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Abstract

It is well known that every automorphism of the full matrix algebra is inner. We give a short
proof of this statement and discuss several extensions of this theorem including structural results
for multiplicative maps on matrix algebras, characterizations of monotone and orthogonality
preserving maps on idempotent matrices, some nonlinear preserver results, and some recent
theorems concerning geometry of matrices. We show that all these topics are closely related
and point out the connections with physics and geometry. Several open problems are posed.
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1. Introduction

Let F be an arbitrary field. We denote by Mn(F) the algebra of all n × n matrices
over F. It is well known that every automorphism of this algebra is inner. More
precisely, we have the following result.
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Theorem 1.1. Let F be an arbitrary field and φ : Mn(F) → Mn(F) a bijective linear
map satisfying φ(AB) = φ(A)φ(B), A, B ∈ Mn(F). Then there exists an invertible
matrix T ∈ Mn(F) such that

φ(A) = T AT −1

for every A ∈ Mn(F).

Every map A �→ T AT −1, where T is any invertible matrix, will be called a
similarity transformation.

The above theorem can be easily improved. Namely, every nonzero endomorphism
of the algebra Mn(F) is inner. Indeed, the kernel of an endomorphism is an ideal in
Mn(F). The algebra Mn(F) is simple, that is, there are no nontrivial two-sided ideals
in Mn(F). So, if φ : Mn(F) → Mn(F) is a nonzero endomorphism, it must be injective
and thus, automatically bijective.

Theorem 1.1 is usually derived as a straightforward consequence of Noether-
Skolem theorem [12, p. 93, Theorem 3.14] considering homomorphisms from a
simple algebra into a finite-dimensional central simple algebra. We were able to
find also several direct proofs in the literature. Here we will present the simplest of
all proofs that we know. Although this proof is known to several mathematicians
working on this kind of problems we were unable to find it in the literature. The idea
comes from the paper of Chernoff [8] who studied representations of some operator
algebras.

Let us first describe the idea. We identify n × n matrices with linear operators
acting on the n-dimensional space Fn of all n × 1 matrices over F. If x, y ∈ Fn are
nonzero column matrices then

xyt =

 x1

...

xn


 [ y1 · · · yn ]

is a rank one n × n matrix and every n × n matrix of rank one can be represented
in the above form. By linearity, any automorphism φ : Mn(F) → Mn(F) is uniquely
determined by its behaviour on the set of all rank one matrices. If φ is an inner
automorphism induced by an invertible matrix T, then

φ(xyt ) = T xytT −1

for every rank one matrix xyt . Multiply this equation on the right hand side by a
vector z with the property that ytT −1z = λ is a nonzero scalar. We get

φ(xyt )z = λT x,

where λ is as above. Note also that T AT −1 = (λT )A(λT )−1 for every nonzero scalar
λ and every A ∈ Mn(F). In other words, if an inner automorphism φ of Mn(F) is
induced by an invertible matrix T, then it is induced by any nonzero scalar multiple of
T. Hence, the above equation gives the idea how to find T appearing in the conclusion
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of our theorem for a given automorphism φ. Based on this simple observation we get
the following short proof.

Proof of Theorem 1.1. Choose and fix a pair of nonzero vectors u, y ∈ Fn. Since
φ is injective we can find z ∈ Fn such that φ(uyt )z �= 0. Define T : Fn → Fn by
T x = φ(xyt )z, x ∈ Fn. The linearity of T follows from the linearity of φ. Moreover,
T is nonzero since T u �= 0. For arbitrary A ∈ Mn(F) and x ∈ X we have

T Ax = φ((Ax)yt )z = φ(A · xyt )z = φ(A)φ(xyt )z = φ(A)T x,

and consequently,

T A = φ(A)T .

Let w be any vector in Fn. Since T u �= 0 and because φ is surjective we can find B ∈
Mn(F) such that φ(B)T u = w = T Bu. Thus, T is surjective, and therefore invertible.
It follows that φ(A) = T AT −1, A ∈ Mn(F), as desired. �

A more general approach is to consider Mn(F) only as a ring. Then we are inter-
ested in ring automorphisms of Mn(F), that is, bijective maps φ : Mn(F) → Mn(F)

satisfying φ(A + B) = φ(A) + φ(B) and φ(AB) = φ(A)φ(B), A, B ∈ Mn(F). The
easiest way to treat such maps is to note that the center Z(Mn(F)) = {A ∈ Mn(F) :
AB = BA for every B ∈ Mn(F)} of the ring Mn(F) is the set of all scalar matrices
λI , λ ∈ F. Clearly, φ maps the center of Mn(F) onto itself. Thus, φ(λI) = f (λ)I

for some function f : F → F. Obviously, f is an automorphism of the field F. For
any matrix A we denote by Af −1 the matrix obtained from A by applying f −1 entry-
wise, Af −1 = [aij ]f −1 = [f −1(aij )]. The map A �→ Af −1 is a ring automorphism
of Mn(F). It follows that ϕ : Mn(F) → Mn(F) defined by ϕ(A) = φ(Af −1) is again
a ring automorphism of Mn(F). Moreover, it is linear. Indeed,

ϕ(λA) = φ(f −1(λ)IAf −1) = φ(f −1(λ)I )φ(Af −1) = λφ(Af −1) = λϕ(A).

The structural result for ring automorphisms follows now immediately from Theorem
1.1.

Corollary 1.2. Let F be an arbitrary field and φ : Mn(F) → Mn(F) a bijective addi-
tive map satisfying φ(AB) = φ(A)φ(B), A, B ∈ Mn(F). Then there exist an auto-
morphism f of the field F and an invertible matrix T ∈ Mn(F) such that

φ(A) = T Af T −1

for every A ∈ Mn(F).

Let f : F → F be an automorphism of the field F. Then the map A �→ Af will be
called a ring automorphism of Mn(F) induced by f.

Recall that a map φ : Mn(F) → Mn(F) is called an anti-automorphism of the
algebra Mn(F) if it is bijective, linear, and satisfies φ(AB) = φ(B)φ(A), A, B ∈
Mn(F). The transposition map A �→ At is an example of such maps. Moreover,
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if we compose any anti-automorphism of Mn(F) with the transposition we get an
automorphism of Mn(F). Thus, we have another straightforward consequence of
Theorem 1.1.

Corollary 1.3. Let F be an arbitrary field and φ : Mn(F) → Mn(F) a bijective linear
map satisfying φ(AB) = φ(B)φ(A), A, B ∈ Mn(F). Then there exists an invertible
matrix T ∈ Mn(F) such that

φ(A) = T AtT −1

for every A ∈ Mn(F).

Let T be an arbitrary invertible matrix. Then the map A �→ T AtT −1 will be called
an anti-similarity transformation.

A map φ : Mn(F) → Mn(F) is called a Jordan automorphism of the algebra Mn(F)

if it is bijective, linear, and satisfies φ(A2) = φ(A)2 for every A ∈ Mn(F). Obviously,
every automorphism as well as every anti-automorphism is a Jordan automorphism
of Mn(F).

It follows from [23,78] that every Jordan automorphism φ of Mn(F), char F �= 2,
is either an automorphism, or an anti-automorphism. This together with the above
structural results for automorphisms and anti-automorphisms yield the following
result.

Corollary 1.4. Let F be an arbitrary field, char F �= 2, and φ : Mn(F) → Mn(F) a
Jordan automorphism. Then there exists an invertible matrix T ∈ Mn(F) such that
either

φ(A) = T AT −1

for every A ∈ Mn(F), or

φ(A) = T AtT −1

for every A ∈ Mn(F).

In this paper we will discuss several generalizations of the above theorems. En-
domorphisms of matrix algebras are linear multiplicative maps. In the next section
we will omit the linearity assumption and consider multiplicative maps on matrix
algebras. Besides multiplicative maps on full matrix algebras we will be interested
also in maps defined on some (Jordan, Lie) subalgebras that are multiplicative with
respect to the usual product or Jordan product or Lie product. Multiplicative maps
on Mn(F) map every idempotent matrix into an idempotent. Moreover, such maps
preserve orthogonality and the usual order on the set of idempotent matrices. We
will survey some recent results on monotone and orthogonality preserving maps on
idempotent matrices and point out the connection with physics. Observe that every
Jordan automorphism of Mn(F) has many nice preserving properties: it preserves



368 P. Šemrl / Linear Algebra and its Applications 413 (2006) 364–393

invertibility, rank, commutativity, etc. The natural question is whether every linear
map on Mn(F) having a certain preserving property is a Jordan automorphism (or
a map of a similar form). There is vast literature on these so called linear preserver
problems. Besides linear also additive, multiplicative, and quadratic preservers were
studied by many authors. Here we will be interested in general preservers, that is, maps
on Mn(F) having a certain preserving property that are not assumed to satisfy any
additional algebraic assumption. In particular, we will discuss adjacency preserving
maps on matrices. We will pay a special attention to connections between the above
mentioned problems and show that they are also closely related to some problems in
geometry. Several open problems will be posed. At the end we will give a long list
of references. Although some of them will not be cited in the paper we decided to
include them because of being so closely related to the research topics treated in this
survey.

2. Multiplicative maps on matrix algebras

We started with the description of all bijective linear multiplicative maps on Mn(F)

and then presented a more general structural result for bijective additive multiplicative
maps. Now we will go even one step further by omitting all but the multiplicativity
assumption. So we will be interested in the description of all maps φ : Mn(F) →
Mn(F) satisfying φ(AB) = φ(A)φ(B), A, B ∈ Mn(F).

Let us start with some examples. Assume that k � n. Following Jodeit and Lam
[34] we will call a multiplicative map φ : Mn(F) → Mk(F) degenerate if φ(A) = 0
for every singular matrix A. The structure of such maps is quite well understood.
Namely, if φ(I) = 0, then φ = 0. Otherwise, φ(I) is a nonzero idempotent and
the image of φ is contained in PMk(F)P , where P = φ(I). Now, PMk(F)P is in
a natural way isomorphic to Mr(F), where r = rank P . This natural isomorphism
maps P into the identity r × r matrix. Thus, if we want to understand the structure
of degenerate multiplicative maps from Mn(F) into Mk(F) we have to understand
the structure of unital degenerate multiplicative maps from Mn(F) into Mr(F) where
r is any positive integer � n. Every such map sends invertible matrices into invert-
ible matrices. And because the restriction of such a map to the set of all singular
matrices is the zero map, we only need to understand the structure of homomor-
phisms between the general linear groups GL(n, F) and GL(r, F). Clearly, GL(r, F)

can be embedded into GL(n, F). Thus, understanding the structure of degenerate
multiplicative maps is the same as understanding the structure of endomorphisms
of the general linear group. The structural theory for endomorphisms of the gen-
eral linear group based on classical Borel-Tits results is highly nontrivial but well
developed.

Let us now turn to nondegenerate multiplicative maps φ : Mn(F) → Mn(F). Every
similarity transformation and every ring endomorphism of Mn(F) induced by an
endomorphism of the underlying field F is a nondegenerate multiplicative map on
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Mn(F). The map A �→ (adj A)t which sends every matrix to its matrix of cofactors is
also a multiplicative nondegenerate map. And finally, let r be an integer, 0 � r < n,
and ϕ : Mn(F) → Mr(F) any degenerate multiplicative map. Then the formula

A �→
[

ϕ(A) 0
0 In−r

]

defines another nondegenerate multiplicative map on Mn(F).
Clearly, any product of multiplicative maps on Mn(F) is again a multiplicative

map. In 1969 Jodeit and Lam [34] proved that every multiplicative map on Mn(F) is
a product of maps described above. More precisely, we have

Theorem 2.1. Let n be a positive integer and F any field. Suppose that φ : Mn(F) →
Mn(F) is a multiplicative map. Then either φ is degenerate, or there exist an endo-
morphism f : F → F and an invertible matrix T such that

φ(A) = T Af T −1, A ∈ Mn(F),

or there exist an endomorphism f : F → F and an invertible matrix T such that

φ(A) = T (adj Af )tT −1, A ∈ Mn(F),

or there exist a degenerate multiplicative map ϕ : Mn(F) → Mn(F) and a nonzero
idempotent P ∈ Mn(F) such that

φ(A) = ϕ(A) + P, A ∈ Mn(F).

It should be mentioned that Jodeit and Lam proved the above theorem under the
weaker assumption that F is a principal ideal domain.

There are plenty of open problems here. Namely, Mn(F) can be equipped with
other products like Lie product [A, B] = AB − BA or Jordan product A ◦ B =
AB + BA (if the underlying field is not of characteristic 2 then Jordan product is
usually defined by A ◦ B = 1

2 (AB + BA)). Thus, instead of studying maps that
are multiplicative with respect to the usual product one can study maps that are
multiplicative with respect to Lie or Jordan product, that is, maps satisfying one of
the following equations:

φ(AB − BA) = φ(A)φ(B) − φ(B)φ(A), (1)

φ(AB + BA) = φ(A)φ(B) + φ(B)φ(A),

φ

(
1

2
(AB + BA)

)
= 1

2
(φ(A)φ(B) + φ(B)φ(A))

for all A, B ∈ Mn(F). The last two equations look very similar. So it is interest-
ing to observe that Molnár [53] had to use completely different approaches when
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characterizing their solutions. A related problem is to characterize maps that are
multiplicative with respect to Jordan triple product, that is, mapsφ onMn(F) satisfying

φ(ABA) = φ(A)φ(B)φ(A)

for all A, B ∈ Mn(F).
Next, instead of considering maps that are multiplicative with respect to one of the

above products on the full matrix algebra we can consider such maps on any subset that
is closed under this product. For example, we can ask what is the general form of maps
φ acting on upper triangular matrices that are multiplicative with respect to one of the
above products. The set of all symmetric matrices and the set of all complex hermitian
matrices are closed under any of the above mentioned Jordan products, while the set
of skewsymmetric matrices and the set of skewhermitian complex matrices are closed
under Lie product. So, we can study Jordan multiplicative or Lie multiplicative maps
on these sets. Further, we can try to solve this kind of problems on matrices over
certain rings or general division rings. And finally, instead of multiplicative maps
on n × n matrices we can study such maps between multiplicative semigroups of
matrices of different sizes. For example, we started this section with the result of
Jodeit and Lam on multiplicative maps from Mn(F) into Mn(F). The special case
of multiplicative maps f from Mn(F) → F (this is indeed a special case since every
multiplicative map f : Mn(F) → F gives rise to a multiplicative map from Mn(F)

into Mn(F) defined by A �→ f (A)I ) has been treated much earlier. It is well known
that every multiplicative map f : Mn(F) → F is of the form f (A) = g(det A), where
g : F → F is a multiplicative function. It is much more difficult to treat multiplicative
maps from Mn(F) → Mm(F) with n < m (see [36,37]).

Let us discuss here as an example the case of Lie multiplicative maps. If φ :
Mn(C) → Mn(C) is a bijective map satisfying (1) then there exist an invertible
matrix T ∈ Mn(C), a function ϕ : Mn(C) → C satisfying ϕ(C) = 0 for every trace
zero matrix C and an automorphism f of the complex field such that either φ(A) =
T Af T −1 + ϕ(A)I for every A ∈ Mn(C), or φ(A) = −T At

f T −1 + ϕ(A)I for every
A ∈ Mn(C). If we do not assume that φ is bijective, then we conclude that φ must
be either of one of the above forms (with f being a not necessarily bijective endo-
morphism), or the image of φ is contained in some subset of Mn(C) consisting of
pairwise commuting matrices (in this case we have φ(AB − BA) = 0 for every pair
A, B ∈ Mn(C), or equivalently, φ(C) = 0 for every trace zero matrix C). This has
been recently proved by Dolinar [15]. Now we have here a whole set of open questions
as described above. Can we extend this result to matrices over general fields or even
general division rings? What happens on matrices over rings? It would be also natural
to study Lie multiplicative maps on upper triangular or even more general block
upper triangular matrices, on skewsymmetric matrices, on skewhermitian matrices,
etc. Can we say something about Lie multiplicative maps φ : Mn(C) → Mm(C) when
m > n?

We conclude this section by listing some papers treating this kind of problems that
we are aware of. These are [1,7,15,20,22,34,36,37,40–43,49,51,53,54,62,67,82].
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3. Maps on idempotent matrices

In this section we will consider matrices over any division ring D. A matrix P ∈
Mn(D) is called an idempotent if P 2 = P . The set of all n × n idempotent matrices
with entries in D will be denoted by Pn(D). For any integer k, 1 � k � n, we denote
by P k

n (D) and P �k
n (D) the set of all n × n idempotent matrices of rank k, and the set

of all n × n idempotents of rank at most k, respectively.
In the previous section we have considered multiplicative maps on the set of all

n × n matrices. Clearly, if φ : Mn(D) → Mn(D) is a multiplicative map (with respect
to the usual matrix product), then φ(Pn(D)) ⊂ Pn(D).

There are two natural relations on the set Pn(D). First, it is well known that Pn(D)

is a poset (partially ordered set) with the partial order defined by

P � Q ⇐⇒ PQ = QP = P, P, Q ∈ Pn(D).

Clearly, if P = 0 or Q = I or P = Q, then P � Q. Otherwise, P � Q implies that
P and Q are simultaneously similar to[

I 0 0
0 0 0
0 0 0

]
and

[
I 0 0
0 I 0
0 0 0

]
,

respectively.
The second natural relation on Pn(D) is the orthogonality relation defined by

P ⊥ Q ⇐⇒ PQ = QP = 0, P , Q ∈ Pn(D).

Obviously, P ⊥ Q if P = 0 or Q = 0 or P = I − Q. If P ⊥ Q and we do not have
one of the trivial possibilities mentioned in the previous sentence, then P and Q are
simultaneously similar to[

I 0 0
0 0 0
0 0 0

]
and

[ 0 0 0
0 I 0
0 0 0

]
,

respectively.
We already know that the set Pn(D) is invariant under every multiplicative map

acting on the whole matrix space Mn(D). Moreover, it is obvious that for every
multiplicative map φ : Mn(D) → Mn(D) satisfying φ(0) = 0 the restriction φ|Pn(D) :
Pn(D) → Pn(D) preserves order and orthogonality, that is, for every P, Q ∈ Pn(D)

we have

P � Q ⇒ φ(P ) � φ(Q)

and

P ⊥ Q ⇒ φ(P ) ⊥ φ(Q).

The natural question here is, of course, what is the general form of maps on Pn(D)

satisfying the first or the second condition above.
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We started with the structural result for automorphisms of the algebra of all square
matrices over a given field, in the next step we considered maps on matrix algebras that
are merely multiplicative, and now we have arrived to an even more general problem
of characterizing maps on idempotent matrices preserving order or orthogonality.
The study of this kind of problems has been motivated also by some problems in
mathematical physics. In particular, the first result on automorphisms of the poset
of idempotent matrices was obtained by Ovchinnikov [57]. The motivation for his
work came from quantum mechanics (see the review MR 95a:46093). His result
recently proved to be useful also in the study of quantum mechanical invariance
transformations. Molnár [52] used it to considerably improve the classical Wigner’s
unitary–antiunitary theorem. Later a shorter proof of Molnár’s theorem was found
based on some structural results for maps on rank one idempotents preserving zero
products, or more generally, preserving orthogonality [73,75]. Other applications of
structural results for order preserving and orthogonality preserving maps on idempo-
tents include theorems on automorphisms of operator and matrix semigroups [73,77],
general preserver problems (see the next section) and geometry of matrices and
Grassmanians (see the last section).

Thus, we are interested in the structure of maps on Pn(D) that preserve either
order, or orthogonality. The relations � and ⊥ are closely connected. Indeed, for
every pair of idempotents P, Q ∈ Pn(D) we have P � Q if and only if Q⊥ ⊂ P ⊥.
Here, P ⊥ denotes the set of all idempotents R ∈ Pn(D) that are orthogonal to P.
Moreover, if P � Q, then P and Q commute. Also, if P and Q are orthogonal
then they commute. So, the problem of characterizing order preserving maps on
idempotent matrices is closely related to the problem of characterizing orthogona-
lity preserving maps on idempotent matrices and both problems are related to the
structural problem for commutativity preserving maps on idempotent matrices. Of
course, a map φ : Pn(D) → Pn(D) is called a commutativity preserving map if
φ(P )φ(Q) = φ(Q)φ(P ) for every pair of commuting idempotents P, Q ∈ Pn(D).

First observe that if we want to get reasonable structural results for maps φ :
Pn(D) → Pn(D) that preserve one of our relations (order, orthogonality, commuta-
tivity) then we have to restrict ourselves to the case when n � 3. Indeed, the set of all
rank one idempotents in P2(D) is a disjoint union of pairs {P, I − P } of orthogonal
idempotents of rank one. Clearly, two distinct rank one idempotents in P2(D) com-
mute if and only if they are orthogonal. Every bijective map φ : P2(D) → P2(D)

sending every pair of orthogonal rank one idempotents into a pair of orthogonal rank
one idempotents and satisfying φ(0) = 0 (note that then automatically φ(I) = I )
preserves order, orthogonality, and commutativity in both directions. Recall that a
map φ : Pn(D) → Pn(D) preserves order in both directions if for every pair P, Q ∈
Pn(D) we have P � Q if and only if φ(P ) � φ(Q). In the same way we define maps
preserving orthogonality or commutativity in both directions.

So, in this section we will always assume that n � 3. For every invertible matrix
T ∈ Mn(D) and every automorphism σ of D the map φ : Pn(D) → Pn(D) defined
by
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φ(P ) = T Pσ T −1, P ∈ Pn(D), (2)

is a bijective map preserving order, orthogonality, and commutativity in both direc-
tions.

Assume that A, B ∈ Mn(D). Since the multiplication in D is not necessarily com-
mutative we do not have (AB)t = BtAt in general. But if τ is an anti-endomorphism
of D then [(AB)τ ]t = Bt

τA
t
τ . It follows that for every invertible matrix T ∈ Mn(D)

and every anti-automorphism τ of D the map φ : Pn(D) → Pn(D) defined by

φ(P ) = T (Pτ )
tT −1, P ∈ Pn(D), (3)

is a bijective map preserving order, orthogonality, and commutativity in both direc-
tions. Every map of the form (2) or (3) will be called a standard map on Pn(D). In
other words, we get a standard map in two ways. We can either start with a similarity
transformation on the whole space Mn(D), compose it with a ring automorphism
of Mn(D) induced by an automorphism of the underlying division ring D, and then
restrict the obtained map to the set of all idempotents, or we do the same with a
similarity transformation composed with the transposition and a map on Mn(D)

induced by an anti-automorphism of the underlying division ring D.
If σ and τ in (2) and (3) are assumed to be a nonzero (not necessarily bijective)

endomomorphism and anti-endomomorphism of D, respectively, then the map φ is an
injective map preserving order, orthogonality, and commutativity in both directions.
We will call such maps almost standard maps on Pn(D).

Choose any positive integer k, 1 � k � n − 1. A map φ : Pn(D) → Pn(D), which
maps every idempotent of rank at most k into the zero idempotent and every idempo-
tent of rank larger than k into itself preserves commutativity, order, and orthogonality.
As most of us are used to work with matrices over fields it should be mentioned here
that the definition of a rank of a matrix is slightly more complicated in the noncommu-
tative case. The details will be given in the last section. Any map φ : Pn(D) → Pn(D)

whose image is contained in a simultaneously diagonalizable subset of Pn(D) pre-
serves commutativity. Any map φ : Pn(D) → Pn(D) with the property φ(P ) � P ,
P ∈ Pn(D), preserves orthogonality. Let φ : P 1

n (D) → Pn(D) be an arbitrary map.
We will extend it inductively to an order preserving map φ : Pn(D) → Pn(D). As the
starting map was chosen in an arbitrary way such maps are in general far from being
of a standard or an almost standard form. We first define φ(0) = 0. Assume that we
have already extended φ to a map φ : P �k

n (D) → Pn(D), where k is a positive integer
1 � k � n − 1, and that for every P, Q ∈ P �k

n (D) the relation P � Q yields that
φ(P ) � φ(Q). For every P ∈ P k+1

n (D) we can find Q ∈ Pn(D) such that φ(R) � Q

for every R ∈ Pn(D) satisfying R � P , R �= P . Indeed, the choice Q = I works
always but in general we have more freedom. We complete the inductive step by
defining φ(P ) = Q.

These examples show that the maps φ : Pn(D) → Pn(D) preserving one of our
relations (commutativity, order, orthogonality) may be very far from being standard
or almost standard. For more examples of such preservers with wild behaviour we
refer to [77]. So, if we want to have reasonable structural results we have to impose
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additional conditions. The natural choices are the injectivity or the surjectivity as-
sumption. We can also study such maps under the stronger assumption that the relation
under the consideration is preserved in both directions.

Our conjecture when starting our work in this direction was that surjective maps
on Pn(D) preserving one of our relations must be of a standard form. Surprisingly, it
turned out that this is not true. Namely, there exist nonstandard surjective preservers
of order or orthogonality or commutativity on complex idempotent matrices. It is not
easy to describe an example due to its complexity. We refer the interested readers to
[77]. The construction of these counterexamples is based on the fact that there are
many “wild” endomorphisms of the complex field [35]. On the other hand, the only
nonzero endomorphism of the real field is the identity map. Our conjecture is that
every surjective order preserving map on Pn(R) is standard. In fact, it is tempting
to conjecture that even more is true. First we need one more definition. A division
ring D is an EAS-division ring if every nonzero endomorphism of D is automatically
surjective (note that in the EAS-case every almost standard map is automatically
standard). Let us mention here that besides the field of real numbers also the field
of rational numbers and the division ring of quaternions have this property. Assume
that D is an EAS-division ring and n � 3. Is it then true that every surjective order
preserving map on Pn(D) is of a standard form? We conjecture that the answer
to this question as well as to the analogous question for orthogonality preserving
maps are in the affirmative. At the end of this section we will consider commutativity
preserving maps. It will be then easy to guess what is our conjecture on the structure of
surjective commutativity preserving maps on idempotent matrices over EAS-division
rings.

Let D be an infinite division ring. Then we can find injective maps ϕ1 : P 1
3 (D) →

D and ϕ2 : P 2
3 (D) → D. It is easy to verify that a map φ : P3(D) → P3(D) defined

by

φ(0) = 0, φ(I ) = I,

φ(P ) =
[ 1 ϕ1(P ) 0

0 0 0
0 0 0

]
, P ∈ P 1

3 (D),

and

φ(P ) =
[ 1 0 0

0 1 0
0 ϕ2(P ) 0

]
, P ∈ P 2

3 (D),

is an injective order preserving map. In fact, all we have to do is to verify that[ 1 ∗ 0
0 0 0
0 0 0

]
�

[ 1 0 0
0 1 0
0 ∗ 0

]
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holds true for any choices of the entries denoted by ∗. If we compose such a map
with the transposition then the obtained map is again an injective order preserving
map on P3(D). We have obtained two types of injective order preserving maps and
if we compose any of them with a similarity transformation we again arrive at an
injective order preserving map. Any such map will be called a degenerate injective
order preserving map on P3(D). It is quite obvious how to extend the notion of a
degenerate injective order preserving map to higher dimensions (for the details see
[77]). One of the main results in [77] is the following.

Theorem 3.1. Let D be any EAS-division ring.Assume thatn � 3 and letφ : Pn(D) →
Pn(D) be an injective order preserving map. Then either φ is a degenerate injective
order preserving map, or it is of a standard form.

It is rather easy to prove that every map φ : Pn(D) → Pn(D) preserving order in
both directions must be injective. Obviously, a degenerate injective order preserving
map cannot preserve order in both directions. Consequently, if D is any EAS-division
ring, n � 3, and φ : Pn(D) → Pn(D) a map preserving order in both directions, then
φ is standard. In [77] one can find a counterexample showing that the EAS-assumption
is indispensable in the above theorem as well as in its corollary. We have already
mentioned that surjective order preserving maps may have a wild behaviour if the
underlying division ring is not EAS. However, the bijectivity assumption is strong
enough to give the expected nice structural result for general division rings. Namely,
in [77] it was proved that for any division ring D every bijective order preserving map
on Pn(D), n � 3, is standard.

We continue with maps φ : Pn(D) → Pn(D) preserving orthogonality. We already
know that surjective orthogonality preserving maps are not necessarily standard. For
rather “wild” examples of such maps we refer to [77]. As in the case of order preserving
maps it is a rather simple observation that maps preserving orthogonality in both
directions are automatically injective. Thus, the main problem here is to characterize
injective orthogonality preserving maps.

Because of some already mentioned applications in physics and some applica-
tions in the theory of general preservers (see the next section) we are interested
also in orthogonality preserving maps acting on the subset of rank one idempotents.
Let D be any division ring and n an integer �3. In [77] it was proved that every
injective orthogonality preserving map φ : P 1

n (D) → P 1
n (D) is a restriction of an

almost standard map.
If φ is an injective orthogonality preserving map defined on the whole set Pn(D)

then a rather simple argument shows that it maps rank one idempotents into rank
one idempotents, and therefore, by the previous statement, the restriction of φ to the
set of rank one idempotents is of an almost standard form. At this point it would be
tempting to conjecture that it is of an almost standard form on the whole set Pn(D).
However, this is not true in general. The counterexample can be found in [77]. Once
again, the conjecture holds true for idempotent matrices over EAS-division rings.
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Theorem 3.2. Let D be any EAS-division ring. Assume that n � 3 and let φ :
Pn(D) → Pn(D) be an injective orthogonality preserving map. Then φ is of a stan-
dard form.

As in the case of order preserving maps we can replace in the above theorem
the two assumptions, that is the injectivity assumption and the orthogonality pre-
serving assumption, by a single assumption of preserving orthogonality in both
directions and get the same conclusion. To get the same conclusion for idempotent
matrices over an arbitrary division ring we need stronger assumptions. In order to
get a standard form in the general case we have to assume that either φ is a bijective
map preserving orthogonality, or a surjective map preserving orthogonality in both
directions.

It would be interesting to prove analogous results for orthogonality preserving
maps on P k

n (D), 1 < k < n/2. For the results on orthogonality preserving maps
defined on idempotents or projections of a fixed finite rank in the infinite-dimensional
case we refer to [21,50,74,76]. In these four papers and references therein one can
find further results on order preserving, orthogonality preserving, and commutativity
preserving maps on idempotent operators on infinite-dimensional spaces. It should
be mentioned here that for all known results in the infinite-dimensional case we need
much stronger assumptions than in the finite-dimensional case. In contrast to the
finite-dimensional case we have no counterexamples showing the optimality of the
theorems in the infinite-dimensional case and in fact we conjecture that all known
infinite-dimensional results are far from being optimal.

Let φ : Pn(D) → Pn(D) be any map which sends every idempotent either into
itself, or into its orthocomplement, that is, φ(P ) ∈ {P, I − P }, P ∈ Pn(D). Then
φ preserves commutativity in both directions. Such maps will be called orthoper-
mutations. So, on one hand, the study of commutativity preservers on Pn(D) is
slightly more complicated than the study of order or orthogonality preservers because
we have to take into consideration besides almost standard and standard maps also
orthopermutations. But on the other hand, it turns out that we do not need to deal with
the EAS-assumption as in the case of order and orthogonality preservers. Namely,
the following was proved in [77].

Theorem 3.3. Let D be any division ring. Assume that n � 3 and let φ : Pn(D) →
Pn(D) be an injective commutativity preserving map. Then φ is an almost standard
map composed with a bijective orthopermutation.

If we replace the injectivity assumption and the preserving property in the above
theorem by a single assumption of preserving commutativity in both directions then
we get the same conclusion with the only difference that the orthopermutation ap-
pearing in the assertion need not be bijective.

Let us conclude this section with a rather general open problem. Throughout
this section we have considered maps acting on the set of all n × n idempotents
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or on the set of all n × n idempotents of a fixed rank. We can restrict our atten-
tion to the set of all idempotents belonging to some multiplicative subsemigroup
of Mn(D) and then try to characterize order and orthogonality preserving maps on
this set. For example, we can consider such maps on upper triangular idempotent
matrices or more generally, on block upper triangular idempotents. We are aware
of only one paper [17] treating this kind of problems. The results and examples
in this paper show that the structure of order preserving maps on upper triangu-
lar idempotents is essentially more complicated than in the case of the set of all
idempotents.

4. General preservers

In the last few decades a lot of results on linear preservers on matrix algebras have
been obtained. Also, a more general problem of characterizing additive preservers
and a related problem of characterizing multiplicative preservers on matrix algebras
were studied a lot. It is surprising that in some special cases we can get nice structural
results for preservers without any algebraic assumption like linearity, additivity or
multiplicativity. In this section we will briefly survey some recent results on general
preservers and explain the main ideas in their proofs.

We start with spectrum preserving maps. Given a complex matrix A we will denote
its spectrum by σ(A) with the convention that eigenvalues are counted according to
multiplicity. A map φ : Mn(C) → Mn(C) is called spectrum preserving if σ(φ(A)) =
σ(A) for every A ∈ Mn(C). The problem of characterizing linear maps preserving
spectrum on matrix and more general Banach algebras has a long history (see [2]).
In particular, Marcus and Moyls [44] showed that every linear map φ : Mn(C) →
Mn(C) preserving spectrum is either a similarity transformation, or an anti-similarity
transformation.

Let us now give an example of a nonlinear spectrum preserving map on Mn(C).
For every A ∈ Mn(C) we choose an invertible matrix TA ∈ Mn(C). Obviously, the
map A �→ TAAT −1

A preserves spectrum. Every such map will be called a local
similarity.

The zero 3 × 3 matrix and


0 1 0

0 0 1

0 0 0




have the same spectrum, but they are not similar. Having in mind this and similar
examples it is easy to construct spectrum preserving bijective maps on Mn(C) that
are not local similarities. Baribeau and Ransford [3] proved a surprising result that
under the additional differentiability assumption spectrum preserving bijective maps
must be local similarities.
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Theorem 4.1. Let φ : Mn(C) → Mn(C) be a spectrum preserving C1-
diffeomorphism. Then φ is a local similarity.

So, if φ : Mn(C) → Mn(C) is a spectrum preserving C1-diffeomorphism then we
can find for every A ∈ Mn(C) an invertible TA ∈ Mn(C) such that φ(A) = TAAT −1

A .
Of course, there is a certain freedom of choice of TA and it is natural to ask whether TA

can be chosen to depend nicely on A. Baribeau and Ransford observed that there are
holomorphic spectrum-preserving bijective maps for which it is impossible to choose
TA to be a continuous function of A. The transposition map is an example of such a
map. Note that the transposition map is a local similarity. Namely, every matrix A is
similar to its transpose At .

The proof of the above theorem is not easy to understand. But one can prove
the following much simpler theorem which illustrates the main idea of the proof.
We say that φ : Mn(C) → Mn(C) is a determinant preserving map if det φ(A) =
det A for every A ∈ Mn(C). If we associate to every A ∈ Mn(C) matrices PA and
QA with det PA = det QA = 1 then the map A �→ PAAQA preserves determinant.
However, if ϕ : Sn(C) → Sn(C) is any bijective map (here, Sn(C) denotes the set of all
singular complex n × n matrices) and if we define φ : Mn(C) → Mn(C) by φ(A) =
ϕ(A) if A ∈ Sn(C) and φ(A) = A if A is invertible, then φ is a bijective determinant
preserving map which is in general not of the form A �→ PAAQA. Similarly as above
we have the following statement.

Proposition 4.2. Let φ : Mn(C) → Mn(C) be a determinant preserving C1-
diffeomorphism. Then for every A ∈ Mn(C) there exist PA, QA ∈ Mn(C) such that
det PA = det QA = 1 and φ(A) = PAAQA.

Note that in order to prove this proposition it is enough to show that rank φ(A) =
rank A for every A ∈ Mn(C). Indeed, assume that this is true. Then for every A ∈
Mn(C) there exist invertible matrices PA and QA such that φ(A) = PAAQA. From
det φ(A) = det A we conclude that det PA = (det QA)−1. After replacing PA and
QA by µPA and µ−1QA, respectively, where µn = det QA, we get det PA = det
QA = 1. In fact, as φ−1 has the same properties as φ, it is enough to show only that
rank φ(A) � rank A for every A ∈ Mn(C).

It is now clear that Baribeau and Ransford had to prove that under the assumptions
of Theorem 4.1 we have

rank((φ(A) − λI)k) = rank (A − λI)k (4)

for every λ ∈ C and every k = 1, . . . , n. Once we have this we can use the Jordan
canonical form to see that because A and φ(A) have the same spectrum, they must
be similar. Of course, it is much more difficult to get (4) from the assumptions of
Theorem 4.1 than to prove that every determinant preserving C1-diffeomorphism
preserves rank. Still, the proof of this easier fact gives some insight into the main
ideas needed in the proof of (4).
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Before proving our proposition we make one more remark. The assumption that φ :
Mn(C) → Mn(C) is a C1-diffeomorphism yields that for every positive real number
p and every A ∈ Mn(C) we can find δ, M > 0 such that

‖φ(A + H) − φ(A)‖ < M‖H‖1−p (5)

for every H ∈ Mn(C) with ‖H‖ < δ.

Proof of Proposition 4.2. As already mentioned we have to show that rank φ(A) �
rank A, A ∈ Mn(C). If A is invertible, then 0 �= det A = det φ(A), and therefore,
φ(A) is invertible as well. So, assume that rank A = r < n and rank φ(A) = k <

r . In order to get a contradiction we first recall that singular values of a matrix B
are defined as eigenvalues of (B∗B)1/2. We usually order them in decreasing order
s1(B) � s2(B) � · · · � sn(B). Note that s1(B) = ‖B‖. Fix a real number p < 1

n
.

Then

(n − k)(1 − p) − (n − r) > (n − k)(1 − (1/n)) − (n − r)

= r − k − 1 + k

n
� k

n
� 0. (6)

There exist invertible matrices P and Q such that

A = P

[
Ir 0
0 0

]
Q.

For any positive real ε define

Hε = P

[
0 0
0 εIn−r

]
Q.

Clearly,

‖Hε‖ � ‖P ‖‖Q‖ε (7)

and

det(φ(A + Hε)) = det(A + Hε) = det P det Qεn−r . (8)

On the other hand

det(φ(A + Hε)) = det(φ(A) + Tε),

where Tε = φ(A + Hε) − φ(A). It follows from (5) and ‖Hε‖ � ‖P ‖‖Q‖ε that there
exist δ, M > 0 such that

‖Tε‖ < Mε1−p (9)

for all positive ε < δ. Assume from now on that ε < δ. It is well known that the kth
singular value of a matrix B can be characterized as

sk(B) = min{‖B − C‖ : rank C < k}
and that the absolute value of the determinant is majorized by the product of singular
values (see for example [18]). Thus,
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| det(φ(A + Hε))| �
n∏

j=1

sj (φ(A + Hε)).

Now, by (9)

sk(φ(A + Hε)) � sk−1(φ(A + Hε)) � · · · � s1(φ(A + Hε))

= ‖φ(A + Hε)‖ � ‖φ(A)‖ + ‖Tε‖ � ‖φ(A)‖ + Mε1−p.

Moreover, we have

sn(φ(A + Hε)) � sn−1(φ(A + Hε)) � · · · � sk+1(φ(A + Hε))

= min{‖φ(A) + Tε − C‖ : rank C � k}
� ‖φ(A) + Tε − φ(A)‖ < Mε1−p.

Thus,

| det(φ(A + Hε))| � (‖φ(A)‖ + Mε1−p)k(Mε1−p)n−k

= ‖φ(A)‖kM(n−k)ε(1−p)(n−k)

×(1 + c1ε
(1−p) + · · · + ckε

(1−p)k)

for some constants c1, . . . , ck . Putting‖φ(A)‖kM(n−k)| det P det Q|−1 = L and com-
paring the obtained inequality with (8) we get

εn−r � Lε(1−p)(n−k)(1 + c1ε
(1−p) + · · · + ckε

(1−p)k),

or equivalently,

1 � Lε(1−p)(n−k)−(n−r)(1 + c1ε
(1−p) + · · · + ckε

(1−p)k).

According to (6), the right hand side tends to 0 when ε → 0. This contradiction
completes the proof. �

A careful reader has observed that we did not need (5) in full generality. In fact, all
we need is that (5) is satisfied for some fixed p < 1

n
. Thus, the assumption that φ is a

C1-diffeomorphism can be replaced by a milder form of differentiability. Moreover,
we do not need to assume that φ is defined on the whole matrix algebra. It is enough
to assume that it is defined on some open subset of Mn(C). For the details we refer
to [3].

Baribeau and Ransford asked whether Theorem 4.1 holds true under the weaker
assumption that φ is a homeomorphism. A possible strategy to attack this prob-
lem would be to study neighbourhoods of matrices in certain subsets of Mn(C)

satisfying some spectral conditions. Let us explain this in the 2×2 case. So, let
φ : M2(C) → M2(C) be a spectrum preserving homeomorphism. For every A ∈
M2(C) with two different eigenvalues φ(A) has the same eigenvalues, and so they
are both diagonalizable, and thus, similar. So, all we have to do is to show that every
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matrix similar to
[

λ
1

0
λ

]
is mapped into a similar matrix and every scalar matrix

λI is mapped into itself. Fix λ ∈ C. We know that the restriction of φ to the subset
T = {A ∈ M2(C) : σ(A) = (λ, λ)} is a homeomorphism ofT onto itself. We do not

know whether there exists a neighbourhood of
[

λ
1

0
λ

]
in T that is homeomorphic to

{A ∈ T : ‖A − λI‖ < 1}. If the answer to this question is negative, then obviously

φ maps scalar matrices into themselves and the set of matrices similar to
[

λ
1

0
λ

]
onto itself, and must be therefore a local similarity. If this approach works then
we believe that especially in higher dimensions it requires nontrivial topological
tools.

Let us now turn to commutativity preserving maps. A map φ : Mn(C) → Mn(C)

preserves commutativity if for every pair A, B ∈ Mn(C) we have φ(A)φ(B) =
φ(B)φ(A) whenever AB = BA. It preserves commutativity in both directions if for
every pair A, B ∈ Mn(C) we have φ(A)φ(B) = φ(B)φ(A) if and only if AB = BA.
The study of bijective commutativity preserving linear maps on matrix algebras started
in [81]. After this first paper there have been many others treating bijective linear
maps preserving commutativity. One motivation to study such maps comes from the
theory of Lie algebras. Namely, the assumption of preserving commutativity can be
reformulated as preserving zero Lie products. The most general result on bijective
linear commutativity preserving maps can be found in [5] where such maps were
treated on prime algebras. Only very recently the first results on nonbijective linear
commutativity preserving maps were obtained first for matrix algebras over alge-
braically closed fields F with char F = 0 [56] and then for arbitrary finite-dimensional
central simple algebras over such fields [6].

Can we describe the general form of not necessarily linear commutativity pre-
serving maps on Mn(C)? The difficulties that we entered in our attempts to solve
the problem of characterizing linear maps preserving commutativity without assum-
ing bijectivity or the stronger both directions preserving property suggest that it is
reasonable to start with these stronger assumptions when treating the more difficult
nonlinear case. So, we will be interested in bijective maps φ : Mn(C) → Mn(C)

preserving commutativity in both directions. What are examples of such maps? Of
course, every similarity transformation is a bijective map preserving commutativity
in both directions. The same holds true for anti-similarity transformations. To find
nonlinear examples observe that if A and B commute and if p and q are arbitrary
complex polynomials then p(A) and q(B) commute as well. So, if we associate to
each A ∈ Mn(C) a polynomial pA, then the map A �→ pA(A) preserves commuta-
tivity. Every such map will be called a locally polynomial map. This kind of maps
are in general neither bijective nor they preserve commutativity in both directions.
However, if such a map φ is bijective and if the polynomials pA, A ∈ Mn(C), are
chosen in such a way that for every A ∈ Mn(C) we can find a polynomial qA such
that A = qA(pA(A)) (in other words, if φ is bijective and its inverse is again a locally
polynomial map), then it preserves commutativity in both directions. Such maps will
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be called regular locally polynomial maps. Another example of a bijective map pre-
serving commutativity in both directions is the entrywise complex conjugation. The
main result in [75] states that every continuous bijective map on Mn(C) preserving
commutativity in both directions is a composition of the maps described above.

Theorem 4.3. Let n � 3 and let φ : Mn(C) → Mn(C) be a continuous bijective map
preserving commutativity in both directions. Then there exist an invertible matrix
T ∈ Mn and a regular locally polynomial map A �→ pA(A) such that either φ(A) =
TpA(A)T −1 for all A ∈ Mn, or φ(A) = TpA(At )T −1 for all A ∈ Mn, or φ(A) =
TpA(A)T −1 for all A ∈ Mn, or φ(A) = TpA(A∗)T −1 for all A ∈ Mn. Here, A =
[aij ] = [aij ], and A∗ = A

t
.

The most interesting open problem here is whether an analogue holds true for real
matrices.

The continuity assumption and the assumption that n � 3 are indispensable in
this theorem (see [75] for counterexamples). Let us just mention that we have also a
rather good understanding of the structure of noncontinuous bijective maps preserving
commutativity in both directions (see [75, Theorem 2.1]). The above result is closely
connected with the structural result for maps on matrix algebras that are multiplicative
with respect to Lie product [15]. Here we have the weaker assumption that only
the zero Lie product is preserved. The cost for obtaining a reasonable structural
result under this much weaker assumption are additional bijectivity and continuity
assumptions.

It is much easier to study bijective maps preserving commutativity in both direc-
tions on the real subspace of all self-adjoint matrices. Namely, it is easy to characterize
commuting pairs of self-adjoint matrices. Two such matrices commute if and only if
they are simultaneously unitarily similar to diagonal matrices. On the other hand, in
the self-adjoint case we can obtain a complete description of such maps also in the
infinite-dimensional case [55].

The proof (see [75]) of Theorem 4.3 is rather long. We will present here the main
ideas in order to point out the connection with some results from the third section
concerning maps on idempotents. Let S ⊂ Mn(C) be any subset. We denote by S′
the commutant of S, S′ = {A ∈ Mn(C) : AB = BA for every B ∈ S}. When S
is a singleton we write shortly {A}′ = A′. Clearly, under assumptions of Theorem
4.3 we have φ(S′) = φ(S)′ for every subset S ⊂ Mn(C). The scalar matrices λI

can be characterized as matrices A with the property that A′ = Mn(C). Therefore,
φ maps the set of scalar matrices onto itself. Next we consider nonscalar matrices
having maximal or minimal commutants with respect to inclusion. More precisely,
we call a nonscalar matrix A ∈ Mn(C) maximal if every B ∈ Mn(C) satisfying A′ ⊂
B ′ and A′ �= B ′ has to be a scalar matrix. Obviously, φ maps the set of maximal
matrices onto itself. It is not very difficult to see that a nonscalar matrix is maximal
if and only if it is of the form λP + µI for some scalars λ, µ, λ �= 0, and some
nontrivial idempotent P or of the form λI + N for some scalar λ and some square-zero
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matrix N �= 0. Recall that a matrix is nonderogatory if its Jordan form has exactly
one Jordan block corresponding to each eigenvalue. One can prove that these are
the matrices with minimal commutants, and therefore, φ preserves nonderogatory
matrices. In the next step we want to prove that φ preserves matrices with n distinct
eigenvalues. Such matrices are nonderogatory and to prove our assertion we have to
characterize such matrices among all nonderogatory matrices using the commutativity
relation. This requires quite some work but the basic idea can be explained with the
following 4×4 example. The matrices

A =



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


 and B =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




with λi �= λj whenever i �= j , are both nonderogatory. We want to show that A cannot
be mapped into B by a bijective map preserving commutativity in both directions. To
show this we observe that any matrix C ∈ A′ is of one of the following forms:


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 ,




α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 β


 ,




α 0 0 0
0 α 0 0
0 0 β 0
0 0 0 α


 ,




α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 α


 ,




β 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 ,




α 0 0 0
0 α 0 0
0 0 β 0
0 0 0 β


 ,




α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 β


 ,




α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 α


 ,




α 0 0 0
0 α 0 0
0 0 β 0
0 0 0 γ


 ,




α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 γ


 ,




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 α


 ,




β 0 0 0
0 α 0 0
0 0 α 0
0 0 0 γ


 ,




β 0 0 0
0 α 0 0
0 0 γ 0
0 0 0 α


 ,




β 0 0 0
0 γ 0 0
0 0 α 0
0 0 0 α


 ,




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ


 ,

where α, β, γ , δ are any pairwise distinct scalars. Thus, all the matrices belonging to
A′ were divided into 15 classes. Any two matrices belonging to the same class have
the same commutant. For example the commutant of
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α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 γ


 ,

where α, β, and γ are pairwise distinct, is the space of all matrices of the form


∗ 0 ∗ 0
0 ∗ 0 0
∗ 0 ∗ 0
0 0 0 ∗


 ,

no matter what are the values of α, β, and γ . It is also clear that matrices from A′
belonging to different classes have different commutants. We have shown that the
set {C′ : C ∈ A′} has cardinality 15. If A was mapped by a bijective map preserving
commutativity in both directions into B, then B would have the same property, that
is, we would have #{C′ : C ∈ B ′} = 15. But clearly,

Cω =



0 0 1 ω

0 0 0 1
0 0 0 0
0 0 0 0




belongs to B ′ for every ω ∈ C and C′
ω �= C′

τ whenever ω �= τ . Thus, the set {C′ :
C ∈ B ′} is not finite, and consequently, A cannot be mapped into B.

This kind of reasoning brings us to the conclusion that φ maps matrices with
n distinct eigenvalues into matrices of the same kind. Now, it is easy to see that
diagonalizable matrices are exactly those matrices that commute with some matrix
having n distinct eigenvalues. So, φ preserves diagonalizable matrices. We denote by
Dk , k = 1, . . . , n, the set of all diagonalizable matrices with exactly k eigenvalues.
The set D1 is the set of all scalar matrices and we already know that φ(D1) = D1.
In order to see that φ(D2) = D2 we only have to observe that D2 is the intersection
of the set of all diagonalizable matrices and the set of maximal matrices. It is not
difficult to verify that for a diagonalizable matrix A the following two statements are
equivalent:

• A ∈ D3,
• A �∈ D1 ∪ D2 and every matrix B ∈ D satisfying B ∈ A′, A′ ⊂ B ′, and A′ �= B ′

belongs to D1 ∪ D2.

It follows easily that φ(D3) = D3. Repeating this procedure we get φ(Dk) = Dk ,
k = 1, . . . , n.

In the next step we show that the set of all matrices of the form λP + µI , where
λ �= 0 and P is an idempotent of rank one, is mapped by φ onto itself. Thus, we have
to characterize such matrices among all diagonalizable matrices with exactly two
eigenvalues. If a diagonalizable matrix B has two eigenvalues none of them being of
multiplicity one then we may assume that it is of the diagonal form
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αI1 0 0 0
0 αI2 0 0
0 0 βI3 0
0 0 0 βI4


 ,

where α �= β and the Ij ’s are the identity matrices of appropriate sizes. The matrix

C =



αI1 0 0 0
0 βI2 0 0
0 0 βI3 0
0 0 0 αI4




commutes with B and also belongs to D2. The first commutant {B, C}′ is equal to the
set of all matrices with the block diagonal form


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗


 ,

where the ∗’s represent arbitrary square matrices of the sizes corresponding to the
above block representation of B. It is then easy to see that the second commutant
{B, C}′′ = {F ∈ Mn(C) : FT = T F for every T ∈ {B, C}′} contains the diagonal
matrix


I1 0 0 0
0 2I2 0 0
0 0 3I3 0
0 0 0 4I4




having exactly 4 eigenvalues. It is rather easy to see that if a diagonalizable matrix
A has two eigenvalues one of them being of multiplicity one and if C ∈ D2 com-
mutes with A, then any diagonalizable matrix contained in {A, C}′′ has at most 3
eigenvalues.

This shows that the set of all matrices of the form λP + µI , where λ �= 0 and
P is an idempotent of rank one, is mapped by φ onto itself. If A = λP + µI and
B = λ1P + µ1I , where λ �= 0, λ1 �= 0, and P is an idempotent of rank one, then we
already know thatφ(A) = αQ + βI andφ(B) = α1Q1 + β1I , whereα �= 0,α1 �= 0,
and Q and Q1 are idempotents of rank one. As A′ = B ′ we have φ(A)′ = φ(B)′ which
yields that Q = Q1. Thus φ induces in a natural way a map ϕ : P 1

n (C) → P 1
n (C) and

this map preserves commutativity. But two rank one idempotents commute if and
only if they are equal or orthogonal. Thus, ϕ preserves orthogonality and we can
apply the results discussed in the third section to conclude that φ has a desired form
on all diagonalizable matrices with exactly two eigenvalues one of them being of
multiplicity one. From here it is rather easy to conclude that φ has the desired form
on the set of all diagonalizable matrices. It is then possible to conclude the proof of
Theorem 4.3 using the continuity assumption.

Another recent result on general preservers was motivated by the theory of Lie
algebras. Let L be a Lie algebra. For some basic definitions and facts concerning
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Lie algebras we refer to [66]. One of the fundamental concepts in this theory is that
of a solvable Lie algebra. In [64] bijective maps φ : L → L with the property that
both φ and its inverse map every solvable Lie subalgebra into some solvable Lie
subalgebra were characterized in the special case when L is the Lie algebra Mn(C)

equipped with the Lie product [·, ·], [A, B] = AB − BA. The famous Lie’s theorem
[66, pp. 21–23] states that every solvable Lie subalgebra of Mn(C) is similar to a
triangular one. In other words, a Lie subalgebra L ⊂ Mn(C) is solvable if and only
if there exists a triangularizing chain of invariant subspaces forL. Here, of course, by
an invariant subspace of L we mean a subspace that is invariant under every member
of L. Using Lie’s theorem it is possible to show that preserving solvability in both
directions is equivalent to preserving simultaneous triangularizability of matrix pairs
in both directions. And simultaneous triangularizability of matrices A and B can
be considered as a generalization of commutativity of this matrix pair. Therefore,
the study of solvability preserving maps was based on some ideas from [75]. The
obvious examples of linear bijective maps preserving solvability in both directions are
similarity transformations, anti-similarity transformations and ring automorphisms
of Mn(C) induced by automorphisms of the complex field. All these examples are
semilinear. To get nonadditive examples we define two matrices A and B to be lattice-
equal, denoted by A ∼ B, if they have exactly the same lattice of invariant subspaces.
The complete description of this equivalence relation can be found in [19, Theorem
10.2.1] and [79]. Lie’s theorem yields that a bijective map τ : Mn(C) → Mn(C)

satisfying τ(A) ∼ A, A ∈ Mn(C), preserves solvability in both directions. Such a
map is just an arbitrary permutation on each of the equivalence classes with respect
to ∼. Every such map is called a bijective lattice preserving map. In [64] it was
shown that every bijective map on Mn(C) preserving solvability in both directions is
a composition of the types of maps described in this paragraph.

We continue with an infinite-dimensional result on nonlinear preservers. Let X be
an infinite-dimensional real or complex Banach space. A bijective map φ : B(X) →
B(X) is called biseparating if AB = 0 ⇐⇒ φ(A)φ(B) = 0, A, B ∈ B(X). Clearly,
every bijective map η : B(X) → B(X) with the property that Im η(A) = Im A and
Ker η(A) = Ker A, A ∈ B(X), is biseparating. In [76] we have proved that every
bijective biseparating map on B(X) is a composition of such a map and an inner
linear or (in the complex case) conjugate-linear automorphism of B(X). The main
idea was to reduce this problem to the problem of characterizing bijective maps on
rank one idempotents preserving orthogonality in both directions and then to apply
results discussed in the third section. How far can we relax the assumptions in the
finite-dimensional case and still get a reasonable result? More precisely, can we
omit the bijectivity assumption or replace it by the weaker injectivity or surjectivity
assumption, can we assume that zero products are preserved in one direction only,
and finally, can we replace the real or the complex field by a more general field or
even an arbitrary division ring?

Note that in contrast to linear preservers, general preservers have much richer
structures. In a certain sense, it is natural (though sometimes surprising to see) that
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the linearity assumption together with some preserving property will give rise to a
“standard map” acting on the matrix space. On the other hand, if one just imposes
an analytic or a topological assumption on the maps together with some preserving
property, then one get maps on matrices with local behaviours such as local simila-
rity and equivalence. If one further relaxes the assumptions on the preservers, the
mappings will only send matrices in the same equivalence classes such as matrices
having the same eigenvalues, the same Jordan form, etc.

Certainly, these are only the first steps and a lot of work will have to be done to
achieve an understanding of the structure of general preservers comparable to our
understanding of linear preservers.

In [58–60] maps on the full matrix algebra as well as on some subalgebras were
considered having more than just one preserving property. If we have enough preserv-
ing properties (for example, if we study continuous maps preserving spectrum and
commutativity in both directions), then such maps must be necessarily linear Jordan
automorphisms. It would be interesting to find other collections of sets, properties or
relations whose preservation characterizes Jordan automorphisms.

When discussing possible applications of the structural results for maps on idem-
potents [72] we suggested that several preserver problems concerning partial orders
on matrices can be solved without the linearity assumption and indicated how to
reduce this kind of problems to the structural problems for order preserving maps
on idempotents. Following this idea Legiša [38] recently characterized surjective
maps on matrix algebras preserving minus partial ordering in both directions. It is
interesting to note that such maps are automatically semilinear. It is remarkable that
in some preserver problems the semilinear character of the maps under consideration
is not an assumption but we get it as a conclusion. The most important examples of
this phenomenon are so called fundamental theorems of geometry of matrices that
will be considered in our last section.

5. Geometry of matrices

The study of geometry of matrices was initiated by Hua in [24–31]. Let D be
any division ring and Mm×n(D) the set of all m × n matrices over D. It is easy to
verify that this is a metric space with the distance defined by d(A, B) = rank(A − B),
A, B ∈ Mm×n(D). In fact, all we have to know to check this is that rank is subadditive,
that is, rank(A + B) � rank A + rank B, A, B ∈ Mm×n(D). Note that since D is not
necessarily commutative we have to be careful when defining the rank of a matrix
A. We denote by Dn the set of all 1 × n matrices and consider it always as a left
vector space over D. Correspondingly, we have the right vector space of all m × 1
matrices (Dm)t . We first take the left vector subspace of Dn generated by the rows
of A (the row space of A) and define the row rank of A to be the dimension of this
subspace. The column rank of A is the dimension of the right vector space generated
by columns of A. This space is called the column space of A. These two ranks are
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equal for every matrix over D and this common value is called the rank of a matrix.
If rank A = r then there exist invertible matrices T ∈ Mm(D) and S ∈ Mn(D) such
that

T AS =
[

Ir 0
0 0

]
.

Here, Ir is the r × r identity matrix and zeroes stand for zero matrices of the appro-
priate size. Note also that rank of a matrix and its transpose are not necessarily the
same. However, if τ is a nonzero anti-endomorphism of D then rank A = rank At

τ .
Two matrices A, B ∈ Mm×n(D) are said to be adjacent if d(A, B) = 1. Suppose

that T ∈ Mm(D) and S ∈ Mn(D) are invertible matrices and R ∈ Mm×n(D) any
matrix. Then, obviously, the map φ defined by A �→ T AS + R is a bijective map
on Mm×n(D) preserving adjacency in both directions, that is, for every pair A, B ∈
Mm×n(D) the matrices A and B are adjacent if and only if φ(A) and φ(B) are adjacent.
If A ∈ Mm×n(D) is any matrix and σ : D → D an automorphism of division ring
D then the matrix Aσ has the same rank as A. So, the map A �→ Aσ is bijective
and preserves adjacency in both directions. Similarly, if m = n and τ is an anti-
automorphism of D then A �→ At

τ is a bijective map preserving adjacency in both
directions.

The fundamental theorem of the geometry of matrices states that every bijective
map φ : Mm×n(D) → Mm×n(D) preserving adjacency in both directions is of the
form A �→ T Aσ S + R, where T , S, R, and σ are as above. If m = n, then we have
the additional possibility that φ(A) = T At

τ S + R where T , S, R ∈ Mn(D) with T
and S invertible and τ is an anti-automorphism of D. This theorem was proved by
Hua [31] under the additional assumption that D �= F2. The special case D = F2
was solved by his followers (see [80], where also similar results for symmetric
matrices, skewsymmetric matrices, and hermitian matrices can be found). In the case
of upper triangular matrices the structure of bijective maps preserving adjacency in
both directions is more complicated [9,10].

It is remarkable that we get such a strong conclusion (the map φ has a very simple
form and in particular, up to a translation it is additive and even semilinear when D

is a field) under rather weak assumptions of bijectivity and preserving adjacency in
both directions. It is therefore not surprising that this theorem has many applications.
Let us mention just the most important ones. Hua obtained the structural results
for Jordan and Lie automorphisms of matrix rings as easy consequences of the
fundamental theorem of the geometry of matrices. The most frequently used method
in the theory of linear preservers is the reduction of a problem of characterizing
certain linear preservers to the problem of characterizing linear maps preserving
rank one matrices. Obviously, linear maps preserving rank one matrices preserve the
pairs of adjacent matrices. Therefore, the fundamental theorem of the geometry of
matrices can be applied when studying linear preservers. And finally, some theorems
considering the geometry of Grassman spaces can be deduced from the fundamental
theorem of the geometry of matrices. Let us explain this very briefly. Let m, n be
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positive integers. We will consider the Grassman space of all vector subspaces of
Dm+n of dimension m. Chow [11] and Dieudonné [13,14] studied bijective maps on
the Grassman space preserving adjacent pairs of points in the Grassman space (vector
subspaces of dimension m) in both directions. Recall that the m-dimensional subspaces
U and V are adjacent if dim(U + V ) = m + 1. Now, to each m-dimensional subspace
U of Dm+n we can associate an m × (m + n) matrix whose rows are coordinates of
the vectors that form a basis of U. Each m × (m + n) will be written in the block
form [X Y ], where X is an m × n matrix and Y is an m × m matrix. Two matrices
[X Y ] and [X′ Y ′] are associated to the same subspace U (their rows represent two
bases of U) if and only if [X Y ] = P [X′ Y ′] for some invertible m × m matrix
P. If this is the case, then Y is invertible if and only if Y ′ is invertible. So, we
have associated to each point in a Grassman space a (not uniquely determined)
matrix [X Y ]. If Y is singular, we call the corresponding point in the Grassman
space point at infinity. Otherwise, we observe that this point can be represented also
with the matrix [Y−1X I ]. The matrix Y−1X is uniquely determined by the point
in the Grassman space. So, if U and V are two m-dimensional subspaces that are
finite points in the Grassman space, then they can be represented with two uniquely
determined m × n matrices T and S and it is easy to see that the subspaces U and V
are adjacent if and only if the matrices T and S are adjacent. Using this connection
it is possible to deduce the result of Chow on bijective maps on a Grassman space
preserving adjacency in both directions from the fundamental theorem of geometry
of matrices.

We hope that we have succeeded to convince the reader that the fundamental
theorem of the geometry of matrices is a strong result with important consequences.
When we say strong we mean that we get a strong conclusion under very weak
assumptions. Still, one may ask if we can get the same conclusion under even weaker
assumptions.

Can we get an almost the same conclusion without the bijectivity assumption (with
an almost the same conclusion we mean the same assertion with the only difference
that σ and τ are not necessarily bijective)? Surprisingly, the answer depends on the
underlying division ring. In [68] it was proved that the answer is in the affirmative
for real matrices but negative for complex matrices. Is this really surprising? It is
perhaps less surprising if we recall structural results for maps on idempotents. There
we get nice structural results for idempotents over EAS-division rings and many
counterexamples in the complex case.

We have already mentioned that besides the fundamental theorem of the geometry
of matrices we have also fundamental theorems of the geometry of symmetric matri-
ces, skewsymmetric matrices, and hermitian matrices [80]. These theorems, of course,
characterize bijective maps preserving adjacency in both directions on the set of
symmetric matrices, skewsymmetric matrices, and hermitian matrices, respectively.
As far as we know the problem of validity of these results without the bijectivity
assumption is still open.
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Can we get the same conclusion as in the fundamental theorem of the geometry of
matrices under the weaker assumption that the adjacency is preserved in one direction
only? This long standing open question has been recently answered in the affirmative
by Huang and Wan [33]. The same authors together with Höfer solved positively
also the analogous problem for symmetric and hermitian matrices [32]. Everybody
working in linear preservers knows that characterizing linear maps preserving a certain
property or relation in one direction only is usually more difficult than characterizing
linear maps preserving this property or relation in both directions. This holds even
more in the absence of the linearity assumption. So, the above results are substantial
improvements of the fundamental theorem and we believe they will prove to be
important in the theory of linear and general preservers.

Let us conclude with the connection between the geometry of matrices and the
structural results for order preserving maps on idempotents discovered in [72]. To
present the most important idea we consider just the special case that φ is a map
on the set of all n × n matrices preserving adjacency. Moreover, we assume that
φ(0) = 0 and φ(I) = I . We then claim that φ maps idempotents into idempotents
and that the restriction of φ to the set of idempotents preserves order. Indeed, let
P and Q be idempotents with P � Q. Then, up to a similarity, P and Q are dia-
gonal idempotents, and therefore, we can find a chain of idempotents 0 = P0 �
P1 � P2 � · · · � Pn−1 � Pn = I such that rank Pk = k, k = 0, 1, . . . , n, Pk and
Pk+1 are adjacent, k = 0, 1, . . . , n − 1, and P and Q are members of this chain.
We denote φ(Pk) = Qk , k = 0, 1, . . . , n. We know that Q0 = 0 and Qn = I . Now,
Q1 is adjacent to 0, and therefore, Q1 is of rank one. Since Q2 is adjacent to Q1, it
is of rank at most two. Proceeding in the same way we conclude that rank Qk � k,
k = 0, 1, . . . , n. In particular, Qn−1 is a matrix of rank at most n − 1 adjacent to I.
One can prove that then it must be an idempotent of rank n − 1. Further, Qn−2 is a
matrix of rank at most n − 2 that is adjacent to Qn−1 which is an idempotent of rank
n − 1. It follows rather easily that Qn−2 is an idempotent of rank n − 2 satisfying
Qn−2 � Qn−1. Continuing in this way we conclude that all the Qk’s are idempotents
with Qk � Qk+1, k = 0, 1, . . . , n − 1. In particular, φ(P ) and φ(Q) are idempotents
satisfying φ(P ) � φ(Q), as desired. Thus, the results from the third section can be
applied to study adjacency preserving maps.

In our forthcoming paper we will use this approach to unify and extend some of the
above results and to clarify the problem of characterizing (not necessarily bijective)
maps preserving adjacency in both directions.
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