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This article presents an algorithmic approach to study and
compute the absolute factorization of a bivariate polynomial,
taking into account the geometry of its monomials. It is based on
algebraic criterions inherited fromalgebraic interpolation and toric
geometry.
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1. Introduction

Multivariate polynomial factorization and production of software dedicated to the effective solving
of this problem has received much attention in Computer Algebra. Whereas rational factorization is
only concerned with factors in Q[x] := Q[x1, . . . , xn], absolute factorization provides all irreducible
factors with coefficients in Q, the algebraic closure of Q. The bivariate case contains most of the
difficulties of the problem. In theory, by Bertini’s theorem and via Hensel liftings, the multivariate
problem reduces to the bivariate one. In the present article we will concentrate on the bivariate case
but our techniques naturally extend to the n variables’ case, n ≥ 2.
Polynomial absolute factorization has been considered from many points of view, see e.g. Bostan

et al. (2004), Chèze and Galligo (2005) and Chèze and Lecerf (2007) and their bibliography, but during
the last decade twomain strategies have been quite successful. On the one hand, an algebraic approach
relies on the study of Ruppert–Gao matrix (Ruppert, 1986; Gao, 2003). It has been improved in
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Chèze and Lecerf (2007) and Lecerf (2007) to provide an algorithm with a quasi-optimal complexity.
On the other hand, a geometric approach, based on a zero-sum criterion, provides very efficient
semi-numerical probabilistic algorithms able to deal with polynomials having degree up to 200, see
Rupprecht (2004), Chèze (2004) and Chèze and Galligo (2005). This criterion was derived from the
study of the monodromy group, of a projection of the curve C defined by f (the polynomial to be
factorized) on a line, acting on a smooth fiber. A similar strategy was developed and implemented in
Sommese et al. (2001, 2004), and its use was extended for obtaining the irreducible decomposition of
an algebraic set. The zero-sums considered in Sasaki et al. (1991) admit more general interpretations
in Algebraic Geometry as traces.
The model of computation in these approaches is the following. The input is a polynomial with

integer coefficients and the output is a list of polynomials with coefficients in an algebraic extension
of Q which should also be computed. In order to determine these coefficients the strategy consists
in embedding Q in C and representing approximations of these coefficients by bigfloats. Then
conjugacy relations are used to recognize an algebraic presentation of an extension ofQ and an exact
algebraic presentation of the coefficients. This model of computation is commonly used in Number
Theory and was successfully adapted in Rupprecht (2004) and improved in Chèze and Galligo (2006)
by considering a representation with algebraic integers. In this paper we focus on the geometric
foundation needed for our generalization together with some illustrative examples. So we will not
provide precise bounds for our approximations nor details for efficient implementations. These tasks
will be addressed in a future work.
The aim of this article is first to reinterpret the vanishing traces criterions in the geometric

approach as a consequence of Wood’s theorem (Wood, 1984) on algebraic interpolation of a family
of analytic germs of curves. Second, to provide a generalization of Wood’s theorem inspired by
Weimann (submitted for publication) and adapted to the factorization of polynomials with fixed
Newton polytopes. Third, to outline an algorithm for toric absolute factorization that we tested on
examples.
When a polynomial f of total degree d is given by the collection of its coefficients which are all

nonzero, its representation is called dense. Whereas when some coefficients of f are known to be
zero, its Newton polytope (i.e. the convex hull of exponents of monomials of its nonzero coefficients)
is considered and its representation is called toric or sparse. Then adapted algorithms are developed;
e.g. toric elimination received much attention (Gelfand et al., 1994; Emiris, 1996).
To the best of our knowledge most of the existing articles on polynomial factorization deal

with dense polynomials, although in Abu Salem et al. (2004) a study of toric rational polynomial
factorization was presented; it is based on adapted Hensel liftings. Our aim is to rely on this article:
assuming that f is already irreducible in Q[x], we compute its absolute factorization. In that case,
all Newton polytopes of absolute factors of f are equal and are homothetic to that of f . Hence the
combinatorial task is simplified and the difficulty concentrates on the geometry with a fixed toric
variety. Let us also mention von zur Gathen and Kaltofen (1985) where the multivariate sparse
factorization is reduced to the dense bivariate or univariate polynomial factorization.
The paper is organized as follows. In the next section, the special shape of absolute factors of an

irreducible rational polynomial is shown. Section 3 explains the use of interpolation of analytic germs
of curves via a Burger’s PDE to derive a vanishing trace criterion in P2(C), and compares it with the use
of a monodromy action. Section 4 generalizes this trace criterion to a (possibly singular) toric surface.
Section 5 outlines an algorithm for toric absolute factorization. It is based on an algebraic criterion
inherited from interpolation problems in toric geometry, and computations of traces. It generalizes
and improves the algorithm developed for dense polynomials in Rupprecht (2004) and Chèze and
Galligo (2005); its different steps are illustrated on an example. The algorithm for the case of bidegree
polynomials is presented, for these polynomials it improves significantly the one in Rupprecht (2004)
and Chèze and Galligo (2005) . Finally, remarks and hints for future improvements are listed in a
conclusion. At the end of this paper a short Appendix collects the properties of abstract toric surfaces
needed for our developments.
Hereafter Pn denotes the projective space over C of dimension n. For a polynomial map (f , q) in

C2, Jac(f , q) is its Jacobian. The Newton polytope of a polynomial f is denoted by Nf and the mixed
volume of two polytopes P and Q by MV(P,Q ).



1196 M. Elkadi et al. / Journal of Symbolic Computation 44 (2009) 1194–1211

2. Factorization and Newton polytopes

The Minkowski sum of two polytopes P and Q is

P + Q = {p+ q : p ∈ P, q ∈ Q }.

The following two results are needed for our developments.

Proposition 1 (Ostrowksi Theorem (Ostrowski, 1975)). The Newton polytope of the product of two
polynomials g and h is the Minkowski sum of Newton polytopes of its factors: Ngh = Ng + Nh.

So if the irreducible polynomial f ∈ Q[x] has a polytope which is integrally indecomposable, f is
absolutely irreducible. Let us also mention a study (Gao, 2001) of the irreducibility of a polynomial
from a Newton polytope point of view.

Proposition 2. Let f ∈ Q[x] be an irreducible polynomial and f = f1 . . . fq be its absolute factorization.
Then the irreducible absolute factors fi of f are conjugate over Q.

Proof. Up to a linear change of coordinates, f can be assumed monic in x2, and consequently its
absolute factors are alsomonic in x2. LetGbe theGalois group of the smallest extension ofQ containing
all the coefficients of f1. If σ ∈ G, the conjugate polynomial σ(f1) of f1 also divides f . Now as f is an
irreducible element inQ[x], the polynomial

∏
σ∈G σ(f1) = f , hence each absolute factor fj of f is equal

to σ(f1) for some σ ∈ G. �

The determination of Newton polytopes of absolute factors of an irreducible polynomial inQ[x] is
highly simplified by the following corollary.

Corollary 3. Let f ∈ Q[x] be an irreducible polynomial and f = f1 . . . fq be its absolute factorization. Then
Nf1 = · · · = Nfq and Nf = qNf1 .

So, a polynomial f ∈ Q[x] of bidegree (d1, d2) which is irreducible over Q is irreducible over C if
d1 and d2 are relatively prime.

Remark 4. Proposition 2 implies that the absolute factorization of f is completely determined by the
number of factors q, an irreducible univariate polynomial g(t) ∈ Q[t] defining a finite extension
K = Q[t]/

(
g(t)

)
, and the coefficients of f1 which belong to K and are indexed by the lattice points in

the polytope 1qNf ⊂ N2.

3. Factorization and algebraic interpolation

Let f be an irreducible bivariate rational polynomial of total degree d ≥ 2. This property implies
that f is reduced over C, then its absolute irreducible factors are in one-to-one correspondence with
irreducible components of the affine curve C defined by f :

C = {(x1, x2) ∈ C2 : f (x1, x2) = 0}.

Sard–Bertini theorem combined with Bézout’s theorem ensures that for t = [t0 : t1 : t2] generic in
the dual projective space (P2)∗, the affine line

Lt = {(x1, x2) ∈ C2 : t0 + t1x1 + t2x2 = 0}

intersects C transversely in d distinct points whose coordinates vary holomorphically with t by the
implicit function theorem. Thus Lt defines a degree d reduced 0-cycle of C:

Lt · C = p1(t)+ · · · + pd(t).

The principle of uniqueness of analytic continuation and Bézout’s theorem imply that f admits a factor
of degree k ≤ d if and only if there exists

I = {i1, . . . , ik} ⊂ {1, . . . , d}

and an algebraic curve CI ⊂ C2 of degree k such that (as shown in Fig. 1) for t in a small open set of
(P2)∗:

Lt · CI = pi1(t)+ · · · + pik(t).
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Fig. 1.

This is closely related to the (classical) problem: let t ∈ (P2)∗ distinct from the point at infinity
[1 : 0 : 0] and let C1 ∪ · · · ∪ Ck be an union of germs of smooth analytic curves (algebraic in our
case) of C2 transverse to the line Lt at pairwise distinct points pi1(t), . . . , pik(t). Does there exist an
algebraic curve of total degree kwhich contains all these germs Ci?
The following result solves that problem.

Theorem 5 (Wood’s Theorem (Wood, 1984)). The union of analytic curves C1 ∪ · · · ∪ Ck is contained in
an algebraic curve of degree k if and only if the germ of holomorphic function trace on the first coordinate,
defined by

(Tr x1)(t) :=
k∑
j=1

x1(pij(t))

is affine in the constant coefficient t0 of Lt .
Geometrically, this result asserts that an analytic curve is algebraic if and only if the barycenters of
intersection points with a generic line L lie on a line (called a diameter of the curve, see the line D in
Fig. 2) when Lmoves parallel to itself, as shown in Fig. 2. Newton had already remarked this property
in Newton (1710) for algebraic plane curves of degree 3. The proof of Theorem 5 in Wood (1984) is
simple but relies on a tricky use of a Burger’s PDE. It will be generalized for our purpose in Section 4.
In Rupprecht (2004) and Chèze and Galligo (2005) an algorithm for absolute dense factorization

was developed based on vanishing partial sums. This algorithm uses topological considerations about
the complex plane C2. Its proof relies on Harris uniform position theorem and Van Kampen theorem
which establish the link between the irreducibility of an affine algebraic curve and the transitive action
of a monodromy group (see Chèze and Galligo (2005) for details). It turns out that this condition on
vanishing partial sums is equivalent to the interpolation criterion given by Wood’s theorem. Let us
recall briefly the principle of this method. Up to a linear change of variables, we assume that f is
monic as a polynomial in x2 of degree d. For x1 = a generic, let x2,1(a), . . . , x2,d(a) be the roots of the
univariate polynomial f (a, x2). For each i = 1 . . . d, let

φi(x1) =
∑
j

αj,i(a)(x1 − a)j

be the power series satisfying φi(a) = x2,i(a) and f (x1, φi(x1)
)
= 0. Then f (x) = f (x1, x2) =∏d

i=1

(
x2 − φi(x1)

)
. Every absolute factor of f has the form

fI =
∏
i∈I

(
x2 − φi(x1)

)
= xδ2 + aI,1(x1)x

δ−1
2 + · · · + aI,δ(x1),

with I ⊂ {1, . . . , d}, card(I) = δ and deg aI,i(x1) ≤ i for i = 1 . . . δ. In particular, the degree
of aI,1(x) = −

∑
i∈I φi(x1) is at most 1, then

∑
i∈I α2,i(a) = 0. Because of the genericity, it turns

out that this last condition is also sufficient for f to have an absolute factor. So in order to find
absolute factorization of f it suffices to search minimal zero-sums between the complex numbers
α2,1(a), . . . , α2,d(a).
The brute force resulting algorithm requires 2d trace tests to detect factors of f . Strategies relying

on LLL were developed and implemented in Chèze (2004) to decrease this high number of tests.
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Fig. 2.

4. Interpolation in toric surfaces

InWeimann (submitted for publication) a necessary and sufficient conditionwas given for a family
of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an
algebraic hypersurfacewith a prescribed class in the Chow ring of X . Here we establish a similar result
in a toric surface which can be singular. This generalization is needed for our factorization algorithm.

4.1. Toric surfaces

Let us denote by T the algebraic torus (C∗)2. The Newton polytope P of a Laurent polynomial f
gives information about the asymptotic behavior of the curve

C := {x ∈ T, f (x) = 0}.

We say that a curve D ⊂ T is supported by an integer convex polytope Q if it is the zero set of a
Laurent polynomial with Newton polytope Q .
Let Q be an integer convex polytope such that Q ∩ Z2 = {m0, . . . ,ml}. Consider the morphism

φQ : T −→ Pl

x = (x1, x2) 7−→ [xm0 : · · · : xml ].

The Zariski closure XQ of φQ (T) ⊂ (C∗)l in Pl is the projective toric variety associated to Q . See Fulton
(1993) or the Appendix at the end of this paper where the definition of an abstract toric surface and
some of its properties are provided.
Without loss of generality we assume thatm0 = 0. We have dim XQ = dimQ .

Lemma 6. If dimQ = 2, the map φQ is an embedding.

D. Cox indicated (without proof) at the end of the survey paper (Cox, 2003) that this result is known.
For a proof, we refer to Corollary 1.3.4. in Bruns et al. (1997).

4.2. Traces for curves in toric surfaces

4.2.1. Notations
Here we set notations that we will follow in the paper.
Let Q ⊂ R2 be a two-dimensional integer convex polytopewith lattice pointsm0 = 0,m1, . . . ,ml.

Let X = XQ be the projective toric surface associated to Q . As seen in the previous section, φQ is one-
to-one. Let [u0 : · · · : ul] be homogeneous coordinates on Pl.
Every Laurent polynomial

qa(x) =
l∑
i=0

aixmi
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supported by Q determines a curve Ca := {qa = 0} ⊂ T. Since φQ is one-to-one, by Lemma 13 in
Appendix, for a generic, Ca can be identified with the hyperplane section of X ∩ (C∗)l defined by the
projective hyperplane

Ha = {u ∈ Pl :
l∑
i=0

aiui = 0}.

Wedenote by a = [a0 : · · · : al] the point of the dual space (Pl)∗ corresponding to Ca. For the definition
of the mixed volume in the following lemma and its properties, see Gelfand et al. (1994).

Lemma 7. Let C ⊂ T be a reduced curve supported by a lattice polytope P. For a ∈ (Pl)∗ generic, Ca is
smooth, irreducible and intersects C transversely in d = MV(P,Q ) distinct points p1(a), . . . , pd(a), where
MV(P,Q ) denotes the mixed volume of (P,Q ).

Proof. Let us denote by C and Ca the Zariski closure in X of the affine curves φQ (C) and φQ (Ca). We
know from Lemma 13 in Appendix that Ca coincides for generic awith the hyperplane section Ha ∩ X
of X . Thus Bertini’s theorem implies that the curve Ca is generically smooth irreducible and intersects
C in its Zariski open setφQ (C). Since by Lemma 6φQ is an embedding, we deduce that Ca is generically
smooth, irreducible and intersects C transversely in d = deg(Ha · X · C) points. Bernstein’s theorem
asserts that d = deg

(
OX (1)

)
|C
= MV(P,Q ). �

From this lemma, we have the following definition.

Definition 8. For any holomorphic function h near Cα ∩ C , the trace of h on C relative to the polytope
Q is

(TrCh)(a) :=
d∑
j=1

h(pj(a)).

This function is defined and holomorphic for a near α.

4.2.2. A necessary condition to interpolate germs of curves
We provide a necessary condition for a family of germs of curves to be interpolated by an algebraic

curve C .
Since m0 = 0 is a vertex of the polytope Q , the generic polynomial qa has a nonzero constant

term a0.

Theorem 9. Let C ⊂ T be an algebraic curve, and α ∈ (Pl)∗ satisfying the hypothesis of Lemma 7. We
denote by Γ the union of facets of Q not containing 0. For n ∈ N∗ and s ∈ n(Q ∩ Z2), we have

∂ (n)a0

(
TrC xs

)
= 0 if s ∈ n(Q \ Γ ), (1)

∂ (n+1)a0

(
TrC xs

)
= 0 if s ∈ nΓ .

Proof. Suppose that C = {f = 0}, for a Laurent polynomial f =
∑
cmxm. The trace function TrC xs is a

rational function onPl, it is homogeneous of degree 0 in a. If we denote by resp and Res respectively the
local Grothendieck residues at p and the global Grothendieck residue (see Griffiths and Harris (1978),
Section 5), then for a in a small neighborhood of α,(

TrC xs
)
(a) =

∑
p∈T

resp
xsdf ∧ dqa
fqa

= Res
[
xsdf ∧ dqa
f qa

]
. (2)

Since

df ∧ dqa =

(∑
(m,mi)

ai cm det(m,mi)xm+mi−(1,1)
)
dx1 ∧ dx2,
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we obtain(
TrC xs

)
(a) =

∑
(m,mi)

ai cm det(m,mi) Res
[
xs+m+mi dx1∧dx2x1x2
f qa

]
. (3)

Using Cauchy formula for residues and Stokes theorem (Griffiths and Harris, 1978),

∂ (n)a0

(
Res

[
xs+m+mi dx1∧dx2x1x2
f qa

])
= (−1)n n! Res

[
xs+m+mi dx1∧dx2x1x2
f qn+1a

]
. (4)

If P0 denotes the interior of a polytope P , then by the toric version of Abel–Jacobi theorem (Hovanskiı̆,
1978), we have

s+m+mi ∈
(
Nf + (n+ 1)Q

)0
=⇒ Res

[
xs+m+mi dx1∧dx2x1x2
f qn+1a

]
= 0, (5)

where Nf is the Newton polytope of f .
Let us denote by Q1 = [0, s1] and Q2 = [0, s2] the two facets of Q containing the origin 0, so that

Q = Q 0 ∪ Q1 ∪ Q2 ∪ Γ . To finish the proof we consider different cases:

(1) If s ∈ (nQ )0, then for allm ∈ Nf andmi ∈ Q ,

s+m+mi ∈
(
Nf + (n+ 1)Q

)0
, so that ∂ (n)a0 (TrC x

s) = 0.

(2) Let s ∈ Q1 \ {ns1} = [0, ns1[. Since we are dealing with residues in the torus, we check easily
that (2) depends on f up to multiplication by any Laurent monomial. Thus we can assume that Nf
is contained in the cone generated by Q and intersects the ray R+s1 in a nonempty set N ⊂ Nf
(consisting in one vertex or one facet of Nf ). In this case, it is easy to check that for allm ∈ Nf and
mi ∈ Q such that m + mi /∈ R+s1, s + m + mi ∈

(
Nf + (n + 1)Q

)0. Moreover, m + mi ∈ R+s1
if and only if m and mi are in R+s1, that is det(m,mi) = 0. The formulas (3) and (5) show that
∂
(n)
a0 (TrC x

s) = 0.
The same argument holds for s ∈ [0, ns2[.

(3) If s ∈ nΓ \ {ns1, ns2}, Nf is contained in the cone R+Q and we check that for all mi ∈ Q and
m ∈ Nf , s+m+mi ∈

(
Nf + (n+ 2)Q

)0, so ∂ (n+1)a0 (TrC xs) = 0.
(4) Let s = ns1, as for the case 2, we choose Nf ⊂ R+Q such that N = Nf ∩ R+s1 is nonempty. Then
we check easily that ifm ormi does not belong to R+s1, s+m+mi ∈

(
Nf + (n+ 2)Q

)0 and ifm
andmi are in R+s1, det(m,mi) = 0. So when s = ns1, ∂

(n+1)
a0 (TrC xs) = 0.

The same argument is valid for s = ns2.

These items combined with (3)–(5) imply (1). �

4.3. Criterion for algebraic interpolation

Now we give a necessary and sufficient criterion of interpolation generalizing Theorem 5 to our
setting. To simplify the exposition and without loss of generality we further assume that the vectors
m1 ∈ Q andm2 ∈ Q generate the lattice Z2 and a1, . . . , at code the vertices of Q other than 0. Hence
at+1, . . . , al code the other points of Q , where l = card(Q ∩ Z2)− 1.

Theorem 10. Let α ∈ (Pl)∗ such that Ca ⊂ T is an irreducible smooth curve supported by Q for any a
near α. Let

C = C1 ∪ · · · ∪ Cd

be a union of germs of smooth analytic curves at pairwise distinct points p1, . . . , pd of Cα . Suppose that
none of the germs Ci is contained in a curve {xm1 − c = 0}, c ∈ C∗. Then, there exists an algebraic curve
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C̃ ⊂ T, containing C and supported by a polytope P whose mixed volume with Q is d, if and only if, for
generic (a1, . . . , al) in a neighborhood of (α1, . . . , αl), the germ of holomorphic function

a0 7−→
(
TrC xm1

)
(a0)

is polynomial of degree at most 1 in the constant coefficient a0.

Proof. Suppose that C̃ = {f = 0}, where f is a Laurent polynomial with Newton polytope P such
that MV(P,Q ) = d. As C ⊂ C̃ , the two sets C ∩ Ca and C̃ ∩ Ca coincide for a in a sufficiently small
neighborhood Uα ⊂ (Pl)∗ of α, since by Lemma 7 they have the same cardinal d = MV(P,Q ). Thus,
for a ∈ Uα ,

∀ s ∈ Z2, TrC xs = Tr̃C x
s,

and the necessary condition follows from Theorem 2.
Conversely, since the curve Cα is supported by Q , none of the coefficients (α0, . . . , αt) vanish.
Let us denote by pj(a) the intersection point of the germ Cj at αwith Ca andwe define the following

germs of the holomorphic function at α ∈ (Pl)∗

X (j)i (a) := x
mi(pj(a)), i = 0 . . . l, j = 1 . . . d.

We have

y ∈ Cj ∩ Ca =⇒ X
(j)
i

(
−

l∑
i=1

aiymi , a1, . . . , al

)
= ymi , ∀a ∈ Uα, (6)

where Uα is a neighborhood of α. Differentiating the right-hand side of this implication according to
a1, we obtain:(

∂a1X
(j)
i − y

m1∂a0X
(j)
i

) (
−

l∑
i=1

aiymi , a1, . . . , al

)
= 0.

Replacing y ∈ Cj by pj(a) ∈ Cj, and using the equality−
∑l
i=1 aiy

mi
(
pj(a)

)
= a0, we obtain a Burger’s

PDE:

∂a1X
(j)
i (a)− X

(j)
1 (a)∂a0X

(j)
i (a) = 0.

So for i = 1,

∂a1X
(j)
1 =

1
2
∂a0
[
X (j)1
]2
.

This PDE is summable on j and gives rise to

∂a1
(
TrC xm1

)
=
1
2
∂a0
(
TrC x2m1

)
.

We have a propagation of the behavior in the variable a0: if TrC xm1 is affine in a0 then obviously
∂a1(TrC x

m1) is affine in a0. By this PDE, ∂a0(TrC x
2m1) is also affine in a0, hence the degree of TrC x2m1

in a0 equals at most 2. By induction on n, the map

a0 7→ TrC xnm1

is a polynomial of degree at most n in a0.
Consider the following polynomial in X:

P(X, a) :=
(
X − X (1)1 (a)

)
× · · · ×

(
X − X (d)1 (a)

)
= Xd − σ1(a)Xd−1 + · · · + (−1)dσd(a),
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the σi’s are the elementary symmetric functions of xm1
(
p1(a)

)
, . . . , xm1

(
pd(a)

)
. Replacing a0 by

−
∑l
i=1 aix

mi , and denoting a′ := (a1, a2, . . . , al) and a′′ = (a1, . . . , at), we obtain a function

Qa′(x) =

(
xm1 − X (1)1

(
−

l∑
i=1

aixmi , a′
))
× · · · ×

(
xm1 − X (d)1

(
−

l∑
i=1

aixmi , a′
))

which vanishes on C for any a′ near α′, using (6).
Now, Newton formulas relating the coefficients of P with the traces of the power of the Laurent

monomial xm1 imply that the analytic functions
(a0, a′′) 7→ σi(a0, a′′, αt+1, . . . , αl)

are polynomial in a0 (with degree at most n) for any a′′ := (a1, . . . , at) near α′′. Thus the function
Ra′′(x) := Qa′′,αt+1,...,αl(x)

is a Laurent polynomial in x vanishing on C . So that the algebraic set defined by the following infinite
number of equations:

C̃ := {x ∈ T : Ra′′(x) = 0,∀ a′′ nearα′′}
contains C . We need to show that Ca ∩ C̃ = {p1(a), . . . , pd(a)} for all a in a neighborhood of α. By
construction, a point q belongs to C̃ ∩ Cα if and only if there exists j ∈ {1, . . . , d} such that for all a′′
near α′′

xm1(q) = xm1
(
pj

(
−a1xm1(q)− a2xm2(q)−

l∑
i=3

αixmi(q), a1, a2, α3, . . . , αl

))
. (7)

Let us suppose that Cj is locally parameterized by
Cj = {p(t), |t| < ε, p(0) = pj}.

We consider the affine system in (a0, a2):{
a0 + α1xm1

(
p(t)

)
+ a2xm2

(
p(t)

)
= cp

a0 + α1xm1(q)+ a2xm2(q) = cq
(8)

where we define cq := −
∑l
i=3 αix

mi(q) for any q ∈ T. Suppose that there exists q ∈ Cα \ {pj} which
satisfies (7). Then xm1(q) = xm1(pj) and, sincem1 andm2 generateZ2, q 6= pj implies xm2(q) 6= xm2(pj).
Thus, it is easy to check that there is a unique solution (a0(t), a2(t)) to (8) which converges to (α0, α2)
when |t| goes to zero. Thus, the map

a2 7−→ pj
(
−α1xm1(q)− a2xm2 −

l∑
i=3

αixmi(q), α1, a2, α3, . . . , αl
)

is surjective from a neighborhood of α2 to Cj, so that
xm1(q) = xm1(p), ∀ p ∈ Cj.

This situation has been excluded by hypothesis. Thus we have proved that
C̃ ∩ Cα = C ∩ Cα.

By hypothesis, the last argument is valid when replacing (α0, . . . , αt) by a vector in its neighborhood.
Thus for (a0, a′′) close to (α0, α′′)

C̃ ∩ Ca0,a′′,αt+1,...,αl = C ∩ Ca0,a′′,αt+1,...,αl .
Since the coefficients (a0, a3, . . . , at) correspond to the vertices of Q , the Zariski closure of
Ca0,a′′,αt+1,...,αl in the toric variety X = XQ can avoid any finite subset of the divisor at infinity X \ T by
choosing a generic value of (a0, a′′). Thus the Zariski closure in X of the two curves C̃ and Ca0,a′′,αt+1,...,αl
intersect transversely in the torus for a′′ generic. This open condition remains valid for any a in a
neighborhood of α so that for all a near α, C̃ ∩ Ca = C̃ ∩ Cα . By Lemma 7, C̃ is supported by a polytope
P whose mixed volume with Q is d. �
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5. Algorithm for toric absolute factorization

We describe an algorithm for the absolute factorization of a bivariate irreducible polynomial
f ∈ Q[x]with Newton polytope P .
Let us denote by X = T ∪ D1 · · · ∪ Dr the abstract toric variety associated to P , where the divisor

Di corresponds to the facet Pi of P (see Appendix or Fulton (1993)). Assume that the origin is a vertex
and that P1 and P2 contain it.

Algorithm. Input: A bivariate irreducible polynomial f ∈ Q[x].
Output: The absolute irreducible decomposition of f (i.e. its irreducible factorization in C[x]).

(1) Determine the representation of P as intersection of affine half-planes:

P = {m ∈ R2, 〈m, ηi〉 + ki ≥ 0, i = 1 . . . r}

such that Pi = {m ∈ P, 〈m, ηi〉 + ki = 0}, i = 1 . . . r , support the facets of P .
(2) Find the smallest integer polytope Q such that P = dQ , d ∈ N∗. Let q be a generic Laurent
polynomial supported by Q , and for t ∈ C generic, denote by Ct ⊂ X the curve defined by q(x)− t .
Determine the 0-cycle Ct · C = p1(t)+ · · · + pN(t) on X .

(3) For each i = 3 . . . r , determine the intersection set C · Di = {pi1, . . . , pili} (each pij is repeated
according to its multiplicity).

(4) Recognize a partition of {1, . . . ,N} (unique up to the labelling of multiple intersection points)

J := (J31 ∪ · · · ∪ J3l3) ∪ · · · ∪ (Jr1 ∪ · · · ∪ Jrlr )

such that card(Jik) = k′i =
ki
d ∈ N and lim|t|→∞ pj(t) = pik ⇐⇒ j ∈ Jik.

(5) Find the biggest divisor δ of d such that for each i = 3 . . . r, there exists Ji ⊂ {1, . . . , li} of cardinal
li
δ
satisfying

Tδ,J3,...,Jr :=
r∑
i=3

∑
k∈Ji

∑
j∈Jik

fx2
Jac(f , q)

(
pj(t)

)
= 0. (9)

(6) Theorem 5 implies that f admits δ absolute irreducible factors whose traces on the facets
P3, . . . , Pr are given by the partition J. Make these factors explicit using Hensel’s liftings as in
Abu Salem et al. (2004) butwith bigfloat coefficients as in Chèze andGalligo (2005) and Rupprecht
(2004).

(7) From this approximate factorization, compute the extensionK in Section 2 and recognize the exact
factorization as explained in Chèze and Galligo (2005, 2006).

Remark 11. Let us comment some of these points.
Ourmain target is not polynomialswith too small polytopes (which can be treated by othermeans),

so we assume that (1, 0) is not a vertex of Q .
The curve C ⊂ X determined by f belongs to the linear system |DP | = |dDQ |, where DQ =

k′3D3 + · · · + k
′
rDr .

The number of points N in the cycle Ct · C is equal, by Bernstein’s theorem, to d(DQ · DQ ) =
2dvol(Q ) (see Bernstein (1975)). The curve Ct ⊂ X is the zero set of the homogeneous polynomial

Q h(U) − t
∏r
i=3 U

k′i
i , where U = (U1, . . . ,Ur) are homogeneous coordinates on X associated to

the edges of Q and Q h is the Q -homogenization of q (see Cox (1995)). When |t| goes to infinity, Ct
degenerates to the effective divisor at infinity DQ = div0(

∏r
i=3 U

k′i
i ), and

p1(t)+ · · · + pN(t) −→ k′3(p31 + · · · + p3l3)+ · · · + k
′

r(pr1 + · · · + prlr ).

In the examples, to determine the partition of {1, . . . ,N} in the algorithm, we fix t with |t| big and
solve the polynomial system f = q− t = 0.
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Proof of the algorithm. Let d′ be a divisor of d and set N ′ := N
d′ = 2 dd′ vol(Q ). To any subset

J = {j1, . . . , jN ′} of {1, . . . ,N}, we associate the 0-cycle

pj1(t)+ · · · + pjN′ (t).

Since (1, 0) /∈ Γ (Γ is defined in Theorem 9), and absolute irreducible factors of f are supported by
a polytope homothetic to Q , the curve C = {f = 0} intersects properly the Zariski closure of any line
x1 = c , c ∈ C. Thus, Theorems 9 and 10 imply that there exists an algebraic curve CJ ⊂ X such that
for any t ∈ C,

CJ · Ct = pj1(t)+ · · · + pjN′ (t)

if and only if the trace of x1

TJ(t) := x1(pj1(t))+ · · · + x1(pjN′ (t))

does not depend on t . Such a curve is contained in C and is supported by (d/d′)Q . If d′ is the biggest
divisor of d for which there exists a vanishing sum as in (9), CJ = CJ(d′) is an irreducible component
of C , and f has d′ irreducible factors.
Let us compute the finite sum TJ =

∑
j∈J x1

(
pj(t)

)
. The functions

uj(t) = x1(pj(t)) and vj(t) = x2(pj(t))

are holomorphic and satisfy for j = 1 . . .N ,

f (uj(t), vj(t)) = 0, q(uj(t), vj(t)) = t.

Differentiating this system, we deduce that

uj′(t) = −
∂x2 f
Jac(f , q)

(pj(t)), vj
′(t) =

∂x1 f
Jac(f , q)

(pj(t)).

Thus

TJ ′(t) = −
∑
j∈J

∂x2 f
Jac(f , q)

(pj(t)).

The existence of the curve CJ ⊂ C is then equivalent to TJ ′(t) = 0 for q generic.
It remains to show the validity of step 4 in the algorithm. If CJ is a component of C , it has the same

asymptotic behavior as that of C , i.e. the 0-cycle Ct · CJ converges to

DQ · CJ = k′3(D3 · CJ)+ · · · + k
′

r(Dr · CJ).

The 0-cycle Ct · CJ = pj1(t)+ · · · + pjN′ (t) is a sum of effective 0-cycles Z1(t), . . . , Zr(t), where Zi(t)
has degree k′i

li
d′ and Zi(t)→ k′iDi · CJ . �

5.1. Example

We apply our algorithm to the following simple (but not trivial) example:

f = 49+ 30 y x− 90 y x2 − 130 x y2 + 126 y+ 56 x+ 30 x2 − 3 y2 + x4 + 8 x3

+ 36 y4 − 108 y3 − 127 y2 x2 + 32 y2 x3 − 54 y x3 + 84 y3 x2 + 37 y2 x4

− 12 y x4 + 30 y3 x3 + 13 x2 y4 + 24 x y4.

The Newton polytope P of f represented in Fig. 3 is the convex hull of {(0, 0), (4, 0), (4, 2), (2, 4),
(0, 4)}. Also, η3 = (0,−1), η4 = (−1,−1), η5 = (−1, 0), k3 = 4, k4 = 6, k5 = 4, d = 2, and Q is
the convex hull of {(0, 0), (2, 0), (2, 1), (1, 2), (0, 2)}. Let

q = −5+ 8x− 2y+ x2 + y2 + 2xy2 + 6yx2.

Fig. 4 illustrates the principle of our algorithm on this example.
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Fig. 3.

For t = 103, the intersection 0-cycle of the curve Ct defined by q− t and the curve C defined by f
is Ct · C = p1 + · · · + p14, with

p1 = (−3.788354357− 22.18782564 I, 0.1524031261+ 0.049759143 I)
p2 = (−3.788354357+ 22.18782564 I, 0.1524031261− 0.049759143 I)
p3 = (−2.389966107− 4.663138871 I, 7.365424369+ 1.227961352 I)
p4 = (−2.389966107+ 4.663138871 I, 7.365424369− 1.227961352 I)
p5 = (−1.986201832− 22.37900395 I, 0.1619217298− 0.0018513709 I)
p6 = (−1.986201832+ 22.37900395 I, 0.1619217298+ 0.0018513709 I)
p7 = (−1.535681765− 1.726064601 I, −9.102030424+ 7.399506679 I)
p8 = (−1.535681765+ 1.726064601 I, −9.102030424− 7.399506679 I)
p9 = (−1.045747272− 3.489978116 I, −5.189003901+ 9.662581013 I)
p10 = (−1.045747272+ 3.489978116 I, −5.189003901− 9.662581013 I)
p11 = (−0.7687604288− 1.155834857 I, 14.36735548− 7.960507788 I)
p12 = (−0.7687604288+ 1.155834857 I, 14.36735548+ 7.960507788 I)
p13 = (5.894022105− 0.6210086653 I, −6.648718394+ 5.938892046 I)
p14 = (5.894022105+ 0.6210086653 I, −6.648718394− 5.938892046 I).

Now to determine C · Di, i = 3, 4, 5,we use toric affine coordinates (see Appendix) to find the three
facet polynomials of f . Using the chart corresponding to the vertex s3 = (2, 4) with the coordinates
u = 1

x , v =
x
y , we find

f3(u) = 36u2 + 24u+ 13 and f4(v) = 37v2 + 30v + 12.

In the chart associated to s4 = (2, 4) with the coordinates z = y
x , w =

1
y , we obtain f5(w) =

w2 − 12w + 37. So we have

C · D3 = {p3,1, p3,2}, C · D4 = {p4,1, p4,2}, C · D5 = {p5,1, p5,2},

where

u(p3,1) = −
1
3
+
1
2
I, v(p3,1) = 0, u(p3,2) = −

1
3
−
1
2
I, v(p3,2) = 0,

v(p4,1) = −
15
37
+
16
37
I, u(p4,1) = 0, v(p4,2) = −

15
37
−
16
37
I, u(p4,2) = 0,

w(p5,1) = 6+ I, z(p5,1) = 0, w(p5,2) = 6− I, z(p5,2) = 0,

and

f3(u) = 36
(
u− u(p3,1)

)(
u− u(p3,2)

)
,

f4(v) = 37
(
v − v(p4,1)

)(
v − v(p4,2)

)
,

f5(w) =
(
w − w(p5,1)

)(
w − w(p5,2)

)
.



1206 M. Elkadi et al. / Journal of Symbolic Computation 44 (2009) 1194–1211

Fig. 4.

Now we collect the factors of fi’s to recover the factorization of f on the border Γ = P3 ∪ P4 ∪ P5 of
the Newton polytope P of f .
Since Ct ·C = p1(t)+· · ·+p14(t), and Ct → 2D3+3D4+2D5, then 4 (resp. 6, and 4) points among

these 14 converge to the 2 points in C · D3 (resp. C · D4, and C · D5), that is

p1(t)+ · · · + p14(t)→ 2(p3,1 + p3,2)+ 3(p4,1 + p4,2)+ 2(p5,1 + p5,2).

More precisely, using the toric coordinates, we observe that the points p1, p6 (resp. p3, p10, p13, and
p8, p12) converge to p5,1 (resp. p4,1, and p3,1). We deduce that

J3,1 = {8, 12}, J4,1 = {3, 10, 13}, J5,1 = {1, 6},
J3,2 = {7, 11}, J4,2 = {4, 9, 14}, J5,2 = {13, 14}.

Finally testing the vanishing of the expression (9), we find δ = 2, J3 = {1}, J4 = {1}, J5 = {1}.We
deduce that the polynomial f admits 2 absolute irreducible factors g and h, and that the restriction of
g on the 3 facets of P constituting Γ are (up to monomials)

g3(u) = u− u(p3,1), g4(v) = v − v(p4,1), g5(w) = w − w(p5,1).

Weeasily recognize the extensionK = Q[I]with I2 = 1. In this extension, the polynomial coefficients
are easily recognized from their decimal approximation.
Back to the toric coordinates (x, y), we find that the facet polynomials gΓ (the restriction of g to Γ )

and hΓ are respectively

gΓ = 6xy2g1 + xy2g3 = (2− 3I)xy2 + 6y2 + (6− I)x2y− x2,
hΓ = (2+ 3I)xy2 + 6y2 + (6+ I)x2y− x2.

Remark 12. In this example to detect a partition of points defining the absolute factors of f we test(2
1

)(2
1

)(2
1

)
= 6 traces instead of

(6
3

)
= 20 suggested by the original approach (see Section 3, Rupprecht

(2004) and Chèze and Galligo (2005)). In general using our approach based on the partition given in
the step 4 of the algorithm, we have to test at most

N =
∑
δ|n

r∏
i=1

( ei
δ
ei

)
traces instead of the initial number

M =
∑
δ|n

(
d
δ
d

)
.

Since d = e1 + · · · + er and(
a
b

)(
c
d

)
<

(
a+ c
b+ d

)
,
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this shows thatN < M, and the difference being increasing with the number of facets of the Newton
polytope of f . Our algorithmic approach will bring efficiency in absolute factorization problem and
improves subsequently the approach presented in Rupprecht (2004) and Chèze and Galligo (2005).

5.2. Bidegree representation

In this subsection, the previous algorithmic approach and results are applied to the factorization
of a polynomial f given by a dense representation of bidegree (m, n) in (x, y). Then the considered
Newton polytope is simply a rectangle. Let C be the Zariski closure of the curve defined by f in the
toric surface P1×P1. The algebricity criterion is expressed by cutting C with a family of conics having
equations xy + αx + βy + γ = 0 which can be written (x − x0)(y − y0) − a = 0. The trace of y is a
rational function

(
TrC ) of (x0, y0, a) defined in Definition 8 and the criterion is given in Theorem 9:

a 7−→
(
TrC y

)
(a)

is polynomial of degree at most 1 in the coefficient a.

5.2.1. Translation
In order to apply this criterion, we perform a (generic) translation by (x0, y0) on the coordinates

and get a new equation for f that we still denote by f to simplify the notation. So we intersect the
curve C by a conic xy = a with a near zero. Note a slight difference with the algorithm presented
above, in this special case it is easier to cut the curve with lines and not with divisors at infinity, then
a is considered near 0 and not near infinity. As (x0, y0) is generic when a = 0, there are m distinct
intersection points denoted by Mi = (xi, 0) with the line y = 0 and n distinct intersection points
denoted by Nj = (0, yi) with the line x = 0, moreover they are distinct from the origin. As a varies
near zero, the intersection points formm+ n small curves which satisfy the equation in (a, y):

F(a, y) := ymf (a/y, y) = 0.

Observe that F(0, y) = 0 has a root of multiplicity n. Hence our criterion can handle situations not
covered by the criterion in Chèze and Galligo (2005).

5.2.2. Explicit criterion
Applications of the implicit function theorem for f at pointsMi, respectively Nj, give the following

Taylor expansions:

x = xi + ciy+ O(y2); y = yj + ajx+ bjx2 + O(x3)

where the numbers ci, aj, bj are easily computed from the values of the first and second derivatives of
f . Multiplying the first ones by y and the second ones by y, we get Taylor expansions with respect to
a nearMi, respectively Nj :

y =
1
xi
a−

ci
x3i
a2 + O(a3); x =

1
yj
a−

aj
y3j
a2 + O(a3)

hence near Nj:

y = yj +
aj
yj
a−

a2j
y3j
a2 +

bj
y2j
a2 + O(a3).

So the criterion becomes:
Explicit criterion: Two subsets of intersection points between C and the two axes, indexed by I of
{1, . . . ,m} and J of {1, . . . , n}, correspond to an absolute irreducible component of C (hence to a factor
of f ) iff∑

i∈I

(
−
ci
x3i

)
+

∑
j∈J

(
−
a2j
y3j
+
bj
y2j

)
= 0.
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5.2.3. Algorithm and comparison with total degree
Now, as in Chèze (2004), the LLL algorithm can be applied to solve the knapsack problem of size

m+ n associated to the previous sums and determine the partitions of {1, . . . ,m} and {1, . . . , n} in q
subsets that we denote by Ik and Jk with k = 1, . . . , q. Each pair of such subsets should correspond to
a factor fk of f , a polynomial of bidegree (mq ,

n
q ). The solution of fk(x, 0) = 0, respectively fk(0, y) = 0,

are the Mi indexed by Ik, respectively the Nj indexed by Jk. Moreover if we further assume that the
constant term of f is 1 (which is easy to achieve), good approximations of fk(x, 0) and of fk(0, y) can
be computed from the approximation of their roots.
Our algorithm consists in applying Hensel liftings with respect to x (respectively with respect to y)

to lift the obtained approximate factorization of f (0, y) (respectively of f (x, 0)) to an approximate
factorization of f . We know that the factors must be conjugated; with the assumption we made on
the constant term of f , their coefficients are conjugated algebraic integers. So an irreducible monic
polynomial g(z) defining a field extension can be recovered from a sufficiently good approximation by
bigfloats of the coefficients as in Chèze andGalligo (2006). Then the exact expression of the coefficients
can be recovered similarly.
Therefore the algorithm is completely similar to the one described in detail in Chèze and Galligo

(2006) and the costs of the two approaches can be compared:

• Preprocessings (change of variables f (x0 + X, y0 + Y ) vs. f (a1Y + a0, Y )) have similar costs.
• Computations of traces and LLL also have similar costs.
• However, the new algorithmneeds onlym linear steps (or log(m) quadratic steps) of Hensel liftings
of polynomials of degree n instead ofm+ n linear steps (or log(m+ n) quadratic steps) of Hensel
liftings of polynomials of degreem+ n.
This makes a significant difference.

6. Conclusion

In this first paper, we established the mathematical bases of our algorithmic approach to toric
factorization, and verified that it works on some examples. It is an important generalization of the
algorithms developed by Rupprecht, Galligo and Chèze. We also presented in detail the case of a
polynomial of bidegree (m, n) where we noted a significant improvement. However in the general
case, we still have to tune and improve the algorithm. This will be done in a future work together
with improvements whichwill speed it up inmany cases of interest. Themethod is symbolic-numeric
and produces approximate absolute factors to lift the approximate factorization to the exact one
via rational approximation; we followed the model of computation used in Rupprecht (2004). Some
additional work will also allow us to adapt the improvements of Chèze and Galligo (2006).
Let us for instance notice that we could replace the polytope Q = 1

dNf by a smaller one Q̃ having
parallel facets as we did in the bidegree case where we took Q̃ equal to the unit square.
We will also investigate the possibility of cutting the curve C defined by f by special families of

curves which will ease the computations.
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Appendix. Abstract toric surfaces

Let Q ⊂ R2 be a two-dimensional integer convex polytope satisfying the condition of Lemma 6.
Let us explain how to recover the embedded projective toric variety XQ as an abstract algebraic one.
There exist unique primitive vectors1 η1, . . . , ηr in Z2 and unique positive integers k1, . . . , kr in

N, such that for i = 1 . . . r , the facet Qi of Q is included in the affine line
Qi ⊂ {m ∈ R2, 〈m, ηi〉 + ki = 0},

1 A vector v = (v1, v2) ∈ Z2 is primitive if gcd(v1, v2) = 1.
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where 〈·, ·〉 is the usual scalar product in R2. The polytope Q is then given by the intersection of r
affine half-planes:

Q = {m ∈ R2 : 〈m, ηi〉 + ki ≥ 0, ∀ i = 1 . . . r}.

The vertices s1, . . . , sr ofQ are in one-to-one correspondencewith the facets ofQ . If for i = 1 . . . r−1,
si = Qi ∩ Qi+1, and sr = Qr ∩ Q1, any vertex si determines a two-dimensional rational convex cone

σi := {m ∈ R2 : 〈m, ηi〉 ≥ 0, 〈m, ηi+1〉 ≥ 0}

dual to the cone ηiR+ ⊕ ηi+1R+. Let

Xi := Spec(C[σi ∩ Z2])

be the biggest variety onwhich all the Laurent polynomials supported in σi can be extended as regular
functions. Such a variety is called an affine toric surface, since the torus T = (C∗)2 is an open set of Xi
and its action on itself extends to Xi.
We can glue naturally the affine surfaces Xi and Xi+1, corresponding to cones having a common

one-dimensional face, along their common set Xi ∩ Xi+1 containing the torus T. This natural gluing is
compatible with the torus action and gives a complete normal variety X containingT as a Zariski open
set. This torus compactification is called the normal complete toric surface associated to Q . It can be
written as

X = T ∪ D1 · · · ∪ Dr ,

where D1, . . . ,Dr are the unique irreducible divisors of X invariant under the torus action. Each Di is
isomorphic to P1 and meets the affine toric variety Xk if and only if k ∈ {i, i+ 1}.
For any m ∈ Z2, the Laurent monomial xm is regular on the Zariski open set T common to all the

charts Xi. It defines a rational function on X giving rise to a principal Cartier divisor div(xm) supported
on X \ T, and equal to

div(xm) =
r∑
i=1

〈m, ηi〉Di.

More generally, any Laurent polynomial q gives rise to a principal Cartier divisor

div(f ) = Cf − b1D1 − · · · − brDr ,

where Cf is the Zariski closure in X of the effective divisor {f = 0} ⊂ T, and

bi = −min{〈m, ηi〉,m ∈ Nf }, i = 1 . . . r,

are integers, Nf is the Newton polytope of f . Conversely, to any toric divisor D =
∑r
i=1 biDi, we can

associate an integral polytope PD

PD = {m ∈ R2 : 〈m, ηi〉 + bi ≥ 0, i = 1 . . . r}

so that div(f ) + D ≥ 0 if and only if the support of f is contained in PD, for any Laurent polynomial
f . In other words, the set H0(X,OX (D)) of global sections of the invertible sheaf corresponding to D
is isomorphic to the set of Laurent polynomials supported by PD, and admits the Laurent monomials
xm,m ∈ PD ∩ Z2, as a natural basis.
Let us denote by

DQ = k1D1 + · · · + krDr

the particular divisor associated to the given polytope Q (so that Q = PDQ ). It is globally generated on
X and gives rise to the Kodaira rational map

φDQ : X −→ P(H0(X,OX (DQ )))ν
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which sends a generic x on the point ζx corresponding to the hyperplane of global sections vanishing
at x. If x ∈ T, and Q ∩ Z2 = {m0, . . . ,ml}, this hyperplane is{

a = [a0 : · · · : al] ∈ P(H0(X,OX (D))) :
l∑
i=0

aixmi = 0

}
.

So that the natural homogeneous coordinates of ζx for x ∈ T are

φDQ (x) = ζx = [x
m0 : · · · : xml ],

and φDQ defines a morphism on the torus. The map φDQ turns out to be an embedding precisely
when m1 − m0, . . . ,ml − m0 generate the lattice Z2 (see Lemma 6), in this case the toric variety
X is isomorphic to the projective variety XQ previously constructed. The divisor DQ is then very ample
and gives rise to the isomorphism

H0(X,OX (DQ )) = φ∗DQH
0(Pl,OPl(1)) ' H

0(XQ , (OPl(1))|XQ ), (10)

traducing that the closure in X of curves defined by generic Laurent polynomials supported by Q are
isomorphic to some hyperplane sections of XQ ⊂ Pl.We notice that the genericity criterion is essential
here: For example, if f (x) = xmi , then the curve defined by f is empty while the corresponding
hyperplane section XQ ∩ {ui = 0} is not. Let us explicit this genericity criterion.

Lemma 13. Assume that DQ is very ample and let f be a reduced Laurent polynomial supported in dQ ,
d ∈ N∗. Then Cf ' XQ · H, for a reduced hypersurface H ⊂ Pl of degree d if and only if the support of f
meets every facets of dQ .

Proof. The assumptionNf ⊂ dQ is equivalent to div(f ) = Cf −Df , whereDf = b1D1+· · ·+brDr is an
effective divisor bounded by dDQ . Thus div(f ) = Cf+(dDQ−Df )−dDQ , and since Cf+(dDQ−Df ) ≥ 0,
f defines a global section of OX (dDQ ). We deduce from the isomorphism (10), the existence of an
effective divisor H of degree d in Pl such that

Cf + (dDQ − Df ) = H|X ,

under the identification X = XQ . Then Cf = H|X if and only if dDQ = Df , that is if the equality bi = dki
holds for every i = 1 . . . r . Moreover, as Cf is reduced, H must be reduced. �
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