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a b s t r a c t

A style of programming that uses higher-order functions has become common in C++,
following the introduction of the Standard Template Library (STL) into the standard library.
In addition to their utility as arguments to STL algorithms, function parameters are useful
as callbacks on GUI events, defining tasks to be executed in a thread, and so forth. C++’s
mechanisms for defining functions or function objects are, however, rather verbose, and
they often force the function’s definition to be placed far from its use. As a result, C++
frustrates programmers in taking full advantage of its own standard libraries. The effective
use of modern C++ libraries calls for a concise mechanism for defining small one-off
functions in the language, a need that can be fulfilled with lambda expressions.
This paper describes a design and implementation of language support for lambda

expressions in C++. C++’s compilation model, where activation records are maintained in a
stack, and the lack of automatic object lifetime management make safe lambda functions
and closures challenging: if a closure outlives its scope of definition, references stored in a
closure dangle. Our design is careful to balance between conciseness of syntax and explicit
annotations to guarantee safety. The presented design is included in the draft specification
of the forthcoming major revision of the ISO C++ standard, dubbed C++0x. In rewriting
typical C++ programs to take advantage of lambda functions, we observed clear benefits,
such as reduced code size and improved clarity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Manyprogramming languages support defining local unnamed functions ‘‘on-the-fly’’, within another function or expres-
sion. These include practically all functional programming languages and also a growing number of imperative or object-
oriented mainstream languages, such as C# 3.0 [25, Section 26.3], Python [26, Section 5.11], and ECMAScript [8, Section 13],
to name a few. Local unnamed functions, often called lambda functions or lambda expressions, have many uses in day-to-day
programming: as arguments to functions that implement various traversals, as callbacks triggered by I/O events in graphi-
cal user interface widgets, as tasks to be executed in a concurrent thread, and so forth. Even outside of primarily functional
programming languages, lambda functions can be considered part of the (desired) toolbox of mainstream programming.
Lambda functions are not a feature of C++. We consider this a shortcoming, especially since modern C++, with the

Standard Template Library (STL) [29] as the backbone of its standard library, encourages a programming style where higher-
order functions are commonplace. For example, many oft-used STL algorithms implement common traversal patterns and
are parametrized on functions. Examples include the accumulate, remove_if, and transform algorithms, whose counterparts in
the context of functional languages are, respectively, the fold, filter, and map families of functions. The lack of a syntactically
lightweight mechanism for defining simple local functions is a hindrance to taking advantage of STL’s abstractions, and thus
to the effective use of C++’s own standard libraries.
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Typically, a lambda expression has access to local definitions in the enclosing scope of its definition. The term closure
refers to the value of a lambda expression, comprising the code of the function and the environment in which it was
defined. The environment consists of the local variables referenced in the lambda expression. Using the terminology of
lambda calculus, we call such variables free. In situations naturally programmed with lambda functions, C++ programs rely
on the well-known connection between closures and objects—member variables of a class store the environment and a
member function contains the code of a lambda function. Usually this member function is the function call operator, which
can be invoked with the function call syntax, as if the object was an ordinary C++ function. Such objects are called function
objects.
Although function objects can serve as closures, they are not particularly well-suited for emulating lambda expressions.

Defining a class and constructing an object of that class is syntactically verbose. In particular, if a closure’s environment is
not empty, defining member variables and a constructor is necessary. Moreover, C++ restricts the use of unnamed classes
defined within function bodies, so that programmers usually need to invent a name for a class that emulates a lambda
expression and place the class definition in ‘‘namespace scope’’, textually far from the use of the class. Sophisticated template
libraries [23,18,5] have finessed the function object approach to a small embedded language resembling that of writing local
unnamed functions, but the solutions remain inadequate, as explained in Section 2.
This paper describes a design for lambda functions for C++ as a built-in language feature. We define the semantics

of lambda functions via their translation to function objects; our implementation applies this translation at the level of
abstract syntax trees. The approach resembles that of, say, C#, where lambda expressions can be regarded as anonymous
class definitions [25, Section 26.3].1 In a languagewithout automatic object lifetimemanagement, such as C++, this approach
is challenging. In particular, if a lambda function outlives the scope of its definition, free variables in the lambda function’s
body dangle. Consequently, our lambda functions entrust the programmer with control over the closure’s contents. To be
minimally disruptive to C++’s type system, our design does not introduce a new kind of function type; a lambda expression
has an unspecified type. In situations where a definite type is necessary, lambda functions integrate smoothly with thewell-
established library facility of polymorphic function wrappers [15], [1, Section 20.7.16], which can wrap arbitrary function
objects in an object whose type defines an explicit call signature.
C++’s manual memory management, modular type checking (discussed below), stack-based management of activation

records, and the already rich feature set all conspire against introducing a language construct for lambda functions—yet it is
sorely needed in C++. We present a design that takes the above constraints into account and, we believe, fits well into C++.
Our design has been accepted by the ISO C++ standards committee [17] and is part of the working draft of the next standard
revision [1]. Our (partial) implementation is publicly available as a branch of GCC [9].
Beyond what is part of the draft standard, we discuss polymorphic lambda expressions, where parameter types need not

be declared. Polymorphic lambda functions are desirable for their conciseness—the C++ standards committee has expressed
support for adding the feature at a later phase of the standardization process. The next revision of standard C++, dubbed
C++0x, includes constrained templates and supports their modular type checking [13]. To extend modular type checking to
polymorphic lambda functions, their parameter types must be inferred. C++ does not support type inference in general, but
it is possible to deduce the parameter types of a polymorphic lambda function from the context of its definition. Specifically,
when a lambda function is bound to a type parameter of a template, the constraints of that type parameter contain a call
signature for the lambda function; this information is enough for deducing the parameter types and, consequently, type
checking the body of the lambda function. Finally, C++’s unconstrained templates support polymorphic function objects
that can be passed into generic functions and invoked at different call sites with different argument types. This form of
polymorphism can be preserved for lambda functions in the context of C++0x’s constrained templates. A generic function
can constrain the same function object type with multiple call signatures—type checking the lambda function body against
each signature guarantees the absence of type errors in the body of the generic function.

2. Motivation and background

Function objects are an expressive mechanism for representing closures, but their syntactic overhead is excessive. The
call to the standard library’s find_if() algorithm in Fig. 1 demonstrates. Defining a new class less_than_i, constructing an object
of that type, and invoking find_if() using the object is so verbose that it would be much easier to write, and likely clearer to
read, a loop that implements the functionality of the call to find_if(). Similar arguments apply to many other functions in the
standard library, such as for_each() and transform(). This is not obvious from textbook examples—simple cases, such as the
example in Fig. 1, can be encoded with a set of function objects from the standard library:

find_if(v.begin(), v.end(), bind2nd(less<int>(), i));

Though less verbose, this is still rather clumsy, and leaves many programmers reaching out for a language manual. The
standard function objects like less and simple composition functions like bind2nd are essentially a small embedded language
for defining unnamed functions. One quickly learns that this language can express only a very limited set of functions.

1 We do not consider the expression tree aspect of C#’s lambda expressions.
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Fig. 1. The ‘‘function object idiom’’ for emulating lambda expressions in C++.

The draft C++ standard library offers a more expressive embedded language with its family of bind functions [22],
[1, Section 20.7.12]. Libraries, such as the Boost Lambda Library [19,18], FC++ [23], and Phoenix [5], take the ‘‘embedded
language’’ approach still further. For example, using the Boost Lambda Library, the example in Fig. 1 can be written as

find_if(v.begin(), v.end(), _1 < i);

The variable _1 is a predefined name for the first parameter of the unnamed function.
This improves on the original STL’s function objects inmanyways: the embedded language is almost the same as the rest

of C++, the syntax is very concise, and polymorphic lambda functions (as demonstrated by the above example) are supported.
Unfortunately, these seemingly elegant solutions suffer from serious problems. For example, erroneous uses of lambda
functions often manifest in extremely long and cryptic error messages, all but the simplest expressions require excessive
compilation resources (time and memory), and run-time performance can suffer depending on compilers’ optimizing
ability (e.g., aggressive inlining is crucial). Further, the predefined parameter names (_1, _2, . . .) may feel unnatural to
programmers, and because the parameter names have no scope, composing lambda functions is not directly supported.
(The latter restriction is not inherent to all library solutions; the FACT! [31] library is one such exception.) The most severe
limitation, however, is that the embedded language for defining lambda functions is only ‘‘almost expressive enough’’. As a
result, there are many common situations where a subtle behavior of these libraries is very difficult for users to understand,
and others where the libraries do not work at all. For example, member access syntax cannot be supported. This means
that an expression like _1.size(), which would define a unary lambda function that invokes the size()member function on the
lambda function’s argument, is invalid—even though it follows naturally from the general syntax of the embedded language.
The expression thatworks, bind(&vector<int>::size, _1), is muchmore verbose, has to specify the receiver object’s type, andwill
notwork if themember function size is overloaded (without suffering the additional syntactic overhead of further annotating
its type). In analyzing or correcting an ill-formed lambda expression, neither the C++ type checker nor a debugger is of
much help. The libraries discussed above are based on expression templates [34], where the original abstraction, the lambda
expression, is translated at compile time into a complex structure representing the parse tree of the expression, and thus
the abstraction is visible neither for the type checker nor in the generated executable code.
Based on feedback from users of various lambda libraries, it is clearly difficult for programmers to grasp the subtleties of

the library-based lambda functions, and a lot of development time is wasted in trying to bend the libraries to do what they
cannot do.
In sum, function objects are sufficient for expressing closures in C++ but they are overly verbose to define. Increasingly

elaborate library techniques aimed at amore concise notation are useful, but they are also a source of complexity, confusion,
and even other forms of verbosity. The popularity of the lambda libraries, despite the struggles programmers experience
when using them, shows that lambda functions are a necessary feature for C++. The designs of these libraries demonstrate
that lambda functions can be implemented without major changes to the core language, by relying on existing constructs
in the language and on its libraries.

3. Lambda expressions

This section describes the design and use of lambda functions informally with the help of a series of examples, and gives
a rationale for the design decisions. A detailed specification can be found in the current draft of the C++ standard [1], and in
the standards committee’s technical reports [16,17].
A C++ lambda expression consists of three main parts: the definition of the parameters, the code of the lambda function,

and a specification of how the environment is captured in the closure. In the simplest case, the body of a lambda function
contains no free variables and the last part boils down to a simple syntactic indicator ‘‘[]’’ that marks the start of the
lambda expression. Apart from amissing function name, the syntax of lambda expressions is then similar to that of function
definitions. For example, the following lambda function computes the maximum of its arguments:

[](int x, int y) { return (x > y) ? x : y; }

Definitions of lambda functions are expressions, and thus they can syntactically appear anywhere C++ allows expressions.
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3.1. Free variables in lambda expressions

Following established terminology, a variable occurrence that refers to a parameter of a lambda expression is bound by
that lambda expression. For example, the occurrences of the variables x and y in the above lambda expression are bound.We
can also consider local variables defined within a body of a lambda expression to be bound. All other variable occurrences,
i.e., references to variables that are not introduced by the lambda expression, are free.
If the body of a lambda function contains free variables, the resulting closuremust by somemeans arrange access to these

variables. Furthermore, if the closure outlives the scope of its definition, it must be ensured that the free variables still refer
to existing variables, instead of becoming dangling references. C++’s lack of automatic object lifetime management makes
this challenging.
Consider a straightforward implementation of closures, where the environment is stored as a list of references to free

variables, or alternatively as a single pointer to the activation record of the function where the closure was created, through
which the local variables in the enclosing scope can be accessed. In C++, activation records are stored in a stack and a
function’s record is popped off immediately after the function exits, which makes any references to the activation record
dangle. Extending the lifetime of activation records, or individual variables, for example by allocating them selectively
on the heap instead of a stack, would too drastically change the basic compilation model and the expected performance
characteristics of C++; for example, some form of garbage collection would be required. Instead of suchmeasures, we allow,
and require, programmers to explicitly specify what variables are stored and how they are stored in the closure—lifetimes
of variables are never extended, but programmers can instruct that their values should be copied into the closure.
Consider the following example:

vector<double> v;
double sum = 0;
int factor = 2;
...

for_each(v.begin(), v.end(), [](double x) { return sum += factor ∗ x; });

Here, sum and factor are free variables and must thus be stored in the closure by some means. The lambda expression does
not specify how and is invalid for that reason. C++ provides two options by supporting both reference and copy semantics.
Here it is obvious that the intent is to collect the result to the sum variable, and thus the closure should store a reference
to sum. It would be safe to store a reference to factor as well, as its lifetime extends beyond that of the closure, but copying
factor to the closure would be just as viable.
On the other hand, consider the next example where a lambda function is used as a callback bound to a GUI event:

void init_gui() {
label∗ lbl = new label("A");
button∗ btn = new button("Change label");
btn→ set_on_push_callback([]() { return lbl→ set_text("B"); });
...

}

Again, the lambda expression above is invalid, as it does not specify how the closure should store the free variable lbl. Assume
the closure contains a reference to the pointer lbl. When the ‘‘on push’’ event occurs, the init_gui method has likely been
exited.With C++’s object lifetime rules, lbl is no longer alive, and the behavior of the lambda function is undefined. If instead
the closure stores a copy of lbl, whose lifetime is the same as that of the closure itself, the callback can be safely called after
the function init_gui() returns. Of course, blindly copying every free variable into the closure would be quite problematic,
possibly leading to unintentional object slicing, expensive copying, and other surprises. Moreover, many types are not even
copyable.
The syntactic means to control which and how variables are stored in the closure is the capture list, a list of variable

names within the brackets that indicate the start of a lambda expression. A lambda expression thus has two parameter lists:
the function parameter list and the list of free variables. To demonstrate, the two (invalid) lambda functions in the above
examples omitted the capture list, and must be rewritten as

[&sum, factor](double x) { return sum += factor ∗ x; }

[lbl]() { return lbl→ set_text("World"); }

To keep the syntactic overhead low, the full type of a free variable is not specified, just its name, optionally preceded by &
to indicate that the closure should store a reference to the variable. In the first function, the closure holds a reference to sum
but stores a copy of factor. In the second function, lbl is stored by copy.
Note that the library-based lambda functions offer features to selectively instruct howcertain arguments should be stored

into a closure, and that approach has proven effective (see ref and cref functions described in [18], also adopted to the draft
standard [1, 20.7.5.5]).
Requiring explicit declaration of the variables that are to be stored in the closure has the benefit that the programmer is

forced to express his or her intention on what storage mechanism should be used for each free variable. However, in some
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cases, such as when many free variables appear in a lambda function, or when they are all captured the same way, it may
be cumbersome to list all of them in this way. Since one of the main goals of lambda expressions is conciseness, we also
provide two default capture forms marked by a special symbol, either a & or =, at the beginning of (and possibly in place of)
the capture list. When using one of these forms, free variables may go unannounced in the capture list and will be stored
using the specified default, either by-reference or by-copy, respectively. The default storage mechanisms can be overridden
for particular variables, by requesting the non-default storage mechanism for them in the capture list. To demonstrate,
we rewrite the last two lambda functions to take advantage of a default capture mechanism; the semantics of the lambda
functions remain unchanged:

[&, factor](double x) { return sum += factor ∗ x; }

[=]() { return lbl→ set_text("World"); }

3.2. Return type deduction

In the above examples, the return type of the lambda function is not specified; instead, it is deduced from the body of
the function as the type of the return expression. This return type deduction is supported whenever the lambda function’s
body consists of a single return statement. Otherwise we require an explicit annotation from the programmer, because
the function may have multiple return points with an ambiguous common type. One could extend and employ the typing
rules of the conditional operator [1, 5.16] to attempt to infer themoral equivalent of ‘‘least common super type’’ of all return
expressions but, to avoid subtleties, we favored the simple syntactic rule to determinewhen return type deduction succeeds.
For example, in the following lambda expression, the return type double is, and must be, specified explicitly:

[](double x)→ double { if (x < 0) return 0; else return x; }

The return type is placed after the parameter list; C++0x will support a similar syntax for ordinary functions [20,24].

3.3. Semantics via translation

The semantics of lambda functions follow from a translation to function objects. For example, the lambda function
[&sum, factor](double x) { return sum += factor ∗ x; } gives rise to the class definition

class F {
double& sum;
int factor;

public:
F(double& sum, int factor) : sum(sum), factor(factor) {}

double operator()(double x) const { return sum += factor ∗ x; }
};

The lambda expression at its point of definition is replaced with a constructor call that creates the closure object. Here, the
free variables sum and factor are stored in the closure’s environment, and are thus passed to F’s constructor as F(sum, factor).
A special case in the translation is the treatment of ‘‘this’’. A lambda function that occurs within a member function

can contain references to this as a free variable and include it in the capture list. All references to this in the body of a
lambda function are translated to use the original value of this, as if it appeared directly outside of the lambda function. The
specification in the draft standard gives full details [1, 5.1.1].
Specifying the semantics of lambda functions via a translation to function objects is economical: questions onhow lambda

functions interact with the very large feature set of C++ and how they can be optimized are answered without additional
specification work. For example, the scoping rules of a nested lambda function are the same as those of a class nested
inside another class’s member function. The only exception is the treatment of ‘‘this’’, as explained above. Moreover, the
translation gives a useful and familiar mental model for programmers. In fact, the direct translation is also the basis for our
implementation, though other mechanisms are certainly possible; the draft standard specification is careful to give enough
leeway for more optimized implementations. For example, a special provision is included for lambda functions that do not
capture any variables by copy [1, Section 20.7.18], which permits the ‘‘pointer to the stack frame’’ implementation discussed
in Section 3.1.

3.4. Lambda functions and constness

C++ uses the const keyword to denote conceptual constness of objects: a const variable cannot be assigned after it is
initialized, a const member function cannot modify the state of its object, etc. As part of enforcing this concept in the type
system, only const member functions can be invoked on const objects. Lambda functions need a policy for constness, since
closures are (function) objects that encapsulate state. Such a policy effectively determines whether or not, in our semantics
by translation, the function call operator in the classes for closure objects should be declared const. As the foundation for this



J. Järvi, J. Freeman / Science of Computer Programming 75 (2010) 762–772 767

policywe look to answerwhat itmeans for a lambda function to be const, and consider existing conventions for programming
with function objects.
Higher-order functions have been in use in C++ for several years with existing tools like function pointers and function

objects. Function pointers go all the way back to C, which has no notion of constness. C++ does not have a notion of const
functions either. Member functions, however, can be declared const. The effect is to make the receiver object, the object
pointed to by ‘‘this’’, const, so that the member function cannot modify the object’s member variables and thus the object’s
state. Note that constness of member variables is ‘‘shallow’’: const member functions are free to modify objects referred to
by reference member variables. The meaning that we attach to constness of lambda functions follows these principles: a
constant lambda function does not modify the state of a closure, where the state of a closure is considered to be the free
variables copied into it. Modification of variables referenced from within a closure is allowed regardless of the constness of
the closure.
The STL ignores constness of function objects: STL’s functions pass all function object parameters by value, accepting

either const or non-const function objects. The STL recognizes that other conventions might be used: all its stateless function
objects declare their function call operator const to allow calls from contexts where the function object is const. Similarly,
we wish to provide ‘‘constness’’ for free, allowing programmers to employ lambda functions in const contexts without extra
annotations: we expect lambda expressions that do notmodify the state stored in the closure to be the common case, and so
make the closure object’s function call operator const by default. The compiler thus rejects lambda expressions that attempt
to mutate a free variable captured by copy, unless the lambda expression is specially annotated. A lambda function declared
mutable allows modification of free variables, as shown in the example below. Without the mutable keyword, the example
lambda function would be rejected for its attempt to modify the counter variable in the closure.

int counter = 0;
[counter]() mutable { return ++counter; } // OK

Finally, the presented point in the design space of constness of lambda functions, the one selected for standardization, is
not the only consistent alternative. For example,we have previously advocated attaching no notion of constness to closures—
the translation to attain this would combine a const function call operator with a mutable declaration for each member
variable of the closure [16].

3.5. About types of lambda functions

The type of a lambda function is unspecified: the compiler is free to synthesize an arbitrary type to represent a closure. By
not introducing a new function type to C++’s type system, we avoid all the complicated interactions that such a type would
have with the rest of the language. The downside is that the programmer cannot write out the type of a lambda function. As
a result, a non-generic function’s parameters or its return value cannot be declared to have the type of a lambda function.
Even though generic functions can accept lambda functions as parameters – their parameter types can be type parameters –
this is still limiting. For example, template functions cannot be placed in dynamically linked libraries, and defining functions
that construct and return lambda functions is impossible.
To provide a non-generic interface for lambda functions, we rely on a known library technique, namely the function

template [15], [1, Section 20.5] that provides uniform wrapper types to C++’s built-in functions and function pointers,
member functions, and function objects. For example, thewrapper type of functions taking two int parameters and returning
int is function<int(int, int)>. Any of the above forms of functions are implicitly convertible to an instance of the function template,
assuming the signature matches. This applies to lambda functions as well—no special arrangements are needed to make
lambda functions work with function. Moreover, constructing and copying small function objects, which lambda functions
commonly are, wrapped into functions have negligible overhead.
As an example of this approach, the ctr function below returns a lambda function that is wrapped with an instance of the

function template:

std::function<int(int)> ctr() {
int counter = 0;
return [counter](x) mutable { return counter += x; };

}

Note also that C++0x will support a form of local type inference in variable declarations: the auto keyword can be used
to indicate that a variable’s type should be deduced from the type of its initializer [21]. This enables easy declaration of
variables that refer to lambda functions. For example,

char sep = ’,’;
...

auto printer = [sep](int x) { cout << x << sep; };
for_each(a.begin(), a.end(), printer);
for_each(b.begin(), b.end(), printer);

Note that since cout is a global variable, it is not mentioned in the capture list.
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Fig. 2. A possible implementation of the generic transform algorithm using C++0x’s constrained templates.

4. Generic lambda functions

Although the standards committee has decided to include only non-generic lambda functions in the next standard
C++, we have explored the idea of generic lambda functions that do not require explicit parameter types. There is much
desire to see such a feature in C++, in particular since programmers are accustomed to using generic lambda functions that
several libraries [5,18,23,31] support. Regardless, the implementation effortwas considered too large and the level of current
experience too limited for the next standard revision’s timetable. Here we explain our design for generic lambda functions,
which we plan to bring forward to the standards committee for future consideration.
Note that in current C++, generic lambda functions could be easily implemented via function objects with a templated

function call operator member. This approach is no longer feasible with C++0x’s constrained templates [13]: except in
specific situations, calls from constrained templates to unconstrained templates can exhibit undefined behavior [14, Section
6.9]. Instead, the implementation requires that we infer a signature for a lambda function from the context of its definition.

4.1. Deducing parameter types

C++was not designed to support type inference, so inferring parameter types from the body of a lambda function is not
possible. Instead, we seek to deduce the parameters from the context where the lambda function is defined. A lambda
function can be either invoked directly or bound to a variable, such as a formal parameter of a function. Deducing the
parameters of the lambda function in the first case is straightforward; one merely takes the types of the parameters to
be those of the arguments passed to the lambda function. Of course, calling a lambda function at the point of its definition
is seldom useful. Indeed, in the typical case a lambda function is passed as an argument to another function. As we explain
above, the type of a lambda function is unspecified and thus a lambda function can only be bound to a function argument
whose type is a type parameter: a lambda function’s argument types must be deduced from the constraints of that type
parameter.
To explain how type deduction works, we very briefly discuss C++0x’s constrained templates and their modular type

checking. For a thorough description of these new features, see [13]. A new language construct, concept, is used to express
requirements on types. Relevant to lambda expressions is the concept Callable. The draft standard library defines a general
form, applicable to all arities, of this concept using variadic templates [12]—we show a specific version for binary functions:

auto concept Callable2<typename F, typename A1, typename A2> {
typename result_type;
result_type operator()(F&, A1, A2);

}

Omitting details, the constraint Callable2<F, T, U>, for example, is satisfied if an object of type F can be calledwith an argument
list consisting of two objects that are of, or can be converted to, types T and U, respectively. The key is to satisfy the
function call operator requirement in the Callable2 concept; in the constraint Callable2<F, T, U> the requirement becomes
result_type operator()(F&, T, U). The type result_type is an ‘‘associated type’’ of the Callable2 concept, and here denotes the return
type of the function call operator.
As an example of how concepts constrain type parameters, consider the implementation for the standard algorithm

transform shown in Fig. 2. The InputIterator constraint that the type parameter I1 must satisfy justifies that I1::value_type is a
valid type, and that the uses of the dereferencing (∗), increment (++), and inequality (!=) operators are valid. OutputIterator
justifies dereferencing and increment operations. The call f(∗first) in the body of the function is justified by the constraint
Callable1<F, I1::value_type>. Further, Callable1<F, I1::value_type>::result_type as the second parameter in the OutputIterator con-
straint guarantees that F’s return type is the type of the objects written to the result sequence, and thus justifies the assign-
ment in the for-loop’s body. The draft standard contains specifications for the Callable [1, Section 20.2], and InputIterator and
OutputIterator concepts [1, Section 24.1].
To illustrate the type deduction process, consider the code

vector<T> v; T factor = ...; // T is some type

transform(v.begin(), v.end(), v.begin(), [factor](x) { return x ∗= factor; });
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When type checking this call to transform(), the type parameter F (in Fig. 2) is deduced to be the type of the lambda
function, which is some unspecified class type, call it L. The type parameter I1 is deduced to the type of v.begin(), which is
vector<T>::iterator, and thus I1::value_type is deduced to T. Substituting these toCallable1<F, I1::value_type> leads to the constraint
Callable1<L, T> and to the requirement result_type operator()(L&, T) (a unary functionwhose parameter type is T), whichwe can
use to inject the following function call operator into the class representing the closure:

R operator()(T x) const { return x ∗= factor; }

The return type R is deduced to the type of the expression x ∗= factor; the type of the parameter x is now known, so return
type deduction is analogous to the case of non-generic lambda functions. As with non-generic lambda functions, return type
deduction is restricted to functions whose body consists of a single return statement. The decltype operator [20] that queries
the type of an expression, part of C++0x, will be useful for explicitly specifying the return type of a generic lambda function.
After the parameters, and possibly the return type, are deduced, type checking the call site of the transform function can

then continue with type checking the generated function call operator—which corresponds to type checking the lambda
expression. If it succeeds, the call f(∗first) in the transform function’s body is guaranteed to type check as well.

4.2. About polymorphic lambda functions

C++ function objects are polymorphic if the function call operator is defined as a template. One can pass a polymorphic
function object to a function that calls it at several places with different argument types. For example, the following code
shows a function that applies a function object to each element of a pair (we could define a similar function for a tuple of
arbitrary length), and a call to this function with a polymorphic function object.

template <typename A, typename B, typename F>
void for_each_in_pair(const pair<A, B>& p, F f) {
f(p.first);
f(p.second);

}

class output {
public:
template <typename T>
void operator()(T t) { cout << t; }

};

auto p = pair<int, string>(1, "one");
for_each_in_pair(p, output());

Generic lambda functions can retain this polymorphic behavior, though constrained templates naturally limit the valid
calls to those justified by the template’s constraints. For example, more than one Callable requirement can be placed on a
single type parameter. The constrained version of for_each_in_pair and a call to it with a lambda expression demonstrate:

template <typename A, typename B, typename F>
requires Callable1<F, A> && Callable1<F, B>
void for_each_in_pair(const pair<A, B>& p, F f) {
f(p.first);
f(p.second);

}

for_each_in_pair(p, [](t) { return cout << t; });

The call instantiates the requirements Callable1<F, int> and Callable1<F, string>, based on which we can generate a closure
object with two function call operators, so that calls with an int or string argument are accepted.

5. Evaluation

As implementations of C++ lambda expressions reach mainstream programmers, code bases for large-scale evaluation
of the impact of this new feature will become possible. We conducted experiments on a smaller scale to obtain an early
assessment of how programmer productivity is affected. We settle for estimations of improvements in productivity, based
on a number of subjective qualities, such as readability, maintainability, and ease of composition. To guide these estimates,
we measured the utility of lambda expressions by examining regular C++ code, analyzing the instances where lambda
expressions proved useful, and recording the reduction in lines of code (LOC) they facilitated.
Regarding performance, we measured the cost of using lambda expressions compared to more primitive lower-level

code as the abstraction penalty, defined as the ratio of the execution time of an abstracted implementation over a direct
implementation [4, Section D.3]. We also looked at the impact on the size of the executable. It is generally expected that in
modern optimizing C++ compilers the use of an STL algorithmand a simple function object incurs no significant performance
penalty compared to a handwritten piece of code that performs the same task. As our implementation of lambda functions



770 J. Järvi, J. Freeman / Science of Computer Programming 75 (2010) 762–772

is essentially in terms of function objects, we can expect the performance characteristics of lambda functions to be similar
to those of function objects.

5.1. Experiment 1: OpenGL demo

For the first experiment, we chose a small piece of software for ‘‘active-edge-table’’ based drawing of two-dimensional
polygons. The project consisted of 409 LOCs in 12 header files and 422 LOCs in 7 source files, 831 LOC in total, that we had
written before lambda functions were available. We rewrote the code in the project with lambda functions in our toolbox,
and analyzed the effect.

Impact on productivity. In all, there were eight opportunities to use lambda expressions. One of these was a nested lambda
expression, sowe used a total of nine lambda expressions. All of the uses were in calls to STL algorithms, one to remove_if and
eight to for_each. In three cases the calls to the STL algorithms were already in place, and we merely replaced a handwritten
function object with a lambda expression. In the remaining cases we replaced a loop with a call to an STL algorithm and
a lambda expression. Small reductions in code size were observed: three replacements cut one LOC, one replacement two
LOCs, and the case of remove_if cut four LOCs of the program.
One benefit of the proposed built-in lambda functions, over library solutions, is that they support arbitrary nesting. In this

regard, of particular interest was one case in which a nested lambda function replaced both a loop structure and a function
object. The resulting code was as follows:

for_each(aet.begin(), aet.end(),
[](list<Edge∗>& ael) { for_each(ael.begin(), ael.end(), [] (Edge∗& e) { delete e; }); }

);

Impact on performance. The two revisions of the source code, one with lambda expressions, one without, were compiled
at three different levels of optimization using our prototype implementation in GCC [9], and then tested on a 1.33 GHz
PowerPC machine with 1.25 GB memory running OS X 10.4.11. With no optimization, lambdas produced an increase in
compiled executable size of over 6%, and ran almost 1% slower. As expected, once optimization was turned on, at levels -O1
and -O2, the differences in the executable size and running time were negligible.

5.2. Experiment 2: LyX

For the second, larger experiment, we looked at LyX [33], an open-sourceWYSIWYM document processor. The code base
makes extensive use of the STL, Boost Bind [6], and Boost Lambda [19] libraries, following a number ofmodern best practices
in software, thus making it a prime candidate for refactoring with lambda functions. We selected the top source directory
to search for opportunities to use lambda functions. This directory consisted of 108 headers and 104 source files.

Impact on productivity. Although not every opportunity for using a lambda function was exercised, or even discovered, we
edited 16 source files where we added 53 lambda expressions. This trimmed 159 lines of code in all. One more header file
was also touched, to remove a class definition of a function object. Of the lambda expressions we added, 32 replaced uses of
handwritten function objects, 8 replaced handwritten for-loops, and 13 replaced uses of library-based lambda expressions
of the Boost Bind and Boost Lambda variety. Two of the replacements cut one LOC, three replacements cut two LOCs, two
replacements cut three LOCs, and four replacements cut four LOCs. Fourteen classes that implemented function objectswere
removed, saving 144 lines in class declarations.
There were a few details worth noting. In one of the more significant instances, a handwritten for-loop was refactored

into a call to the standard transform algorithm, saving four lines and notably enhancing readability. Also, quite a few of the
existing calls were to STL algorithms like find_if, remove_if, and for_each. Such utilization of higher-order functions is normally
uncommon because of the high barrier to entry that function objects present. Lambda expressions improved these uses, and
opened doors for more. Finally, there were eight cases in which a lambda expression actually increased the number of lines
of code at the call site, but was justified by allowing the removal of a function object class definition of significantly greater
length at a distant source location. The most extreme case of this phenomenon was a lambda expression that added four
lines, but replaced a function object whose class definition occupied twelve lines and was used only once in the program.

6. Related work

Lambda functions and closures are a well-studied topic. Various languages have taken their own unique approaches to
supporting them, with different advantages and disadvantages. C++, too, has seen proposals in this design space. Nested
functions – functions defined within other functions – have been proposed [3,28]. These proposals predated templates, and
they did not support copying local variables into closures, being thus unusable outside their defining scope. More recently,
Samko [27] proposed lambda functions with a rather similar approach to specification and implementation as that of ours,
but did not discuss type deduction or integration with constrained templates. The design space of lambda functions for C++
was explored in [35], on which the presented work builds.
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Of other approaches, we focus on object-oriented languages utilizing the correspondence between objects and closures.
Java’s [11] anonymous inner classes, by allowing class definitions as expressions, can be used to mimic lambda functions.
Free variables are limited to refer to local variables declared final. Anonymous inner classes are powerful, with most of the
expressiveness of a class, but as a consequence are notablymore verbose than lambda expressions. In addition to anonymous
inner classes, Java seems to be moving towards direct syntax for lambda expressions and closures [2]. C# [25] progressed to
lambda expressions via first adding anonymous functions (delegates). Our approach is similar to that of C# in that it is based
on a translation to an existing language construct (function objects for C++, delegates for C#). The approaches differmainly in
the polymorphic behavior of lambda functions. A polymorphic lambda function in C++ can be bound to a type parameter, and
its parameter types are deduced from the constraints of that parameter. As discussed in Section 4.2, multiple call signatures
can be deduced in this way. In C#, type inference occurs when binding a lambda expression to a delegate type, which gives
the lambda function exactly one call signature. C++ lambda functions have no equivalent to C#’s mechanism to access the
lambda functions’ expression trees. Other notable object-oriented languages leveraging on the closures as objects approach
include Eiffel with its Agents [7, Section 7], and of course Smalltalk with blocks [10].
The reported work also draws from the experiences gained with template libraries that emulate lambda expressions,

and shares with these libraries the basic approach of representing closures as function objects. Several such libraries exist,
including the Boost Lambda [18], the FC++ [23], and the FACT! [31,30] libraries, developed independently, aswell as themore
recent Phoenix library [5], that seeks to improve the applicability and extensibility over what is offered by Boost Lambda
and FC++. The Boost Bind library [6] includes a subset of the above libraries, most of which is part of the C++ standard library
draft.

7. Conclusions

Lambda functions are very useful, even necessary, for effective use of modern C++ libraries. That C++ does not directly
support lambda functions has led to a series of library solutions that emulate them. The libraries are a notable improvement,
but they are still severely inadequate.
This paper presents a design of lambda functions for C++. The proposed lambda expressions are concise and expressive.

They allow full control of how free variables are stored in closures—which is necessary for the safe use of lambda functions
in a language without automatic object lifetime management. We implemented the proposed design as an extension to
GCC, used it to rewrite parts of a few existing C++ code bases to take advantage of lambda functions, and analyzed the
results to estimate the impact of lambda functions on programming productivity. These experiments indicated that lambda
functions provide clear benefits. For qualitative evaluation byothers,we refer to an early experience reportwith one vendor’s
implementation [32], that predicts lambda functions to have a major impact on modern C++ programming practices.
Our implementation, as well as the draft standard specification, currently supports lambda functions with explicitly

typed parameter lists; we are working on full support for polymorphic lambda functions and parameter type deduction, as
described in this paper. Polymorphic lambda functions are a likely candidate for inclusion in the standard at a later time,
and this remains as our future work.
Lambda expressions as presented in this paper have already gained acceptance: the specification is included in the draft

of the next revision of ISO standard C++ [1], and several compiler vendors are taking a head start on implementing lambda
functions according to our specification.
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