
Journal of Advanced Research (2016) 7, 909–922
Cairo University

Journal of Advanced Research
ORIGINAL ARTICLE
Efficient BinDCT hardware architecture

exploration and implementation on FPGA
* Corresponding author.

E-mail address: Abdessalem.BenAbdelali@enim.rnu.tn (A. Ben Abdelali).

Peer review under responsibility of Cairo University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jare.2016.09.002
2090-1232 � 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abdessalem Ben Abdelali a,b,*, Ichraf Chatti a, Marwa Hannachi a,c,

Abdellatif Mtibaa a
aLaboratory of Electronics and Microelectronics, University of Monastir, Tunisia
bHigh Institute of Informatics and Mathematics of Monastir, Monastir, Tunisia
c Institut Jean Lamour (IJL) UMR7198, University of Lorraine, Vandoeuvre Les Nancy, France
G R A P H I C A L A B S T R A C T
A R T I C L E I N F O

Article history:

Received 2 June 2016

Received in revised form 25 August

2016

Accepted 5 September 2016

Available online 14 September 2016
A B S T R A C T

This paper presents a hardware module design for the forward Binary Discrete Cosine

Transform (BinDCT) and its implementation on a field programmable gate array device.

Different architectures of the BinDCT module were explored to ensure the maximum efficiency.

The elaboration of these architectures included architectural design, timing and pipeline analy-

sis, hardware description language modeling, design synthesis, and implementation. The devel-

oped BinDCT hardware module presents a high efficiency in terms of operating frequency and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2016.09.002&domain=pdf
mailto:Abdessalem.BenAbdelali@enim.rnu.tn
http://dx.doi.org/10.1016/j.jare.2016.09.002
http://dx.doi.org/10.1016/j.jare.2016.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


910 A. Ben Abdelali et al.
Keywords:

Binary discrete cosine transform

Discrete cosine transform

approximation

Very large scale integration

architectures

Hardware implementation

Design exploration

Field programmable gate array
hardware resources, which has made it suitable for the most recent video standards with high

image resolution and refresh frequency. Additionally, the high hardware efficiency of the

BinDCT would make it a very good candidate for time and resource-constrained applications.

By comparison with several recent implementations of discrete cosine transform approxima-

tions, it has been shown that the proposed hardware BinDCT module presents the best

performances.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

The Discrete Cosine Transform (DCT) is widely used in video
and image processing. However, its direct implementation is

not very efficient because it is a floating-point transform, and
it is characterized by complex loops. In fact, floating-point
algorithms are slow in software and require more silicon in
hardware implementation [1–3]. Nevertheless, most video

and image processing applications are subject to hard real time
constraints, and the DCT must be calculated in a very short
time. To decrease the complexity of this transform, several

integer-friendly approximations of the DCT have been pro-
posed [4,5]. The Binary Discrete Cosine Transform (BinDCT)
[6] represents one of the most known DCT approximations. It

works only with integer numbers, and it uses just sums and
shifts. No multiplications are needed, hence reducing the exe-
cution time and the hardware resources.

In embedded system for video and image processing, the
main objective is generally to meet the real-time constrains
while assuring the maximum hardware efficiency. Indeed, high
speed and energy efficiency are very important factors for

numerous applications. In the literature several recent works
[7–14] have addressed the hardware implementation of the
DCT for real time applications and the decrease in computa-

tional complexity of this transformer. Different DCT approx-
imations have been proposed to reduce the required number of
addition and subtraction operations with no multiplication. In

the suggested works, the Very Large Scale Integration (VLSI)
hardware efficiency is sometimes promoted on accuracy. This
can be tolerable because of the limited perception of human

visualization that allows numerical approximations of the
algorithm.

With its high performance and low complexity, the
BinDCT hardware accelerator is an excellent candidate for

real-time DCT-based image and video processing applications
[15]. However, in the literature only some works have been
interested in the hardware implementation of the BinDCT

[16–20]. Moreover, no complete architectural exploration has
been performed, and the majority of the existing works are rel-
atively old and no hardware implementation employing the

efficiency of novel reconfigurable systems technology has been
put forward. They present limited performances that do not
permit supporting actual high video standards.

In this paper, a design exploration of the 2D-BinDCT for

its efficient hardware implementation on a Field
Programmable Gate Array (FPGA) device is proposed. Also,
a comparison with the hardware implementation of several
existing DCT approximations is performed to demonstrate
the efficiency of the suggested BinDCT implementation. The
purpose here is to put forward an efficient hardware module
of the BinDCT that can be employed in highly constrained

systems.
The rest of the paper is organized as follows. The method-

ology section provides a review of the BinDCT algorithm and

its structure, the architecture of the different BinDCT stages,
and the global hardware architecture of the 2D transform. In
the results and disscussion section, the implementation details

and operations of the proposed 2D-BinDCT architectures are
discussed. A comparison with the hardware implementations
state of the art of the DCT approximations is also made in
the latter section.

Methodology

Structure of BinDCT transform

The DCT is characterized by complex loops, cosine functions,

and floating-point multiplications, which increase the compu-
tation time. Table 1 [6,15] shows the most known DCT algo-
rithms. Chen’s algorithm uses 16 multiplications (MUL) and

26 additions (ADD), which can be respectively optimized to
13 MUL and 29 ADD. Loffler’s algorithm is the most opti-
mized one. It utilizes only 11 MUL and 29 ADD. Loffler’s

and Chen’s algorithms give the same performance as the clas-
sical DCT, and they are less complex and faster, but they still
need floating point multiplication. The BinDCT is a fast DCT
approximation [6], which uses only adders and shifters to

reduce the computational complexity.
In our design, the lifting structure of the BinDCT family

based on the Chen’s factorization (BinDCT type C) was uti-

lized. Fig. 1 illustrates the flowchart of the forward BinDCT.
Depending on the lifting parameters, several BinDCT configu-
rations exist for Chen’s factorization: BinDCT-C1 to the

BinDCT-C9 [4]. These configurations present a different num-
ber of arithmetic operations. BinDCT-C1 is the most accurate
approximation among the other configurations, but it presents

a higher computational cost. The BinDCT-C9 has the least
accuracy and computation time. Each BinDCT configuration
has different P and U value approximations, and consequently
a different number of additions and shift operations.

In this paper, the C7 configuration is applied. Besides the
medium complexity of this configuration, as mentioned by
Liang and Tran [4], it actually presented a satisfactory

biorthogonal coding gain, which was very close to that of

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Complexity of different DCT algorithms.

DCT operation Chen Wang Lee Vetterli Houn Loeffler BinDCT C5

Mul 16 13 12 12 12 11 0

Add 26 29 29 29 29 29 36

Shifts – – – – – – 17

Fig. 1 Diagram of the BinDCT.

BinDCT hardware implementation 911
the DCT, and a relatively small mean square error (MSE) with
true DCT outputs. In addition, a comparison of the Peak
Signal-to-Nose Ratio (PSNR) results of the reconstructed

Lena image with the C7 configuration of the BinDCT, the
floating version and the fast integer version of the source code
from the Independent JPEG Group (IJG) was performed. It
was demonstrated that the performances of the employed

BinDCT were close to the floating DCT implementation. In
particular, when the quality factor is below 90, the difference
between the C7 configuration of the BinDCT and the floating

DCT will be below 0.5 dB. Besides, when the quality factor is
above 90, the performance of the BinDCT will be much better
than the fast integer version.

The C7 BinDCT configuration coefficients are the
following:

P1 ¼ 1=2; U1 ¼ 1=2; P2¼ 1; U2 ¼ 1=2; P3 ¼ 1=4;

U3¼ 1=4; P4 ¼ 1=2; U4 ¼ 1=4¼U0
4þU00

4 ¼ 1=2þ1=4; P5¼ 1=2

In Fig. 1, the U4 parameter, which is used to calculate the
Z1 output of stage 2 (Z1 = U4 � Z0 + a6), is transformed to

an addition of U0
4 and U00

4 coefficients, and an intermediate
sum is introduced (H = U0

4 � Z0 + a6). The addition and
shift operations corresponding to the Pi and Ui coefficients

are defined as follows:
� ½�: shift right by one bit
� ¼�: shift right by 2 bits

� ¾� = ½� + ¼�: one addition and two shifts.

The 2D-BinDCT module is composed of two 1D-BinDCT

modules and a transpose memory block. The first 1D-
BinDCT block is applied to 8 � 8 matrix input data, and the
second one is applied to the transpose matrix of the obtained

1D-BinDCT (8 � 8 matrix). The transposition is ensured by
the transpose memory block.

The architecture of a 1D-BinDCT hardware module is
composed of an input block with 8 registers and 4 hardware

blocks corresponding to the four 1D-BinDCT stages. 4
additions and 4 subtractions are needed for stage 1, 2
additions, and 2 subtractions for stage 2, 4 additions and 4

subtractions for stage 3, and finally 2 additions and 6
subtractions for stage 4.

For the first 1D-BinDCT block, the four stages are called

stages 1, 2, 3 and 4, while for the second one, they are called
stages 11, 22, 33 and 44. Stages 1, 2, 3, 4, 11, 22, 33 and 44 have
input data widths of 8, 9, 10, 11, 12, 13, 14 and 15 bits, and
output data widths of 9, 10, 11, 12, 13, 14, 15 and 16 bits,

respectively.



912 A. Ben Abdelali et al.
Hardware architecture of the different BinDCT stages

Each 1D-BinDCT block takes as an input eight line values,
which have to be introduced simultaneously. In each of eight
clock cycles, these 8 values are recovered from the serial input

(Xin) and transmitted in parallel to the BinDCT stage 1
through the ‘‘input block”. Fig. 2 gives the hardware structure
of the input block. It consists of 8 registers used to store the 8
line values (X0–X7) to be introduced to the 1D-BinDCT block

and 8 shift registers for serial to parallel transformation of the
input values.

As shown in Fig. 2, this module is controlled by a counter

(cntr8). Every time the counter output reaches a value of 8
(eight cycles), the load control input of the memory registers
(X0-reg, . . ., X7-reg) is activated and the 8 recovered values

are loaded into these registers. This operation takes 8 cycles
for all the 8 � 8 input matrix lines (1–7), and only 9 cycles
for the first line (line 0). In fact, the counter starts counting

from zero for the first line and from one for the other lines.
The load input of the counter will be activated when the coun-
ter reaches the value of 8. In this case, the binary input ‘‘0001”
is loaded to be the initial counting value. Two input blocks and

two counters are used in the BinDCT architectures, one for
each 1D-BinDCT block. The first counter is enabled in the
start of the system functioning, and the second one is enabled

when the outputs of the first 1D-BinDCT block and the trans-
pose memory are generated. The input block is the same for
the different BinDCT implementation solutions.

Fig. 3a presents three different implementation solutions of
stage 1: a parallel solution, a solution with 2 shared operators
(1 adder and 1 subtractor), and a solution with 1 shared oper-
ator (1 add/sub). The first implementation solution uses 4

adders, 4 subtractors and 8 output registers. It has a latency
of 1 cycle, as all the ai coefficients can be calculated in a par-
allel way. In the second implementation solution, one adder

and one subtractor are used with 2 Multiplexers (MUX) to
select the operators’ entries and the output registers.
Depending on the value of the MUX selection input ‘‘sel”,
Fig. 2 Architecture o
two ai coefficients can be calculated every time. The calculated
coefficients depend on the same Xi input. A latency of 4 cycles
is necessary for calculating the ai coefficients simultaneously

two by two.
The last implementation solution of stage 1 consists in

using only one add/sub operator, 2 MUX for the operator

entry selection, and the output registers. A signal (‘‘alu1”) is
used for the add/sub component control. If alu1 = ‘0’ then
add/sub will operate as an adder; elsewhere, it will operate

as a subtractor. By applying this implementation solution, 8
cycles are necessary to calculate the 8 ai coefficients. Only
one coefficient can be calculated in each cycle.

The calculation order of the ai coefficients depends on the

subsequent stages implementation solutions for a given archi-
tecture of the global BinDCT. The ai coefficients have to be
calculated in a way that the following stages coefficients can

be calculated as soon as possible without cycle loss.
For the three implemented solutions, a set of 8 registers is

utilized to store the generated ai coefficients, and each register

is controlled by an ‘‘enable” (EN) signal. This permits to val-
idate the register or registers to be loaded in each operating
cycle depending on the calculation order. Therefore, the regis-

ters and consequently the corresponding coefficients can be
loaded in different possible cycles, and the required number
of cycles to calculate the entire coefficients can change.
Accordingly, the mentioned number of cycles represents the

minimum one permitted by the considered implementation
solution.

For example, an adequate calculation order of the ai

coefficients, using the second implementation solution, is
the following one: a1 and a6, a2 and a5, a0 and a7, and
a3 and a4. The given pairs of coefficients represent the only

possible combinations, which can be calculated simultane-
ously, as they depend on the same xi input. However, each
coefficient can be calculated alone if necessary, and in this

case the total number of cycles will increase. For the third
solution, the following order is considered: a6, a5, a0, a3,
a1, a2, a7, a4.
f the Input block.



Fig. 3 Different implementation solutions of (a) stage 1, (b) stage 2, (c) stage 3, and (d) stage 4.

BinDCT hardware implementation 913



Fig. 4 Dependency graph.

914 A. Ben Abdelali et al.
As depicted in Fig. 3b, the first implementation solution
corresponding to stage 2 includes two adders, two subtrac-
tors, and four output registers. The second implementation

solution holds 2 multiplexers, 1 adder, 1 subtractor, and
the 4 output registers. In the third solution, only one add/sub
operator, two MUX and 4 output registers are used. A con-

trol signal (‘‘alu1”) is employed to select the operation (addi-
tion or subtraction). Depending on the value of the MUX
selection signal, one of the Z0, H, Z1 and Z2 coefficients is

calculated and the corresponding register is enabled through-
out the EN input. The calculation order and the necessary
number of cycles for this stage are always the same, indepen-
dently from the hardware implementation solution. Four

cycles are necessary to generate the two outputs of this stage:
Z1 and Z2. Z1 is generated in the third cycle, and Z2 is gen-
erated in the fourth one.

Three implementation solutions are also proposed for stage
3, as shown in Fig. 3c: a parallel solution, a solution with 2
shared operators (1 adder and 1 subtractor), and a solution

with 1 shared operator (1 adder/sub). These solutions have
an identical structure and latency as those of the first stage.
Indeed, as for stage 1, 8 outputs (b0, b1, b2, b3, b4, d0, d1,

d2, d3, d4) have to be calculated, and each two output coeffi-
cients depend on the same input ones.

The minimal number of cycles for each implementation
solution is 1, 4 and 8 cycles for the 1st, 2nd and 3rd solutions,

respectively. For the 2nd implementation solution, the pairs of
coefficients that can be calculated simultaneously are b1 and
b2, b0 and b3, d0 and d1, and d3 and d2. These coefficients

can be also calculated one by one if necessary. Simply, the cor-
responding register of each coefficient has to be enabled. In
solution 3, the different coefficients can be calculated one by

one.
The coefficient calculation order for the different imple-

mentation solutions is determined according to the whole

BinDCT architecture and the data dependency, as it is
explained in what follows.

Four hardware solutions are implemented for stage 4, as
presented in Fig. 3d. 2 adders, 6 subtractors and 8 output reg-

isters are used for the first implementation solution. This latter
has a minimal latency of 2 cycles since Y4, Y2, Y3 and Y1
depend respectively on Y0, Y6, Y5 and Y7. The second solu-

tion is composed of two 2-to-1 multiplexers, four 3-to-1 multi-
plexers, 1 adder, 2 subtractors, and the output registers. The
minimal number of cycles for this solution is 3. One addition

and two subtractions are possible in each cycle. The following
calculation orders are the possible ones for the latency of 3
cycles:

� Y0 & Y7 & Y6 ? Y5 & Y1 & Y2? Y3 & Y4
� Y0 & Y7 & Y6 ? Y5 & Y1 & Y4? Y3 & Y2.

A solution with 2 adders and 2 subtractors can be consid-
ered; nevertheless, this solution necessitates more hardware
resources than solution 2 for the same minimal number of

cycles. That is why, this solution is not adopted.
4 multiplexers and 2 add/sub operators are utilized in the

third implementation solution. ‘‘alu3” and ‘‘alu4” signals are

employed for the add/sub operator control. The Yi outputs
can be calculated in 4 cycles for different possible orders, such
as the following ones:
� Y0 & Y7? Y1 & Y6 ? Y2 & Y5? Y3 & Y4

� Y0 & Y7? Y5 & Y6 ? Y1 & Y2? Y3 & Y4
� Y0 & Y7? Y5 & Y6 ? Y3 & Y4? Y1 & Y2
� Y0 & Y6? Y2 & Y4 ? Y5 & Y7? Y3 & Y1

� . . .

In the fourth solution, only one add/sub operator is used

with two 8-to-1 MUX and the output registers. The ‘‘alu3”
input signal is opted for controlling the add/sub operator,
and an addition or a subtraction is made depending on the cal-

culated coefficient. 8 cycles are necessary to generate all the Yi
coefficients.

Different calculation orders can be considered for the var-

ious implementation solutions. On the other hand, the calcula-
tion order must be fixed while respecting, as much as possible,
the following priority conditions:

� Priority 1: (Y0 and Y7)? Y7 must be generated in priority
to be able to calculate Y1 (using Y7) in the following cycle.

� Priority 2: (Y1 and Y6)? Y6 must be calculated in the

same time or before Y1 because it will be used to calculate
Y2.

� Priority 3: (Y2 & y5)? y5 must be calculated with or

before Y1 because it will be utilized to calculate Y3.
� Priority 4: (Y3).
� Priority 5: (Y4) ? Y4 depends on Y5.

These priority conditions cannot be always totally
respected, owing to the dependency on the other stage
implementation solutions. This leads to supplementary cycles

necessary to generate the Yi coefficients. In general, for a given
BinDCT architectural solution, the ideal coefficient calculation
order is the one permitting to consecutively generate the ‘‘Yi”

outputs (Y0, Y1, Y2, Y3, Y4, Y5, Y6 and Y7) in a minimal
number of cycles. The coefficient calculation order for the dif-
ferent BinDCT stages is determined by taking into account the

data dependency and the possibilities offered by the hardware



T
a
b
le

2
H
a
rd
w
a
re

re
so
u
rc
es

o
cc
u
p
a
ti
o
n
a
n
d
la
te
n
cy

o
f
th
e
fi
rs
t
a
n
d
th
e
se
co
n
d
1
D
-B
in
D
C
T

st
a
g
es
.

S
li
ce

L
u
ts

S
li
ce

re
g
is
te
rs

L
a
te
n
cy

(c
y
cl
es
)

S
li
ce

L
u
ts

S
li
ce

re
g
is
te
rs

L
a
te
n
cy

(c
y
cl
es
)

S
li
ce

L
u
ts

S
li
ce

re
g
is
te
rs

L
a
te
n
cy

(c
y
cl
es
)

S
li
ce

L
u
ts

S
li
ce

re
g
is
te
rs

L
a
te
n
cy

(c
y
cl
es
)

S
ta
g
e
1

S
ta
g
e
2

S
ta
g
e
3

S
ta
g
e
4

S
o
lu
ti
o
n
1
(S
.1
)

7
2

7
2

1
4
0

4
0

4
8
4

8
4

1
9
2

9
6

2

S
o
lu
ti
o
n
2
(S
.2
)

4
1

7
2

4
4
0

4
0

4
4
4

8
4

4
8
4

9
6

6

S
o
lu
ti
o
n
3
(S
.3
)

3
1

7
2

8
2
9

4
0

4
3
4

8
4

8
7
0

9
6

4

S
o
lu
ti
o
n
4
(S
.4
)

7
6

9
6

8

S
ta
g
e
1
1

S
ta
g
e
2
2

S
ta
g
e
3
3

S
ta
g
e
4
4

S
o
lu
ti
o
n
1
(S
.1
)

1
0
4

1
0
4

1
5
6

5
6

4
1
1
6

1
1
6

1
1
2
4

1
2
8

2

S
o
lu
ti
o
n
2
(S
.2
)

5
2

1
0
4

4
5
6

5
6

4
6
8

1
1
6

4
1
0
8

1
2
8

6

S
o
lu
ti
o
n
3
(S
.3
)

4
7

1
0
4

8
4
1

5
6

4
5
0

1
1
6

8
9
5

1
2
8

4

S
o
lu
ti
o
n
4
(S
.4
)

9
5

1
2
8

8

BinDCT hardware implementation 915
implementation solutions corresponding to the considered
BinDCT architecture.

The data dependency can be considered by exploring the

dependency graph represented in Fig. 4. As shown in this fig-
ure, the coefficients a5 and a6 have to be calculated in priority,
since any delay on the calculation of Z0 and then on the calcu-

lation of H will introduce additional cycles on the calculation
of the Y7 and Y1 outputs. Y5 presents a mobility of two
cycles; i.e., it can be calculated two cycles after d1 and d2.

As y3 depends on y5 and d2, it has the same mobility as y5.
d1 and d2 depend respectively on a4 and z2 and z1 and a7.
a4 and a7 can be then calculated 4 cycles after a5 and a6, as
they can only be used from the fifth cycle after Z0. The priority

order for the left side of the dependency graph (corresponding
to a0, a1 a2 a3 entries) can be determined utilizing the same
principle.

The possible calculation order, enabled by the different
implementation solutions of the BinDCT stages, depends on
their hardware architectures. This constraint should be also

taken into consideration in addition to the data dependency
to lead to the most optimal solutions in terms of number of
cycles.

The proposed architectures of the different BinDCT stages
are described in VHDL, and the Xilinx ISE tool is used to syn-
thesize and implement the circuits on a Virtex-6 FPGA. Table 2
represents the synthesis results of the first and second

1D-BinDCT stage implementation solutions. The occupied
hardware resources and the number of cycles relative to each
implementation solution are given.

The operating frequency of the different stages can
exceed 400 MHz. Yet, the frequency of the whole 2D-
BinDCT architecture is limited by the transpose memory fre-

quency, which is equal to 378.215 MHz. The architectural
exploration, in the next sub-section is carried out consider-
ing that all the 2D-BinDCT architectures present the same

clock frequency.

Architectural exploration of the 2D-BinDCT

The main focus of this section is the architectural exploration

of the different possible implementation solutions of the 2D-
BinDCT. The 2D-BinDCT architectures are obtained by com-
bining the different implementation solutions of the BinDCT

stages. The compromise between latency and hardware
resource occupation is the main criterion to be taken into
account when making stage combinations. If an architectural

solution requires more hardware resources than another one
with the same or lower number of cycles, it will be eliminated
as it does not have any interest, compared to the retained
architectures (either in terms of resource occupation or

latency).
The architectural exploration starts with the extreme solu-

tions in terms of hardware resources. They correspond to com-

pletely unshared and totally shared resources. For the
completely unshared architecture, the first implementation
solution (‘‘not shared”) is used for each BinDCT stage. How-

ever, in the second architecture (‘‘highly shared”), the last solu-
tion (shared with only one Add/Sub operator) is applied for
each stage. Table 3 is utilized for the exploration phase. It rep-

resents the stage implementation solutions corresponding to
each architecture, the latency, and the hardware resources



Table 3 Architectural solutions exploration.

Arch N� Stage 1/11 Stage 2/22 Stage 3/33 Stage 4/44 Number

of cycles

Hardware

resources

(Luts)

Completely non shared solution 1 S.1 S.1 S.1 S.1 160 688

Derived solutions 2 S.1 S.3 S.1 S.1 160 662

3 S.1 S.3 S.1 S.2 160 638

4 S.1 S.3 S.1 S.3 160 611

5 S.1 S.3 S.2 S.1 160 574

6 S.1 S.3 S.2 S.2 160 550

7 S.1 S.3 S.2 S.3 160 523

8 S.1 S.3 S.3 S.1 162 546

9 S.1 S.3 S.3 S.2 162 522

10 S.1 S.3 S.3 S.3 162 495

Highly shared solution 11 S.3 S.3 S.3 S.4 170 397

Derived solutions 12 S.3 S.3 S.3 S.3 170 391

13 S.3 S.3 S.3 S.2 170 405

14 S.3 S.3 S.3 S.1 168 429

15 S.3 S.3 S.1 S.3 166 507

16 S.3 S.3 S.1 S.2 166 534

17 S.3 S.3 S.1 S.1 166 558

18 S.3 S.3 S.2 S.3 166 419

19 S.3 S.3 S.2 S.2 166 446

20 S.3 S.3 S.2 S.1 166 470

Medium shared solution 21 S.2 S.2 S.2 S.3 162 466

Derived solutions 22 S.2 S.3 S.2 S.3 162 440

23 S.2 S.3 S.2 S.1 162 491

24 S.2 S.3 S.2 S.2 162 467

25 S.2 S.3 S.1 S.1 162 579

26 S.2 S.3 S.1 S.2 162 555

27 S.2 S.3 S.1 S.3 162 528

28 S.2 S.3 S.3 S.1 164 463

29 S.2 S.3 S.3 S.2 166 439

30 S.2 S.3 S.3 S.3 166 412

Bold font is used to highlights the retained solutions.

916 A. Ben Abdelali et al.
occupied by the first and second 1D BinDCT. Only the
occupation in terms of LUTs is given, as the number of regis-
ters is the same for the different architectures.

The timing diagram of the completely unshared architec-
ture is represented in Fig. 5a. This architecture includes 4
adders, 4 subtractors and 8 registers for stage 1; 2 adders, 2

subtractors and 4 registers for stage 2; 4 adders, 4 subtractors
and 8 registers for stage 3; and 2 adders, 6 subtractors and 8
registers for stage 4. The timing diagram shows the number

of cycles needed for the various 1D-BinDCT stage modules.
The serial inputs of the 1D-BinDCT block (X0, X1, . . ., X7),
their serial outputs (Y0, Y1, . . ., Y7) and the output coeffi-
cients of each stage are provided. The first line (X0, X1, . . .,
X7) of the 8 � 8 input matrix requires a latency of 16 cycles,
and each one of the remaining lines presents a latency of 15
cycles. In fact, the input stage takes 9 cycles for the first line

and 8 cycles for the other lines, and the four BinDCT stages
have a global latency of 8 cycles.

The first valid output of the 2D-Bindct, relative to the first

architecture, is generated after 97 cycles, and the last one is
generated after 160 cycles. These values are calculated for
the serial inputs and outputs of the 2D-BinDCT, and they

are obtained considering the pipeline between the different
BinDCT stages, the transpose memory and the additional
blocks for output serialization.
Relative to the first architecture and its timing diagram, the
different derived 2D-BinDCT implementation solutions
(Table 3) are explored. The following considerations are taken

into account in the exploration phase:

� For stages 2/22, each one of the proposed solutions (S.1,

S.2, S.3 and S.4) takes 4 execution cycles. That is why only
the solution S.3 is opted for, because it has the best perfor-
mances in terms of resource occupation.

� The implementation solution S.4 of stages 4/44 is not con-
sidered, because it necessitates more execution cycles and
more hardware resources than the solution S.3. Thus, for
the shared solutions in stage 4, only S.2 and S.3 are

employed.

The first architectural solution, combining the S.1, S.1, S.1

and S.1 solutions for stages 1, 2, 3 and 4, is automatically
replaced by the S.1, S.3, S.1 and S.1 solution-based architec-
ture. For this latter (Arch N�2), the different combinations

of the S.1, S.2 and S.3 solutions of stages 3/33 and the S.1,
S.2 and S.3 solutions of stages 4/44 are explored. The retained
architectural solutions are Arch N�7 and Arch N�10, which are

indicated in Table 3. The remaining architectures are discarded
as there exists solutions with the same number of cycles and
fewer hardware resources.



Fig. 5 Timing diagram of (a) Arch N�1, (b) Arch N�12 and (c) Arch N�21.

BinDCT hardware implementation 917
For the highly shared architecture (Arch N�11), only 1

add/sub operator is used for each BinDCT stage. According
to the previously mentioned considerations, this architecture,
which is built utilizing respectively the S.3, S.3, S.3 and S.4

solutions of stages 1, 2, 3 and 4, is automatically replaced by
the S.3, S.3, S.3 and S.3 solution-based architecture (Arch
N�12). The timing diagram corresponding to Arch N�12 is rep-
resented in Fig. 5b. The first valid output of the 2D-BinDCT,
relative to this architecture, is generated after 107 cycles, and
the last one is generated after 170 cycles.

The different implementation solutions derived from this

architecture (Arch N�12) are explored. Only the S.3 implemen-
tation solution is used for stage 2, and the S.1, S.2 and S.3

solutions are utilized for stage 4. The retained architectural
solutions are Arch N�12 and Arch N�18.

The architecture based on the S.2, S.2, S.2 and S.3 imple-

mention solutions for stages 1, 2, 3 and 4 is also considered
as an architectural exploration starting point. In Table 3, this
architecture is called ‘‘medium shared solution”. Each one of

stages 1 to 3 includes 1 adder and 1 subtractor, and just stage
4 includes 2 add/sub operators. The timing diagram corre-
sponding to this solution (Arch N�21) is illustrated in
Fig. 5c. The first valid output of the 2D-BinDCT, relative to

this architecture, is generated after 99 cycles, and the last



Fig. 6 2D-BinDCT architecture.

Table 4 Implementation results of the retained architectures.

Architecture Slice registers Slice LUTs Slices Frequency MHz Number of cycles

Arch N�7 1801 938 665 378.215 160

Arch N�10 1809 925 638 378.215 162

Arch N�22 1801 846 626 378.215 162

Arch N�28 1809 890 645 378.215 164

Arch N�18 1809 834 661 378.215 166

Arch N�30 1809 833 613 378.215 166

Arch N�14 1817 870 595 378.215 168

Arch N�12 1817 813 588 378.215 170

918 A. Ben Abdelali et al.
one is generated after 162 cycles. By exploring the different
architectural solutions derived from Arch N�21, the retained

ones are Arch N�22, Arch N�28 and Arch N�30.
Results and discussion

The implementation details of the 2D-BinDCT and the discus-
sion of results are presented in this section, to wit the structure
of the global architecture, the operations of the proposed

architecture, the implementation results in terms of hardware
resources and clock frequency, and the evaluation and com-
parison of performances. The suggested architecture is

depicted in Fig. 6. It includes the following blocks: the ‘‘1st
1D-BinDCT input” block, the ‘‘1st 1 D-BinDCT” block, the
‘‘before SRAM” block, the ‘‘transpose SRAM” block, the
‘‘2nd 1D-BinDCT input” block, the ‘‘2nd 1D-BinDCT” block

and the ‘‘2D-BinDCT output” block.
The 1st and 2nd 1D-BinDCT input blocks have the same

structure, which is indicated in Fig. 2. Their role is to transmit

the 8 serially introduced inputs in a parallel way to the first
BinDCT stage. These blocks operate in pipeline with the other
architecture blocks and present an initiation period of 1 cycle.
Accordingly, data acquisition is ensured in each clock cycle,
which is very important for the continuous data acquisition

for a direct connection to a video source or for a continuous
access to the data memory.

The ‘‘before SRAM” block permits serializing the parallel

outputs of the first 1D-BinDCT and transmitting them to
the transpose memory block. The 1D-BinDCT coefficients
have to be transmitted in a continuous way in the ascending

order (Y0, . . ., Y7). Similarly, the ‘‘2D-BinDCT output” block
allows serializing the parallel outputs of the 2nd 1D-BinDCT
and putting them out. This is essential for pixel-by-pixel trans-
mission and acquisition.

Table 4 gives the implementation results of the complete
architecture corresponding to the BinDCT architectural solu-
tions retained in the exploration phase. As shown in this table,

for the same operating frequency, the Arch N�10 and Arch N�
22 have the same number of cycles but a different hardware
resource occupation. Since Arch N�22 presents a smaller size,

Arch N�10 is discarded. Likewise, Arch N�18 is also elimi-
nated, as it provides a higher size than Arch N�30 for the same
number of cycles. Comparing Arch N�22 and Arch N�28, it
can be noticed that Arch N�22 has a smaller size and a lower

number of cycles, so Arch N�28 is discarded. In the same way,



Table 5 Control signals for the different BinDCT stages of architecture N�12.

Mux1 output Mux2 output Output Operation Alu Sel Enb Cntr8

a. Stage 1 control

x1 x6 a6 x1 � x6 1 00 000 (0001)

x2 x5 a5 x2 � x5 1 01 001 (0010)

x0 x7 a0 x0 + x7 0 10 010 (0011)

x3 x4 a3 x3 + x4 0 11 011 (0100)

x1 x6 a1 x1 + x6 0 00 100 (0101)

x2 x5 a2 x2 + x5 0 01 101 (0110)

x0 x7 a7 x0 � x7 1 10 110 (0111)

x3 x4 a4 x3 � x4 1 11 111 (1000)

b. Stage 2 control

a5 a6.P4 Z0 a5 � a6.P4 1 00 00 (0011)

a6 Z0.U40 H a6 + Z0.U40 0 01 01 (0100)

H Z0.U400 Z1 H+ Z0.U400 0 10 10 (0101)

Z1.P5 Z0 Z2 Z1.P5 � Z0 1 11 11 (0110)

c. Stage 3 control

a0 a3 b0 a0 + a3 0 00 000 (0110)

a0 a3 b3 a0 � a3 1 00 001 (0111)

a1 a2 b1 a1 + a2 0 01 010 (1000)

a4 Z2 d0 a4 + Z2 0 10 011 (0001)

a7 Z1 d3 a7 + Z1 0 11 100 (0010)

a1 a2 b2 a1 � a2 1 01 101 (0011)

a7 Z1 d2 a7 � Z1 1 11 110 (0100)

a4 Z2 d1 a4 � Z2 1 10 111 (0101)

Mux1 output Mux2 output Mux3 output Mux4 output Output Operation Sel Enb Alu1 Alu2 Cntr8

d. Stage 4 control

b0 b1 P3.d3 d0 Y0 b0 + b1 00 00 0 1 (0100)

Y7 P3.d3 � d0

d3 Y7.U3 b3.P1 b2 Y1 d3 � Y7.U3 01 01 1 1 (0101)

Y6 b3.P1 � b2

Y6.U1 b3 P2.d2 d1 Y2 Y6.U1 � b3 10 10 1 0 (0110)

Y5 P2.d2 + d1

d2 Y5.U2 ½Y0 b1 Y3 d2 � Y5.U2 11 11 1 1 (0111)

Y4 ½Y0 � b1

B
in
D
C
T
h
a
rd
w
a
re

im
p
lem

en
ta
tio

n
9
1
9



Table 6 Hardware performances comparison to different

DCT implementations.

L LUTs Registers F max

Llamocca [23]

12 5167 4866 250

16 8609 7269 244

Bouguezel et al. [24]

12 821 1523 337.8

16 1029 1915 284.0

Bouguezel et al. [11] for a= 0

12 728 1732 337.4

16 919 2187 325.2

Bouguezel et al. [11] for a= 1

12 813 1949 329.4

16 1021 2445 316.9

Bouguezel et al. [11] for a= 2

12 812 1950 353.1

16 1019 2445 326.5

Cintra and Bayer [12]

12 950 1709 270.6

16 1198 2162 256.0

Bayer and Cintra [13]

12 657 1329 354.0

16 834 1698 345.5

Potluri et al. [14]

12 1036 1968 314.9

16 1291 2463 298.0

Potluri et al. [7]

12 663 1329 353.7

16 839 1697 341.8

Proposed BinDCT implementation (Arch 22)

16 815 1608 378.215

920 A. Ben Abdelali et al.
Arch N�14 presents a higher number of cycles and a larger size

compared to Arch N�30, so it is also discarded.
As a final result, Arch N�12 is retained as the best solution

in terms of hardware resource occupation, Arch N�7 as the

best solution in terms of number of cycles, and Arch N�22
and Arch N�30 as two solutions both assuring the best com-
promise between the number of cycles and the hardware

resource occupation. Depending on the target application con-
straints, the user has the choice between one of these imple-
mentation solutions, namely the solution optimizing
hardware resources (Arch N�07), the solution optimizing

latency (Arch N�12), or one of the intermediate solutions
(Arch N�22 and Arch N�30).

An additional advantage of the proposed implementation

architectures of the BinDCT is their simple control mecha-
nism. In fact, the whole system control is just ensured by the
‘‘cntr-8-1”, ‘‘cntr-8-2” and ‘‘Cntr-N-Cycle” counters, so no

additional controllers (state machines) are needed. The counter
‘‘Cntr-N-Cycle” is used to enable the transpose memory and
the cntr-8-2. The transpose memory is enabled when the first

1D-BinDCT coefficient is generated and sent throughout the
‘‘before SRAM” block. The ‘‘Cntr-N-Cycle” is also used to
generate the ‘‘out_rdy” signal. As it can be seen in the timing
diagrams, the different intermediate coefficients (ai, zi, bi, di
and yi) are generated in a periodic way relative to the cntr-8-
1 values. This latter is utilized to control the different multi-
plexers and registers of the first 1D_BinDCT architecture for

data selection and register load activation. Cntr8-2 is used
for the second 1D_BinDCT control, in the same way as
cntr8-1. Nevertheless, this counter does not begin working

with the system start. It is enabled when all the 1D-BinDCT
coefficients are calculated and transposed. In this time, the
2nd 1D-BinDCT input block must begin getting the input

values.
The control signals (Alu, Sel, En, Alu1, etc.) of the different

BinDCT stage modules are directly commanded by the ‘‘cntr-
8” counter. In each counting cycle, some operations are to be

performed to calculate particular coefficients, as defined in the
timing diagram related to each implementation solution.
Table 5 gives the control words and the performed operations

for stages 1, 2, 3 and 4. These control steps correspond to the
functioning example of Arch N�12, which is represented by the
timing diagram of Fig. 5b. In each control step, only 2 or 3 less

significant bits of the cntr-8 are used to command the
multiplexers and registers to assure the defined operation, as
indicated in Table 5.

The obtained results in terms of number of cycles corre-
spond to the execution of one 8 � 8 input matrix. This may
be the case, for example, of the MPEG7 color layout descrip-
tor [21,22], when the DCT is calculated for only one 8 � 8

matrix for each color component (Y, Cr and Cb). Whereas,
for a continuous pipelined execution of the BinDCT for the
different 8 � 8 pixels blocks of the input images, just a small

change will be introduced to the architecture. A second
transpose memory block with a demultiplexer after the
‘‘Before-SRAM” block and a multiplexer just after the two

‘‘transpose memory” blocks is to be added. These two trans-
pose memories are going to be used to alternately store the
intermediate results generated by the first 1D-BinDCT mod-

ule. When the second BinDCT module is reads data from
one memory block, the first 1D-BinDCT module will write
into the other one. After the required number of cycles to
make the first BinDCT coefficient available on the out port,

the outputs will be generated in every clock cycle.
For a continuous execution mode, our architectures can

attain a throughput of 378 Mega pixels per second (Mpps).

This throughput can increase if a more recent FPGA family
has been used (for example, it becomes 390 Mpps for a Virtex
7 FPGA). This high throughput permits supporting a resolu-

tion from the VGA (640 � 480 pixels) to the UXGA
(1600 � 1200) and all digital television formats including the
HDTV (1080i and 720p). For example, the VGA format with
60 frames per second (fps) requires a throughput of only

30.6 Mpps. The 1080p/60 video format (1920 � 1080 pixels
@ 60 Hz refresh) needs a bandwidth of 148.5 Mpps, which is
still remarkably less than the throughput supported by our

architectures.
The performance of the proposed implementation of the

BinDCT is compared to the existing DCT implementations

in terms of hardware cost and computing time (Table 6).
The hardware cost is measured by the number of look-up
tables (LUT) and registers (Regs) and the computing time is

normalized as clock cycles (maximum operating frequency
(Fmax) in MHz). The DCT architectures used for comparison
are those suggested by Potluri et al. [7], Dhandapani and
Ramachandran [8], and Llamocca et al. [23]. The architectures



Fig. 7 Proposed implementation (PI) performances.

BinDCT hardware implementation 921
implemented by Potluri et al. and Dhandapani and

Ramachandran [7,8] corresponded to the 8-point multiplica-
tion free approximate DCT methods put forward by Potluri
et al. [7,14], Bouguezel et al. [11,24], Cintra et al. [12], and

Bayer and Cintra [13]. The architecture implemented by
Llamocca et al. [23] corresponded to a distributed arithmetic
DCT based implementation.

Two input precision levels have been considered for the dif-

ferent architectures in order to investigate the performance in
terms of digital logic resource consumptions at varied degrees
of numerical accuracy and dynamic ranges. The two following

system word lengths have been adopted: L 2 {12, 16}. The
implemented architectures have been designed for 8 parallel
inputs and outputs. Therefore, the same configuration is

adapted for our BinDCT architecture (Arch N�22) by discard-
ing the input and output blocks. The implementation is per-
formed on the Xilinx Virtex-6 XC6VSX475T device, which
contains 297,600 LUT and 595,200 Regs. By analyzing the

obtained results, it can be seen that the BinDCT design pre-
sents the best performances in terms of hardware resources
and operating frequency.

In addition, the static (Qp) and dynamic power (Dp) con-
sumptions are estimated using the Xilinx XPower Analyzer.
The following results are obtained: Qp = 3.532 mW and

Dp = 0.107 mW. These consumption values represent lower
values than those presented in the literature [7,8,23]. Fig. 7
summarizes the performances of the proposed implementation

compared to the existing implementations of DCT approxima-
tions. The obtained performances show that the proposed
implementation can be a good candidate for highly con-
strained images and video processing applications. It allows

meeting the real time constraints of the most recent high reso-
lution video formats, while presenting high hardware
efficiency.

Conclusions

In order to develop an efficient VLSI architecture for the

BinDCT, in this work, a large design exploration of this mod-
ule is performed. At first, a detailed study of the BinDCT,
which is decomposed in a multi-stage architecture, is carried

out. Several architectures of the whole 2D-BinDCT are
developed by exploring different BinDCT stage hardware

implementation solutions. These architectures are obtained
by combining the different implementation solutions of the
BinDCT stages. The timing of the explored solutions is deter-

mined by taking into account the stages pipeline and the coef-
ficients calculation order. This latter is fixed in the manner of
ensuring the best latency while avoiding data dependency
violation.

The hardware architectures, relative to the different
retained solutions, are designed and implemented. The control
system is also studied and developed. The implementation

results for a Virtex-6 FPGA show the high performances of
the proposed system compared to the existing DCT designs,
which makes it suitable for hardware and time constrained

applications.

Conflict of Interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

References

[1] Turneo A, Monchiero M, Palermo G, Ferrandi F, Sciuto D. A

pipelined fast 2D-DCT accelerator for FPGA-based SoCs. Proc

- IEEE Comput Soc Annu Symp VLSI Emerg VLSI Technol

Archit 2007:331–6.

[2] Road M, Kumar PP, Road M. FPGA implementation of a DA

based 1D DCT processor. Int J Rev Electron Commun Eng

2013;1:94–6.

[3] Venkata B, Venkateswarlu C. Design of low power 2-D DCT

architecture using reconfigurable architecture. IOSR J Electron

Commun Eng 2012;3:20–5.

[4] Liang J, Tran TD. Fast multiplierless approximations of the

DCT with the lifting scheme. IEEE Trans Signal Process

2001;49:3032–44.

[5] Cham WK. Development of integer cosine transforms by the

principle of dyadic symmetry. IEE Proc I - Commun Speech Vis

1989;136:276–82.

http://refhub.elsevier.com/S2090-1232(16)30070-4/h0005
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0005
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0005
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0005
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0010
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0010
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0010
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0015
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0015
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0015
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0020
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0020
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0020
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0025
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0025
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0025


922 A. Ben Abdelali et al.
[6] Tran TD. The BinDCT: fast multiplierless approximation of the

DCT. IEEE Signal Process Lett 2000;7:141–4.

[7] Potluri US, Madanayake A, Cintra RJ, Bayer FM, Kulasekera

S, Edirisuriya A. Improved 8-point approximate DCT for image

and video compression requiring only 14 additions. IEEE Trans

Circuits Syst I 2014(61):1727–40.

[8] Dhandapani V, Ramachandran S. Area and power efficient

DCT architecture for image compression. EURASIP J Adv

Signal Process 2014;2014:180. http://dx.doi.org/10.1186/1687-

6180-2014-180.

[9] Meher PK, Park SY, Mohanty BK, Lim KS, Yeo C. Efficient

integer DCT architectures for HEVC. IEEE Trans Circuits Syst

Video Technol 2014;24:168–78.

[10] Bouguezel S, Ahmad MO, Swamy MNS. Low-complexity 8

times 8 transform for image compression. Electron Lett

2008;44:1249–50.

[11] Bouguezel S, Ahmad MO, Swamy MNS. A low-complexity

parametric transform for image compression. In: 2011 IEEE Int

Symp Circuits Syst. p. 2145–8.

[12] Cintra RJ, Bayer FM. A DCT approximation for image

compression. IEEE Signal Process Lett 2011;18:579–82.

[13] Bayer FM, Cintra RJ. DCT-like transform for image

compression requires 14 additions only. Electron Lett

2012;48:919–21.

[14] Potluri US, Madanayake A, Cintra RJ, Bayer FM, Rajapaksha

N. Multiplier-free DCT approximations for RF multi-beam

digital aperture-array space imaging and directional sensing.

Meas Sci Technol 2012;23:114003.

[15] Dang PP, Chau PM, Nguyen TQ, Tran TD. BinDCT and its

efficient VLSI architecture for real-time embedded applications.

J Imaging Sci Technol 2005;49:124–37.
[16] Jabbar MH. BinDCT design and implementation on FPGA

with low power architecture. Liverpool: John Moores

University; 2008.

[17] Murphy CW, Harvey DM. Reconfigurable hardware

implementation of BinDCT. Electron Lett 2002;38:1012–3.

[18] Al-Gherify MFK. Image compression using BinDCT for

dynamic hardware FPGA’s. Liverpool: John Moores

University; 2007.

[19] Timakul S, Chuntree S, Choomchuay S. A low complexity

implementation of a fast BinDCT. In: Int symp commun inf

technol (ISCIT 2003), vol. 2, Songkla, Thailand. p. 799–802 [n.

d.].

[20] Mijic S, Mezei I, Struharik R. IP cores for 2D direct and inverse

discrete cosine transformation. 2015 23rd Telecommun forum

telfor (TELFOR); 2015. p. 433–6. http://dx.doi.org/10.1109/

TELFOR.2015.7377500.

[21] Kasutani E, Yamada A. The MPEG-7 color layout descriptor: a

compact image feature description for high-speed image/video

segment retrieval. Proceedings of int conf image process, vol. 1.

p. 674–7.

[22] Manjunath BS, Ohm JR, Vasudevan VV, Yamada A. Color and

texture descriptors. IEEE Trans Circuits Syst Video Technol

2001;11:703–15.

[23] Llamocca D, Pattichis M, Carranza C. A framework for self-

reconfigurable DCTs based on multiobjective optimization of

the power-performance-accuracy space. In: 2012 7th int work on

reconfigurable commun syst (ReCoSoC); 2012. p. 1–6.

[24] Bouguezel S, Ahmad MO, Swamy MNS. Low-complexity 8�8

transform for image compression. Electron Lett 2008;44:1249.

http://refhub.elsevier.com/S2090-1232(16)30070-4/h0030
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0030
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0035
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0035
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0035
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0035
http://dx.doi.org/10.1186/1687-6180-2014-180
http://dx.doi.org/10.1186/1687-6180-2014-180
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0045
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0045
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0045
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0050
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0050
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0050
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0055
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0055
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0055
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0060
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0060
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0065
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0065
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0065
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0070
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0070
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0070
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0070
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0075
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0075
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0075
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0080
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0080
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0080
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0085
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0085
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0090
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0090
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0090
http://dx.doi.org/10.1109/TELFOR.2015.7377500
http://dx.doi.org/10.1109/TELFOR.2015.7377500
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0105
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0105
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0105
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0105
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0110
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0110
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0110
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0120
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0120
http://refhub.elsevier.com/S2090-1232(16)30070-4/h0120

	Efficient BinDCT hardware architecture exploration and implementation on FPGA
	Introduction
	Methodology
	Structure of BinDCT transform
	Hardware architecture of the different BinDCT stages
	Architectural exploration of the 2D-BinDCT

	Results and discussion
	Conclusions
	Conflict of Interest
	Compliance with Ethics Requirements
	References


