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Objectives: The Data Monitoring Committee (DMC) for the premarket approval (PMA) study of a new heart
valve prosthesis convenes periodically to review the accumulating results of the study, and determines, among
other things, whether there is enough concern with safety to stop the study. Their deliberations are largely
subjective, based on their combined experience and expertise, but an objective aid to evaluating complication
rates, usually called a stopping rule, is desirable.

Methods: The US Food and Drug Administration has designated objective performance criteria (OPC) for 7
heart valve complications. At the end of the PMA study, when approximately 800 patient-years have been
accumulated, the complication rates must compare favorably with the OPC. Given the results to date at an
interim review of the data, we use a Bayesian approach to compute the probability of passing the OPC test
by the end of study.

Results:We provide a method that the DMC can use to predict the probability of passing the OPC test for each
complication, and a graphical aid for each number of events, observed at 100 patient-year intervals.

Conclusions: Although the DMC ultimately uses combined experience and expertise to make the decision to
stop a PMA valve study, we have provided an objective assessment of the probability of the valve ultimately
passing the OPC test to aid in making that decision. (J Thorac Cardiovasc Surg 2014;148:2813-7)
Supplemental material is available online.
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US Food and Drug Administration (FDA) premarket
approval (PMA) studies of new heart valve prostheses are
single-armed observational studies in which the observed
complication rates are compared with historical values
known as objective performance criteria (OPC).1 The OPC
are average complication rates, derived from thousands of
patient-years of published results, and range from 0.2 to
3.5 events per 100 patient-years (%/y) for 7 different heart
valve complications (Table 1). The sample size requirement
of 800 patient-years was derived using a hypothesis test for
an OPC of 1.2%/y, with the assumption that the complica-
tion rate (hazard function) is constant during the late
follow-up period. ‘‘The null hypothesis for a complication
rate can be rejected at the one-sided significance level of
0.05 if the upper 95% confidence limit for the complication
rate is less than 2 times the OPC for that complication.’’2
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The null hypothesis is that the observed rate is greater than
twice the OPC, so to reject it is to pass the OPC test.
INTERIM DATA REVIEWS
In an ongoing PMA study, the data are periodically

reviewed by a group, independent from the conduction of
the study, called a Data Monitoring Committee (DMC) or
Data Safety and Monitoring Board (DSMB). The DMC/
DSMB reviews the accumulating evidence with the new
valve, and, based on the results, makes a recommendation
on whether to continue the study or to stop the study for
safety concerns. Much of their deliberation is subjective,
using their combined clinical experience and wisdom, but
they can also benefit from an objective statistical measure
to reinforce their clinical judgment in the event of unusually
high complication rates. Such objective measures are
usually called stopping rules,3 but we prefer to refer to
them as stopping guidelines, to convey the idea that the
collective clinical judgment of the DMCmembers can over-
rule the rules. It is worth remembering that if a trial was
important enough to be started based on the knowledge
available at that time, then caution should be exercised
before concluding that there is sufficient evidence to
terminate the trial; hence P values alone are unlikely to
suffice for decision making about the future of a clinical
trial, although they may be an important consideration.4
Bayesian Persuasion
Stopping rules/guidelines are often formulated using

conventional statistical methods, called frequentist to
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Abbreviations and Acronyms
DMC ¼ Data Monitoring Committee
DSMB ¼ Data safety and monitoring board
FDA ¼ US Food and Drug Administration
NB ¼ negative binomial
OPC ¼ objective performance criteria
PMA ¼ premarket approval
TE ¼ thromboembolism

Acquired Cardiovascular Disease Grunkemeier et al

A
C
D

distinguish them from an alternative statistical approach
called Bayesian. There are many resources available to
understand the differences between these statistical
approaches.5,6 Frequentist approaches to stopping rules/
guidelines can be found in Jennison and Turnbull’s book.7

One desirable property of a Bayesian analysis is that it
allows a true probability statement to be made about the
current trial (producing a credible interval), whereas the
frequentist can only make a convoluted statement about
many similar hypothetical trials that could be undertaken
in the future (leading to a confidence interval). The FDA/
Center for Devices and Radiological Health has endorsed
the use of Bayesian methods for medical device trials,2

and we use this approach here to derive stopping guidelines,
following the method proposed by Lee and Liu.8

The Situation
Suppose that during a particular DMC review of the data

for a new heart valve, a certain complication (event) has
been observed E1 times during T1 late (>30 days after
surgery) patient-years of observation. The reason for the
subscript 1 is that the study is only partially completed
and we can anticipate that, in the remaining T2 years of
the study, E2 additional events will be observed. The
duration of the entire study, T1 þ T2, will be about 800
patient-years9; so, given T1 we know what T2 will be, but
we do not yet know E2. But E2 will be critical in deter-
mining whether the valve passes the OPC test at the conclu-
sion of the study. We do have a sense of what E2 might be,
based on the fact that the complication rate so far is E1

events occurring in T1 patient-years. Using the Bayesian
approach, we wish to parlay that information into an esti-
mate of the distribution of the possible values of E2, which
in turn will provide an estimate of the probability of passing
the OPC test when the trial is complete. If that estimated
probability is extremely low, because the observed number
of a particular complication so far is very high, the DMC
might want to consider stopping the study.

The Mechanics
To illustrate this method, we use thromboembolism (TE)

as the complication and assume that the new valve under
study is a biological valve that has an OPC for TE of 2.5
2814 The Journal of Thoracic and Cardiovascular Sur
events per 100 patient-years (Table 1). We assume that
the number of late (30 days after implant) TEs follows a
Poisson distribution, which implies that the late TE risk
(hazard) is constant over time.

Prior and Posterior Distributions
In a frequentist analysis, the TE risk l (lambda) is

regarded as an unknown fixed number, to be estimated. In
the Bayesian approach, l is considered to be a random var-
iable and, hence, it must be assigned a prior distribution.
This distribution will influence the analysis, because the
observed data will be combined with it to produce the final
answer, contained in the posterior distribution (see
Appendix E1). The major criticism of the Bayesian
approach is the allegation of subjectivity in the assignation
of the prior distribution. For the purposes of constructing a
DMC stopping guideline, however, we choose a weak
(vague, diffuse) prior distribution, in the sense that it does
not influence the result very much (Appendix E1). And
we still get the benefit of being able to make direct
probability statements about l, and hence about the results
of the study.

EXAMPLES
Example 1: Low Interim TE Occurrence

Suppose a DMC is reviewing data after the first 400
patient-years (T1 ¼ 400) of the study, and 11 TE
(E1 ¼ 11) have occurred. At the end of this study, there
will be about 400 more patients-years (T2 ¼ 400) and E2

more events. At that time, the final TE rate will pass the
OPC test if the upper one-sided 95% confidence limit is
less than 2 3 OPC ¼ 5%/y. Figure 1, A, illustrates that,
under these circumstances, the OPC test will be passed if
E2� 18.

Posterior Predictive Distribution
Now comes the tricky part. What is the probability that,

given the data so far, E2 will be �18, so that the TE rate
will pass the OPC test at the end of the study? This can
be determined using the Bayesian posterior predictive
distribution (Appendix E1). Figure 1, B, shows that the
probability of observing �18 events is 92%. Thus, the
probability is very high that, with E1 ¼ 11 events at
T1 ¼ 400 patient-years, the TE rate criterion will be
satisfied at the conclusion of the study.

Example 2: High Interim TE Occurrence
Figure 2 displays the same calculations for the situation

in which 19 TEs have been observed after 400 patient-
years. In this case, in order to pass the OPC test, a maximum
of 10 events can be allowed in the remainder of the study
(Figure 2, A), and the probability of this happening is
only 6% (Figure 2, B). Thus, the probability is quite low
that with E1¼ 19 events at T1¼ 400 patient-years, the study
gery c December 2014



TABLE 1. Current OPC values, given as the number of events per 100

patient-years (%/y), for the 2 types of valves

Complication Biological Mechanical

Thromboembolism 2.5 3.0

Valve thrombosis 0.2 0.8

Hemorrhage

All 1.4 3.5

Major 0.9 1.5

Paravalvular leak

All 1.2 1.2

Major 0.6 0.6

Endocarditis 1.2 1.2
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will fulfill the TE criterion. The DMC may wish to take this
into consideration in making their recommendation about
continuation of the study.
Complete TE Example: Other Values of E1 and T1

Repeating the above computations at T1 ¼ 400 for all
values of E1 between 11 and 19 produces the series of
blue circles in Figure 3. The examples in Figures 1 and 2
FIGURE 1. A, Point estimates and 90% two-sided confidence intervals

for the TE rate at the end of the study, for various values of E2 occurring

after the current data review, where E1 ¼ 11 events have been observed

in the first 400 (T1) patient-years. The upper confidence limit is the same

as a one-sided 95% limit, so cases with an upper limit less than

2 3 OPC (¼ 5%) will pass the OPC test. B, Cumulative distribution of

the predictive probabilities for the number E2 of future TEs. TE, Thrombo-

embolism; CI, confidence interval; OPC, objective performance criteria.

FIGURE2. A,Point estimates and90% two-sided confidence intervals for

theTE rate at the end of the study, for various values of E2 occurring after the

current data review, where 19 events have been observed in the first 400

patient-years. The upper confidence limit is the same as a one-sided 95%

limit, so cases with an upper limit less than 2 3 OPC (¼ 5%) will pass

the OPC test. B, Cumulative distribution of the predictive probabilities

for the number E2 of future TEs. TE, Thromboembolism; CI, confidence

interval; OPC, objective performance criteria.
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are indicated by their corresponding digits (1 and 2)
superimposed onto the highest and lowest of the circles
for 400 patient-years. Figure 3 also contains the values for
other intermediate assessment times, from T1 ¼ 200 to
600 patient-years, thus providing a visual tool for
associating eventual OPC success probabilities based on
intermediate results.

Complete Example for Other Complications
In practice, a visual stopping guideline tool such as

Figure 3 would be produced for all the OPC values in
Table 1. For example, Figure 4 contains the corresponding
plot for an OPC of 1.2% per patient-year, which corre-
sponds to the events of paravalvular leak and endocarditis
for biological valves. Alternatively exact probabilities for
any OPC could be calculated for any values of T1, as
described in Appendix E1.

COMMENT
We have produced a DMC stopping guideline tool

for biological valve TE (Figure 3) and paravalvular
diovascular Surgery c Volume 148, Number 6 2815



FIGURE 3. Predicted probabilities of passing the OPC test at the end of

the trial for a complication with an OPC of 2.5%/y (TE for biological

valves), computed for various numbers of events (E1) observed at various

intermediate data review times (T1). The 2 examples depicted in Figures

1 and 2, after 400 patient-years were observed, are shown by the slightly

larger circles at the top and bottom of the 400 patient-years grouping,

with the corresponding digits (1, 2) superimposed. Symbols below the

red horizontal gridline at 10% indicate performance that may influence

the Data Monitoring Committee members to consider stopping the trial.

These probabilities were derived using a noninformative (Jeffreys) prior

distribution. OPC, Objective performance criteria.

FIGURE 5. A reproduction of Figure 3, but with a mildly informative

prior distribution, based on the OPC value. OPC, Objective performance

criteria.
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leak/endocarditis (Figure 4) using a noninformative
Bayesian prior distribution, which allows the posterior dis-
tribution to be predominantly determined by the data. This
seems appropriate because the DMC should be neutral, and
avoids other assumptions that might favor the new valve un-
der investigation. But others may choose to use other prior
distributions. The prior distribution is subjective, that is the
essence of the Bayesian approach, and it should be informed
FIGURE 4. Predicted probability of success at the end of the trial for a

complication with an OPC of 1.2%/y (endocarditis and leak for biological

valves), computed for various numbers of events observed at various inter-

mediate data review times. Symbols below the red horizontal gridline at

10% indicate performance that may influence the Data Monitoring

Committee members to consider stopping the trial. These probabilities

were derived using a noninformative (Jeffreys) prior distribution.

OPC, Objective performance criteria.
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by whatever the investigator knows or believes, based on
evidence or experience.

For example, a valve manufacturer may possess clinical
data from a previous generation of the investigational
device.4,10 Or, an informative prior could incorporate
known information about biological valve complication
rates: the current FDA OPC complication rate would seem
to be a reasonable mean value for the prior distribution,
and the variance could be made very large, to incorporate
uncertainty, so that the study valve data contribute a
preponderance of the influence on the posterior
distribution. For example, the OPC for biological valve
TE is 2.5 events per 100 patient-years. In this case, a logical
choice for the TE rate prior would be a gamma (a, b) distri-
bution with a ¼ 2.5 and b ¼ 1. This will result in a prior
mean of 2.5 with 95% of the probability density between
0.4 and 6.4, which seems reasonable, and makes some use
of the vast amount of information already known about
TE rates with biological valves.

With this (slightly) more informative prior, the predicted
probabilities of passing the OPC test are greatly increased
for all values of E1 at each value of T1 (Figure 5). But the
FIGURE 6. Comparison of 2 different estimates of the probabilities of the

numbers of future events: (1) the naive Poisson distribution, based on a

fixed value of l; (2) the negative binomial distribution, which takes into ac-

count the imprecision in the estimate of l, and thus has more variability.

gery c December 2014



Grunkemeier et al Acquired Cardiovascular Disease
DMC should probably be more skeptical; it is worse to
approve an inferior valve than to reject an acceptable valve,
because there are already so many acceptable valves avail-
able. Thus, we believe that the objective decision aids using
the noninformative prior (Figures 3 and 4) are more
appropriate (more impartial, neutral) for the DMC to use.
C
D

False-Negative Rates
To recap, we have described a method of computing, for

any number of events E1 observed after T1 patient-years,
the (Bayesian) probability of passing the OPC test at the
end of the study (800 patient-years). We plotted these prob-
abilities for 5 values of T1 and several values of E1 in
Figures 3 and 4, and suggested in the figure legend that
symbols below the red horizontal gridline at 10% indicate
performance that may influence the DMC members to
consider stopping the trial.

An observer might wonder: Assuming that the true TE
rate for a good-performing aortic biological valve is
2.5%/y (the situation illustrated in Figure 3), what is the
probability that this valve would ever fall below the red
line (ie, be considered a failure) in Figure 3? Assuming
that the DMC performs exactly 5 interim looks at the values
of T1 plotted in Figure 3, the probability of wrongly reject-
ing a valve based on this event can be computed using
elementary probability. This probability turns out to be
2.6%. For lower-risk events, such as the 1.2%/y considered
in Figure 4, this probability is 13.4%. However, in practice,
these probabilities would depend on when and how often
the data reviews are actually done by the DMC as well as
the assumed true rate of events (any possible rate up to
the highest that could pass the OPC test). More
The Journal of Thoracic and Car
fundamentally, this probability relies on the selection of
the cutoff for the predicted passing probability (arbitrarily
set at 10% in Figures 3 and 4); in fact, it might be better
to have different cutoffs for the different interim looks,
with more liberal cutoffs for earlier looks, and more
stringent cutoffs for later looks, when more patient-years
are available. Even more fundamental is the distribution
taken as the Bayesian prior (Figure 5 vs Figure 4). For all
these reasons, we stress that these are stopping guidelines
rather than rules.
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APPENDIX E1. TECHNICAL DETAILS
Prior and Posterior Distributions

As mentioned in the text, to enjoy the Bayesian benefits,
we must assume a prior distribution for the parameter of in-
terest, in our case the complication rate. We assume a
gamma (a, b) distribution as the prior distribution for the
Poisson rate parameter l. The gamma distribution is very
flexible, fitting a wide range of shapes. It is also conjugate
to the Poisson distribution, meaning that the incorporation
of the accumulated data (E1 events in T1 patient-years),
via the Bayes theorem, yields a new, more accurate poste-
rior distribution for l, which is also a gamma distribution,
namely, gamma (a þ E1, b þ T1). A commonly used
weak (noninformative) Bayesian prior for the Poisson
distribution is the Jeffreys prior, which in this case is a
gamma distribution with a ¼ 0.5 and b ¼ 0, so that the
posterior distribution for l is gamma(0.5 þ E1,T1).

The credible interval for l using the Jeffreys prior gamma
distribution turns out to be identical to the confidence
interval for l proposed by Cox.11 Several formulas have
been proposed for Poisson confidence intervals. A simula-
tion study, using data typical of heart valve PMA studies,
found that the formula recommended by Cox had the best
coverage properties among 7 alternative methods, and
was advocated for testing the relationship of PMA results
to the OPC.12 The above gamma distribution, using the
Jeffreys prior, is identical to c22E þ 1/2T, where c22E þ 1

is a c2 distribution with 2E þ 1� of freedom. This is the
formula proposed by Cox,11 and was used to produce the
confidence intervals displayed in Figures 1, A, and 2, A.
Posterior Predictive Distribution

The critical next step, and the beauty that this Bayesian
approach brings, is the ability to determine the true proba-
bility of observing the number E2 of events by the end of
the study. This is accomplished using the posterior predic-
tive distribution.6 A naive approach to estimating the
probabilities of the possible future values of E2 would be
to simply use the current point estimate of l at the interim
review (E1/T1) to predict the number of future events based
on the Poisson distribution. That approach would be OK if

we knew for certain that the current estimate of l is exactly
correct. But, in fact, our knowledge of l consists only of a
posterior (gamma) distribution of values. To acknowledge
this variation, the Bayesian approach is to take a weighted
average of the estimates of E2 values over the range of
probable values of l, weighted by the probability assigned
to various values of l.8

For the case in hand, this is easy, because it turns out that,
after observing E1 events in the first T1 patient-years, the
number of events, E2, in the remaining 800�T1

patient-years has a negative binomial (NB) distribution
with parameters a þ E1 and (b þ T1)/(b þ 800), where a

and b are, as before, 0.5 and 0, respectively. This is the
distribution used to compute the cumulative probabilities
of �E2 future events in Figures 1, B, and 2, B.

Thus, the posterior predictive distribution incorporates
(1) the uncertainty in the estimation of l, and (2) the statis-
tical variation of the number of events given each potential
value of l. The naive method, using the Poisson distribu-
tion, ignores (1). Figure 6 shows the difference between
these 2 distribution for the case of Figure 1, B (where
T1 ¼ 400, E1 ¼ 11 and T2 ¼ 400); the 2 distributions
have the same mean value (11.5), but the predictive NB
distribution has more variance (less precision) than the
Poisson distribution. The Poisson distribution has its
mean equal to its variance, but the NB distribution has 1
more parameter that allows the variance to be larger than
the mean. Hence, the NB distribution is often used to model
count data when there is extra-Poisson variation.

STATISTICAL SOFTWARE AND CODE
Statistical analysis was performed using R 3.0 (http://

www.R-project.org). We used the R function pnbinom to
calculate the predicted probability (pp) of passing the
OPC tests in Examples 1 and 2.

pp<-pnbinom(E2, 0.5 þ E1, T1/800)
Example 1:
E1 ¼ 11, E2 ¼ 18, T1 ¼ 400; then pp ¼ .917 � 92%
Example 2:
E1 ¼ 19, E2 ¼ 10, T1 ¼ 400; then pp ¼ .058 � 6%
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