden-
tify σeff,pp with the inverse of the proton overlap function squared:
σeff,pp = [∫ d2b t2(b)]−1 under the two following simplifying ap-
proximations: (i) the double-PDF can be decomposed into longi-
tudinal and transverse components, with the latter expressed in
terms of the overlap function t(b) = ∫

f (b1) f (b1 − b)d2b1 for a
given parton transverse thickness function f (b) representing the
effective transverse overlap area of partonic interactions that pro-
duce the DPS process, and (ii) the longitudinal component re-
duces to the “diagonal” product of two independent single-PDF,
Di

p(x1; Q 2
1 ).

To compute the DPS cross section in nucleus–nucleus collisions
we proceed as done for p–A in [24]. The parton flux is enhanced
by the number A of nucleons in each nucleus and the single-
parton cross section is simply expected to be that of p–p – or,
more exactly, nucleon–nucleon (N–N) collisions taking into account
shadowing effects in the nuclear PDF (see below) – scaled by the
factor A2, i.e.

σ SPS
(AA→a) = σ SPS

(NN→a)

∫
TA(b1)TA(b1 − b)d2b1 d2b

= σ SPS
(NN→a)

∫
TAA(b)d2b = A2 · σ SPS

(NN→a). (4)

Here TA(b) is the nuclear thickness function at impact parame-
ter vector b connecting the centres of the colliding nucleus in the
transverse plane, and TAA(b) the standard nuclear overlap function
normalised to A2 [26]. The DPS A–A cross section is thus the sum
of three terms, corresponding to the diagrams of Fig. 1:

1. The first term corresponding to Fig. 1(a) is just, similarly to
the SPS cross sections Eq. (4), the DPS cross section in N–N
collisions scaled by A2

σ DPS,1
(AA→ab)

= A2 · σ DPS
(NN→ab). (5)

2. The second term, Fig. 1(b), accounts for interactions with par-
tons from one nucleon in one nucleus with partons from two
different nucleons in the other nucleus. This term was origi-
nally derived in [27] in the context of p–A collisions,

σ DPS,2
(AA→ab)

= 2σ DPS
(NN→ab) · σeff,pp · T2,AA, (6)

with

T2,AA = A − 1

A

∫
TA(b1)TA(b1 − b)TA(b1 − b)d2b1 d2b

= (A − 1)

∫
d2r T2

A(r) = (A − 1) · TAA(0). (7)

3. The third contribution from interactions of partons from two
different nucleon in one nucleus with partons from two differ-
ent nucleons in the other nucleus, Fig. 1(c), reads

σ DPS,3 = σ DPS · σeff,pp · T3,AA, (8)

(AA→ab) (NN→ab)
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with

T3,AA =
(

A − 1

A

)2 ∫
TA(b1)TA(b2)TA(b1 − b)

× TA(b2 − b)d2b1 d2b2 d2b

=
(

A − 1

A

)2 ∫
d2r T2

AA(r), (9)

where the integral of the nuclear overlap function squared
does not depend much on the precise shape of the transverse
parton density in the nucleus, amounting to A2/1.94 · TAA(0)

for a hard-sphere and A2/2 · TAA(0) for a Gaussian profile.

The factors (A − 1)/A and [(A − 1)/A]2 in the two last terms take
into account the difference between the number of nucleon pairs
and the number of different nucleon pairs. Adding (5), (6) and (8),
the inclusive cross section of a DPS process with two hard par-
ton subprocesses a and b in A–A collisions (with A large, so that
A − 1 ≈ A) can be written as

σ DPS
(AA→ab) = A2σ DPS

(NN→ab) ·
[

1 + 2(A − 1)

A2
σeff,pp

∫
d2r T2

A(r)

+
(

A − 1

A2

)2

σeff,pp

∫
d2r T2

AA(r)
]

(10)

≈ A2σ DPS
(NN→ab) ·

[
1 + 2

A
σeff,ppTAA(0)

+ 1

2
σeff,ppTAA(0)

]
, (11)

where the term in parentheses follows a dependence of the type
A4/3/6 and thus σ DPS in A–A increases roughly as A3.3/5 compared
to its value in p–p collisions. The DPS cross sections in A–A are
practically unaffected by the value of σeff,pp but dominated instead
by double-parton interactions from different nucleons in both nu-
clei, and thus less sensitive to possible extra “non-diagonal” parton
interference terms [27], computed for light nuclei in [28].

For 208Pb–208Pb collisions, in the simplest hard-sphere ap-
proximation for a uniform density of radius RA = r0A1/3 and
r0 = 1.25 fm, the nuclear overlap function at b = 0 is TAA(0) =
9A2/(8π R2

A) = 31.5 mb−1. A direct evaluation of the integral us-
ing the measured Fermi–Dirac spatial density for the Pb nucleus
(RA = 6.624 fm and surface thickness a = 0.546 fm) [29] yields
TAA(0) = 30.4 mb−1. Using the latter TAA(0) value and σeff,pp =
14 mb, the expression in parentheses in Eq. (11) – which quan-
tifies the total DPS enhancement factor in A–A compared to N–N
collisions, Eq. (5) – is found to be of the order of 200, dominated
by the hard double-nucleon scattering contributions, Fig. 1(c). The
final DPS cross section “pocket formula” in nucleus–nucleus colli-
sions can be obtained combining Eqs. (2) and (11):

σ DPS
(AA→ab) =

(
m

2

)
σ SPS

(NN→a) · σ SPS
(NN→b)

σeff,AA
, (12)

with the effective A–A normalisation cross section for Pb–Pb
amounting to

σeff,AA = 1

A2[σ−1
eff,pp + 2

A TAA(0) + 1
2 TAA(0)] = 1.5 nb. (13)

The relative contributions of the three terms in the denominator,
corresponding to the diagrams of Fig. 1, are approximately 1:4:200.
We note that Eq. (13) is valid only for pQCD processes with cross
sections σ SPS smaller than about A2σeff,AA (which holds for the
(NN→a)
J/ψ case of interest here), otherwise one would need to reinter-
pret it to account for triple (and higher-multiplicity) parton scat-
terings. Numerically we see that whereas the single-parton cross
sections in Pb–Pb collisions, Eq. (4), are enhanced by a factor of
A2 � 4 · 104 compared to that in p–p collisions, the corresponding
double-parton cross sections are enhanced by a much higher factor
of σeff,pp/σeff,AA ∝ A3.3/5 � 9 · 106.

3. Centrality-dependence of the DPS cross sections

The cross sections discussed so far are for “minimum-bias”
(MB) A–A collisions without any selection in the reaction cen-
trality. The cross sections for single- and double-parton scattering
within an interval of impact parameters [b1,b2], corresponding to
a given centrality percentile, f% = 0–100%, of the total A–A cross
section σAA, with average nuclear overlap function 〈TAA[b1,b2]〉 are

σ SPS
(AA→a)[b1,b2] = A2 · σ SPS

(NN→a) · f1[b1,b2]
= σ SPS

(NN→a) · f%σAA · 〈TAA[b1,b2]
〉
, (14)

σ DPS
(AA→ab)[b1,b2] = A2 · σ DPS

(NN→ab) · f1[b1,b2]

×
[

1 + 2

A
σeff,ppTAA(0)

f2[b1,b2]
f1[b1,b2]

+ σeff,ppTAA(0)
f3[b1,b2]
f1[b1,b2]

]
, (15)

where the latter has been obtained integrating Eq. (10) over b1 <

b < b2 and where the three dimensionless and appropriately-nor-
malised fractions f1, f2, and f3 read

f1[b1,b2] = 2π

A2

b2∫
b1

b db TAA(b) = f%σAA

A2

〈
TAA[b1,b2]

〉
,

f2[b1,b2] = 2π

ATAA(0)

b2∫
b1

b db

×
∫

d2b1TA(b1)TA(b1 − b)TA(b1 − b),

f3[b1,b2] = 2π

A2TAA(0)

b2∫
b1

b db T2
AA(b).

We can evaluate the integrals f2, and f3 for small enough
centrality bins around a given impact parameter b. The domi-
nant f3/ f1 contribution in Eq. (15) is simply given by the ratio
〈TAA[b1,b2]〉/TAA(0) which is practically insensitive (except for
very peripheral collisions) to the precise shape of the nucleon
density in the nucleus [30]. The second centrality-dependent DPS
term, f2/ f1, cannot be expressed in a simple form in terms of
TAA(b). It is of order unity for the most central collisions (b = 0),
f2/ f1 = 4/3–16/15 for Gaussian and hard-sphere profiles respec-
tively, but it is suppressed in comparison with the third leading
term by an extra factor ∼2/A. For not very peripheral collisions
( f% � 0–65%), the DPS cross section in a (thin) impact-parameter
range can be approximated by

σ DPS
(AA→ab)[b1,b2] ≈ σ DPS

(NN→ab) · σeff,pp · f%σAA · 〈TAA[b1,b2]
〉2

=
(

m

2

)
σ SPS

(NN→a) · σ SPS
(NN→b) · f%σAA

· 〈TAA[b1,b2]
〉2

. (16)
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Table 1
Total cross sections at LHC energies for the production of prompt- J/ψ in single-parton scatterings (SPS) in p–p, N–N, Pb–Pb collisions, and of prompt- J/ψ-pairs in double-
parton scatterings (DPS) in Pb–Pb. The p–p values are extrapolated from experimental data, the N–N values are an NLO CEM prediction including EPS09 nuclear PDFs, and
the Pb–Pb results are derived from the N–N cross sections via the quoted equations.

Process Cross section
√

sNN (TeV)

1.96 2.76 5.5 7.0

σ SPS(p–p,p–p̄ → J/ψ X) [μb] measured (extrapolated) 25.±9. 28.±8. – 49.±9.

σ SPS(N–N → J/ψ X) [μb] CEM(NLO) + EPS09 PDF, Eq. (3) 14.±4. 16.±3. 25.±5. 29.±6.

σ SPS(Pb–Pb → J/ψ X) [mb] Eq. (4) 600±140 700 ±150 1100 ±250 1250 ±280
σ DPS(Pb–Pb → J/ψ J/ψ X) [mb] Eqs. (12)–(13) 65 ±15 90 ±20 200±50 270 ±60
Taking the ratio of this expression over Eq. (14), one obtains the
corresponding ratio of double to single-parton scattering cross sec-
tions as a function of impact parameter:

(
σ DPS

(AA→ab)/σ
SPS
(AA→a)

)[b1,b2] ≈
(

m

2

)
σ SPS

(NN→b) · 〈TAA[b1,b2]
〉
. (17)

This analytical expression neglects the first and second terms of
Eq. (15). In the centrality percentile f% ≈ 65–100% the second term
would add about 20% more DPS cross sections, and for very pe-
ripheral collisions ( f% ≈ 85–100%, where 〈TAA[b1,b2]〉 is of order
or less than 1/σeff,pp) the contributions from the first term are
also non-negligible.

4. Results

From Eqs. (12), with m = 1, and (13) we can compute the
expected double-parton cross sections for J/ψ-pair production
in Pb–Pb from the single-parton J/ψ cross sections in nucleon–
nucleon collisions, σ SPS

(NN→ J/ψ X) , obtained with the colour evapo-
ration model (CEM) [31] cross-checked with the existing p–p and
p–p̄ Tevatron and LHC data, and taking into account nuclear PDF
modifications [32]. The SPS cross sections for prompt- J/ψ , after
subtraction of the decay contributions from bottom mesons, have
been measured down to zero pT in p–p̄ at

√
s = 1.96 TeV at ra-

pidities |y| < 0.6 [33] and in p–p at
√

s = 2.76 TeV (|y| < 0.9 [34],
2 < |y| < 4.5 [35]) and 7 TeV (|y| < 0.9 [36], 1.6 < |y| < 2.4 [37],
2 < |y| < 4.5 [38]). Empirical extrapolations to total J/ψ cross
sections at the LHC can be obtained by integrating a Gaussian dis-
tribution fitted to the data points measured at different y. The
Tevatron midrapidity cross section can be extrapolated to full-
rapidity with the prescription of [39]. The values obtained, with
their propagated uncertainties, are listed in Table 1 and shown as
data points in Fig. 2 (top) as a function of the c.m. energy. Re-
cent next-to-leading-order (NLO) CEM predictions for σ SPS

(pp→ J/ψ X)

with theoretical scales μF = 1.5mc and μR = 1.5mc for a c-quark
mass mc = 1.27 GeV (solid curve) [40], agree well with the exper-
imental data including a ±20% uncertainty from the scales. The
corresponding values for σ SPS

(NN→ J/ψ X) are obtained from the CEM
p–p cross sections scaled by the NLO EPS09 nuclear PDF shadow-
ing. In the relevant (x, Q 2) ≈ (10−3,m2

J/ψ ) region, the Pb gluon
PDF is moderately depleted, by a factor of (1 − S g,Pb) ≈ 10%–20%
with respect to the free nucleon density, resulting in a reduction
of the gg → J/ψ + X yields by a factor of (1 − S2

g,Pb) ≈ 20%–35%
(dashed–dotted line in Fig. 2, top). The EPS09 uncertainties, of the
order of ±10–15%, have been propagated in quadrature with those
associated with the theoretical scales, into the N–N cross sections.
We note that the EPS09 parametrisation is clearly favoured by the
J/ψ photoproduction data measured by ALICE in ultraperipheral
Pb–Pb collisions at 2.76 TeV [41].

The two uppermost curves in the top panel of Fig. 2 show the
resulting Pb–Pb cross sections for single- and double- J/ψ produc-
tion, whereas their ratio is shown in the bottom panel. At the
nominal Pb–Pb energy of 5.5 TeV, single prompt- J/ψ cross sec-
Fig. 2. Top: Cross sections for prompt- J/ψ production in p–p, N–N, and Pb–Pb colli-
sions and for double-parton J/ψ J/ψ in Pb–Pb, as a function of c.m. energy. Bottom:
Fraction of prompt- J/ψ events where a pair of J/ψ is produced in Pb–Pb collisions,
as a function of c.m. energy. The bands show the nuclear PDF and scales uncer-
tainties in quadrature. (For interpretation of the references to colour, the reader is
referred to the web version of this Letter.)

tions (dashed curve) amount to about 1 b, and ∼20% of such
collisions are actually accompanied by the production of a sec-
ond J/ψ from a double-parton interaction (dotted curve), whereas
such processes are negligible at RHIC energies. The rise of the
DPS/SPS ratio tends to slow down at higher

√
sNN as the nuclear

PDF shadowing (which enters squared in the numerator but only
linearly in the denominator) increases, thereby reducing the total
double- J/ψ yields. The yellow bands in Fig. 2, amounting to about
±25%, include in quadrature the EPS09 PDF and theoretical scales
uncertainties.

The ratio of single- to double- J/ψ production, Eq. (17), as a
function of the reaction centrality quantified by the number of par-
ticipant nucleons (0 < Npart < 2A) in Pb–Pb at 5.5 TeV is shown in
Fig. 3. The probability of J/ψ-pair production increases rapidly and
at the highest centralities (lowest impact parameters), about 35% of
the Pb–Pb → J/ψ + X collisions have a second J/ψ in the final-
state. We note that the DPS cross sections have to be understood
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Fig. 3. Fraction of prompt- J/ψ events in Pb–Pb collisions at 5.5 TeV where a
J/ψ-pair is produced from double-parton scatterings as a function of the reaction
centrality (given by Npart), according to Eq. (17). The band shows the EPS09 PDF
plus scale uncertainties.

as inclusive values, but they do not represent an extra contribu-
tion to the total prompt- J/ψ rates since they are already part of
the Pb–Pb → J/ψ + X cross section.

Our predictions can be experimentally confirmed by measur-
ing the cross sections for the simultaneous production of two J/ψ
mesons in the same Pb–Pb event via their visible dilepton de-
cay channels. The two J/ψ mesons issuing from double-parton
scatterings have on average identical pT and y distributions. At
LHC energies, the cross section per unit-rapidity for single- J/ψ
amounts to dσ J/ψ/dy ≈ σ J/ψ/8 at the (low-pT ) rapidities covered
by ALICE (at y = 0) and CMS (at y = 2), the detector acceptance
and reconstruction efficiencies reduce the measured yield by fac-
tors of ∼12–14 [9,37], and the dilepton branching ratio amounts
to about 6%. Squaring all these quantities for the case of J/ψ-pair
production results in a final reduction factor of order 3 · 10−7 for
both rapidity ranges. Thus, at 5.5 TeV one would expect a visible
DPS cross section of about dσ DPS

J/ψ J/ψ/dy|y=0,2 ≈ 60 nb per dilepton
decay mode, i.e. about 240 double- J/ψ events per unit-rapidity
in the four combinations of dielectron and dimuon channels in
1 nb−1 of integrated luminosity, assuming no in-medium sup-
pression (accounting for it would reduce the yields by a two-fold
factor, see below). The same estimates for the 15 (150) μb−1 of
Pb–Pb data already collected at 2.76 TeV result in about 3.5 (35)
double- J/ψ events in ALICE (CMS) per unit-y at mid (forward)
rapidity. The combinatorial background of dilepton pairs with in-
variant masses around m J/ψ needs to be taken into account in
order to carry out such a measurement on an event-by-event ba-
sis.

5. Discussion and conclusions

The Pb–Pb cross sections discussed so far include initial-state
nuclear PDF modifications but no final-state effects which can
modify the final measured yields. Experimentally, Pb–Pb collisions
at 2.76 TeV show a two-fold reduction of the MB J/ψ yields
with respect to p–p, i.e. RMB

AA = σAA/(A2 · σpp) ≈ 0.5, whereas the
corresponding value amounts to RMB

AA ≈ 0.4 at RHIC. In central
Pb–Pb collisions, the J/ψ yields at the LHC are even less de-
pleted (Rcent

AA ≈ 0.5) than at RHIC (Rcent
AA ≈ 0.2–0.3). Assuming that

the dominant suppression at both energies is due to the “melt-
ing” of the J/ψ state in the QGP, the smaller LHC suppression
has been interpreted as indicative of a new component of re-
generated J/ψ from cc̄ recombination [12,13], accounting for up
to 30% of the final production. Such an additional contribution
has nothing to do with the primordial DPS processes discussed
here which, as aforementioned, are already accounted for in the
total A–A prompt- J/ψ + X yields. In particular, suppression due
to colour deconfinement in the plasma should, on average, affect
equally the doubly-produced J/ψ ’s and, thus, the overall RAA sup-
pression factor should remain the same independently if the J/ψ ’s
are produced in the same or in two different Pb–Pb collisions. Re-
ciprocally, our results demonstrate that the observation of double
(or higher-multiplicity) J/ψ production in a given Pb–Pb event
should not be wrongly interpreted as indicative of extra contri-
butions from regenerated J/ψ ’s, as DPS processes are an intrinsic
component of the total J/ψ production with or without final-state
QGP effects. Such a standard assumption is quantitatively substan-
tiated in this work for the first time. Differentiating J/ψ from
double-parton scatterings and from plasma regeneration is possible
making use of their different kinematical distributions. Whereas,
J/ψ from DPS have on average identical pT and y distributions as
those SPS-produced, the J/ψ coming from coalescence of thermal
cc̄ pairs have softer pT and are relatively more produced at central
than forward rapidities as the cc̄ density is larger at y = 0 and the
regenerated yields scale with the density squared.

In summary, we have derived a simple generic expression for
double-parton scattering (DPS) cross sections in heavy-ion colli-
sions as a function of the elementary single-parton cross sections
in nucleon–nucleon collisions, and an effective σeff,AA parameter
dependent on the transverse profile of the system. The DPS cross
sections in A–A are found to be enhanced by a factor of A3.3/5,
to be compared with the A2-scaling of single-parton scatterings.
We have studied the case of J/ψ-pair production at LHC ener-
gies and found that DPS constitute an important fraction of the
total prompt- J/ψ cross sections, amounting to 20% (35%) of the
primordial production in minimum-bias (most central) Pb–Pb col-
lisions. At 5.5 TeV, about 240 double- J/ψ events are expected
per unit-rapidity in the dilepton decay channels (in the absence
of final-state suppression) for an integrated luminosity of 1 nb−1,
providing a quantitative test of the predictions presented here.
Pair-production of pQCD probes issuing from double-parton scat-
terings represents an important feature of heavy-ion collisions at
the LHC and needs to be taken into account in any attempt to
fully understand the event-by-event characteristics of any yield
suppression and/or enhancement observed in Pb–Pb compared to
p–p data.
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