The Drazin inverse of the linear combinations of two idempotents in the Banach algebra ${ }^{\text {** }}$

Shifang Zhang ${ }^{\text {a,* }}$, Junde Wu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Fujian Normal University, Fuzhou 350007, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China

ARTICLEINFO

Article history:

Received 1 August 2011
Accepted 14 October 2011
Available online 25 November 2011
Submitted by A. Böttcher

AMS classification:

46C05
46C07

Keywords:

Drazin inverse
Group inverse
Idempotent
Linear combinations

Abstract

In this paper, some Drazin inverse representations of the linear combinations of two idempotents in a Banach algebra are obtained. Moreover, we present counter-examples to and establish the corrected versions of two theorems by Cvetković-Ilić and Deng.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathscr{A} be a Banach-* algebra. An element $P \in \mathscr{A}$ is said to be an idempotent if $P^{2}=P$ and a projection if $P^{2}=P=P^{*}$. The set $\mathscr{P}(\mathscr{A})$ of all idempotents in \mathscr{A} is invariant under similarity, that is, if $P \in \mathscr{P}(\mathscr{A})$ and $S \in \mathscr{A}$ is an invertible element, then $S^{-1} P S$ is still an idempotent.

Let us recall that the Drazin inverse of $A \in \mathscr{A}$ is the element $B \in \mathscr{A}$ (denoted by A^{D}) which satisfies

$$
\begin{equation*}
B A B=B, \quad A B=B A, \quad A^{k+1} B=A^{k} \tag{1}
\end{equation*}
$$

for some nonnegative integer k. The least such k is the index of A, denoted by ind (A). The Drazin inverse for bounded linear operators on complex Banach spaces was investigated by Caradus [11]. Therein it

[^0]0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2011.10.022
was established that the Drazin inverse of operator A exits if and only if 0 is at most a pole of the resolvent $R(\lambda, A)$, which is also equivalent to the descent and ascent of A to be both finite. Some more results about Drazin inverse can be found in [24] and references cited therein. It is well-known that if A is Drazin invertible, then the Drazin inverse is unique and $(a A)^{D}=\frac{1}{a} A^{D}$ for each nonzero scalar a. In particular, for an invertible operator A, the Drazin inverse A^{D} coincides with the usual inverse A^{-1} and $\operatorname{ind}(A)=0$. The conditions (1) are also equivalent to

$$
B A B=B, \quad A B=B A, \quad A-A^{2} B \text { is nilpotent. }
$$

The Drazin inverse of an operator in \mathscr{A} is similarity invariant, that is, if T is Drazin invertible and $S \in \mathscr{A}$ is an invertible element, then $S^{-1} T S$ is still Drazin invertible and $\left(S^{-1} T S\right)^{D}=S^{-1} T^{D} S$. If $P \in \mathscr{P}(\mathscr{A})$, it is easy to verify that $P^{D}=P$.

This paper is concerned with the Drazin inverses $(a P+b Q)^{D}$ of the linear combinations of two idempotents in \mathscr{A} for nonzero scalars a and b. In recent years, many authors paid much attention to properties of linear combinations of idempotents or projections (see [1-8,12-23]). In [14], Deng has discussed the Drazin inverses of the products and differences of two projections. Motivated by this paper, Böttcher and Spitkovsky wrote [1] and in that paper they proved that the Drazin invertibility of the sum $P+Q$ of two projections P and Q is equivalent to the Drazin invertibility of any linear combination $a P+b Q$ where $a b \neq 0, a+b \neq 0$. However, without some additional conditions, it is difficult to discuss the Drazin invertibility of linear combinations of two idempotents. More recently, under some conditions, Deng in [15] gave the Drazin inverses of sums and differences of idempotents on the Hilbert space. The methods used in [15] are space decompositions and operator matrix representations which are not available for general Banach-* algebras, or general Banach algebras.

In this paper, by using direct calculation methods, we obtain some formulae for the Drazin inverse $(a P+b Q)^{D}$ of the linear combinations of idempotents P and Q in Banach algebra \mathscr{A} under some conditions, and we also study the index ind $(a P+b Q)$.

2. Main results and proofs

In this section, we always suppose that \mathscr{A} is a Banach algebra with the unit I and $a P+b Q$ is a linear combination of two idempotents P and Q in \mathscr{A} with nonzero scalars a and b. In order to prove that $a P+b Q$ is Drazin invertible, we only need to find out some $M \in \mathscr{A}$ which satisfies that

$$
\begin{equation*}
(a P+b Q) M=M(a P+b Q), \quad M(a P+b Q) M=M, \quad(a P+b Q)^{k+1} M=(a P+b Q)^{k} \tag{2}
\end{equation*}
$$

for some nonnegative integer k.
The following result is essentially already in $[2,20]$; note $P Q P=0$ implies that $(P Q)^{2}=(Q P)^{2}$. We present a self-contained proof for the reader's convenience.

Theorem 2.1. Let P and Q be the idempotents in Banach algebra \mathscr{A} and $P Q P=0$. Then $a P+b Q$ is Drazin invertible for any nonzero scalars a and $b, \operatorname{ind}(a P+b Q) \leqslant 1$ and

$$
(a P+b Q)^{D}=\frac{1}{a} P+\frac{1}{b} Q-\left(\frac{1}{a}+\frac{1}{b}\right) P Q-\left(\frac{1}{a}+\frac{1}{b}\right) Q P+\left(\frac{1}{a}+\frac{2}{b}\right) Q P Q .
$$

Moreover, ind $(a P+b Q)=0$ if and only if $P+Q+Q P Q=I+P Q+Q P$.
Proof. Let

$$
M=\frac{1}{a} P+Q-\left(\frac{1}{a}+1\right) P Q-\left(\frac{1}{a}+1\right) Q P+\left(\frac{1}{a}+2\right) Q P Q .
$$

We claim that

$$
(a P+Q)^{D}=M
$$

In fact, by the assumption that $P Q P=0$, we have that

$$
M(a P+Q)=(a P+Q) M=P+Q-P Q-Q P+Q P Q
$$

Also a direct calculation shows that

$$
\begin{aligned}
M(a P+Q) M= & (P+Q-P Q-Q P+Q P Q) M \\
= & {\left[\frac{1}{a} P+P Q-\left(\frac{1}{a}+1\right) P Q\right] } \\
& +\left[\frac{1}{a} Q P+Q-\left(\frac{1}{a}+1\right) Q P Q-\left(\frac{1}{a}+1\right) Q P+\left(\frac{1}{a}+2\right) Q P Q\right] \\
& -P Q-\frac{1}{a} Q P-Q P Q+\left(\frac{1}{a}+1\right) Q P Q+Q P Q=M
\end{aligned}
$$

and that

$$
\begin{equation*}
M(a P+Q)^{2}=(P+Q-P Q-Q P+Q P Q)(a P+Q)=a P+Q \tag{3}
\end{equation*}
$$

Thus, from (2) we get that $(a P+Q)^{D}=M$. So we have

$$
(a P+b Q)^{D}=\frac{1}{b}\left(\frac{a}{b} P+Q\right)^{D}=\frac{1}{a} P+\frac{1}{b} Q-\left(\frac{1}{a}+\frac{1}{b}\right) P Q-\left(\frac{1}{a}+\frac{1}{b}\right) Q P+\left(\frac{1}{a}+\frac{2}{b}\right) Q P Q .
$$

Moreover, it follows from (3) and the definition of Drazin index that $\operatorname{ind}(a P+b Q)=\operatorname{ind}\left(\frac{b}{a} P+Q\right) \leqslant$ 1.In addition, a direct calculation shows that

$$
(a P+b Q)^{D}(a P+b Q)=P+Q-P Q-Q P+Q P Q
$$

Note that ind $(a P+b Q)=0$ if and only if $(a P+b Q)^{D}(a P+b Q)=I$, so ind $(a P+b Q)=0$ if and only if $I=P+Q-P Q-Q P+Q P Q$. This completes the proof.

Theorem 2.2. Let P and Q be the idempotents in Banach algebra \mathscr{A} and $P Q P=P$. Then $a P+b Q$ is Drazin invertible for any nonzero scalars a and b, and

$$
(a P+b Q)^{D}= \begin{cases}\frac{a^{2}}{(a+b)^{3}} P+\frac{1}{b} Q+\frac{a b}{(a+b)^{3}}(P Q+Q P)+\left(\frac{b^{2}}{(a+b)^{3}}-\frac{1}{b}\right) Q P Q, & \text { if } a+b \neq 0 ; \\ \frac{1}{a} Q(P-I) Q, & \text { if } a+b=0 .\end{cases}
$$

Moreover, ind $(a P-a Q) \leqslant 3$ and ind $(a P+b Q) \leqslant 2$ when $a+b \neq 0$.
Proof. Case (1) Let $M=\frac{a^{2}}{(a+1)^{3}} P+Q+\frac{a}{(a+1)^{3}}(P Q+Q P)+\left(\frac{1}{(a+1)^{3}}-1\right) Q P Q$. We claim that if $a \neq-1$, then $(a P+Q)^{D}=M$. In fact, by the assumption that $P Q P=P$, we have

$$
(a P+Q) M=M(a P+Q)=\frac{a^{2}}{(a+1)^{2}} P+Q+\frac{a}{(a+1)^{2}}(P Q+Q P)+\left(\frac{1}{(a+1)^{2}}-1\right) Q P Q .
$$

and

$$
(a P+Q)^{3} M=(a P+Q)^{2}=a^{2} P+Q+a(P Q+Q P)
$$

Moreover, by calculating, we get that

$$
\begin{aligned}
& M(a P+Q) M \\
&= \frac{a^{4}}{(a+1)^{5}} P+\frac{a^{2}}{(a+1)^{3}} Q P+\frac{a^{3}}{(a+1)^{5}} Q P+\frac{a^{3}}{(a+1)^{5}} P+\left(\frac{1}{(a+1)^{2}}-1\right) \frac{a^{2}}{(a+1)^{3}} Q P \\
&+\frac{a^{2}}{(a+1)^{2}} P Q+Q+\frac{a}{(a+1)^{2}} Q P Q+\frac{a}{(a+1)^{2}} P Q+\left(\frac{1}{(a+1)^{2}}-1\right) Q P Q \\
&+\frac{a^{3}}{(a+1)^{5}} P Q+\frac{a}{(a+1)^{3}} Q P Q+\frac{a^{2}}{(a+1)^{5}} Q P Q \\
&+\frac{a^{2}}{(a+1)^{5}} P Q+\left(\frac{1}{(a+1)^{2}}-1\right) \frac{a}{(a+1)^{3}} Q P Q \\
&+\frac{a^{3}}{(a+1)^{5}} P+\frac{a}{(a+1)^{3}} Q P+\frac{a^{2}}{(a+1)^{5}} Q P+\frac{a^{2}}{(a+1)^{5}} P+\left(\frac{1}{(a+1)^{2}}-1\right) \frac{a}{(a+1)^{3}} Q P \\
&+\frac{a^{2}}{(a+1)^{2}}\left(\frac{1}{(a+1)^{3}}-1\right) P Q+\frac{a}{(a+1)^{2}}\left(\frac{1}{(a+1)^{3}}-1\right) Q P Q+\left(\frac{1}{(a+1)^{3}}-1\right) Q P Q \\
&+\frac{a}{(a+1)^{2}}\left(\frac{1}{(a+1)^{3}}-1\right) P Q+\left(\frac{1}{(a+1)^{2}}-1\right)\left(\frac{1}{(a+1)^{3}}-1\right) Q P Q \\
&= \frac{a^{2}}{(a+1)^{3}} P+Q+\frac{a^{3}+2 a^{2}+a}{(a+1)^{5}} P Q+\frac{a^{3}+2 a^{2}+a}{(a+1)^{5}} Q P \\
&+\left\{\frac{a^{2}}{(a+1)^{5}}+\frac{1}{(a+1)^{2}} \frac{a}{(a+1)^{3}}+\frac{a}{(a+1)^{2}} \frac{1}{(a+1)^{3}}\right. \\
&\left.+\left(\frac{1}{(a+1)^{3}}-1\right)+\left(\frac{1}{(a+1)^{2}}-1\right) \frac{1}{(a+1)^{3}}\right\} Q P Q=M .
\end{aligned}
$$

Thus, it follows from (2) that $(a P+Q)^{D}=M$ and ind $(a P+Q) \leqslant 2$ when $a \neq-1$. Similarly to the discussion in the proof of Theorem 2.1, when $a+b \neq 0$, we have

$$
(a P+b Q)^{D}=\frac{a^{2}}{(a+b)^{3}} P+\frac{1}{b} Q+\frac{a b}{(a+b)^{3}}(P Q+Q P)+\left(\frac{b^{2}}{(a+b)^{3}}-\frac{1}{b}\right) Q P Q
$$

and

$$
\operatorname{ind}(a P+b Q)=\operatorname{ind}\left(\frac{a}{b} P+Q\right) \leqslant 2 .
$$

Case (2) Suppose that $a+b=0$. By calculating, we have

$$
\begin{aligned}
& (a P-a Q) \frac{1}{a} Q(P-I) Q=\frac{1}{a} Q(P-I) Q(a P-a Q)=Q-Q P Q, \\
& (a P-a Q)\left(\frac{1}{a} Q(P-I) Q\right)^{2}=\frac{1}{a} Q(P-I) Q, \\
& (a P-a Q)^{4}\left(\frac{1}{a} Q(P-I) Q\right)=a^{3}(Q P Q-Q)=(a P-a Q)^{3} .
\end{aligned}
$$

Therefore, $(a P-a Q)^{D}=\frac{1}{a} Q(P-I) Q,(a P-a Q)^{4}(a P-a Q)^{D}=(a P-a Q)^{3}$ and $\operatorname{ind}(a P-a Q) \leqslant 3$. This completes the proof.

Remark 2.3. (1) Under the assumption of Theorem 2.2 , we have ind $(a P-a Q)=3$ if and only if $P+Q P Q \neq P Q+Q P$. For this, we only need to note that $(a P-a Q)^{3}(a P-a Q)^{D}=a^{2}(Q-Q P Q)$ and $(a P-a Q)^{2}=a^{2}(P-P Q-Q P+Q)$.
(2) Our results recovered most of the main conclusions in [15], but our methods are very different from the methods used in [15]. In particular, the methods used in [15] cannot yield any information about the Drazin index.

In the rest of this paper, we consider the group inverse. The group inverse of $A \in \mathscr{A}[9,10,21]$ is the element $B \in \mathscr{A}$ (denoted by A^{g}) which satisfies

$$
B A B=B, \quad A B=B A, \quad A B A=A .
$$

Obviously, A has group inverse if and only if A has Drazin inverse with ind $(A) \leqslant 1$.
Before giving the revised versions of Theorems 3.2 and 3.3 in [13], we present the following two counter-examples to these theorems.

Example 2.4. Let $A=\left(\begin{array}{ll}S & 0 \\ 0 & 0\end{array}\right) \in B\left(l_{2} \oplus l_{2}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ T & 0\end{array}\right) \in B\left(l_{2} \oplus l_{2}\right)$ with S and T in $B\left(l_{2}\right)$ such that $T S \neq 0$. Consider the operators

$$
P=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) \in B\left(H_{2} \oplus H_{2}\right), \quad Q=\left(\begin{array}{ll}
I & A \\
B & 0
\end{array}\right) \in B\left(H_{2} \oplus H_{2}\right),
$$

where $H_{2}=l_{2} \oplus l_{2}$. Direct calculations show that $B A \neq 0,(B A)^{2}=A B=0$. Hence we have $P^{2}=P, Q^{2}=Q, P Q P=P$. From Theorem 2.2, we know that $P+Q$ has Drazin inverse and $(P+Q)^{D}=$ $\frac{1}{8} P+Q+\frac{1}{8}(P Q+Q P)-\frac{7}{8} Q P Q$. Hence $(P+Q)-(P+Q)^{2}(P+Q)^{D}=\frac{1}{2}\left(\begin{array}{cc}0 & 0 \\ 0 & B A\end{array}\right) \neq 0$, which implies that $\operatorname{ind}(P+Q)>1$. From this and Theorem 2.2, it is clear that $\operatorname{ind}(P+Q)=2$. So the group inverse $(P+Q)^{g}$ of $P+Q$ does not exist.

Example 2.5. Define operators P and Q in $B\left(\mathbb{C}^{5}\right)$ by

$$
P=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text { and } Q=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

respectively. Obviously,

$$
P^{2}=P, \quad Q^{2}=Q, \quad P Q P=P=P Q
$$

This means that both P and Q are idempotents in $B\left(\mathbb{C}^{5}\right)$. Then it results from Theorem 2.2 that $(P-Q)^{D}=Q(P-1) Q$. But a direct calculation shows that

$$
(P-Q)^{2}(P-Q)^{D}=Q P Q-Q=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) \neq P-Q
$$

This implies that $\operatorname{ind}(P-Q)>1$, and so the group inverse $(P-Q)^{g}$ of $P-Q$ does not exist.
In spite of the above two counter-examples, we have the following theorems.
Theorem 2.6. Let P and Q be the idempotents in Banach algebra \mathscr{A} and $P Q P=P$. Then
(i) $(P+Q)^{D}=\frac{1}{8} P+Q+\frac{1}{8}(P Q+Q P)-\left(\frac{7}{8}\right) Q P Q$,
(ii) $(P-Q)^{D}=Q(P-I) Q$,
(iii) $P+Q$ has a group inverse if and only if $P+Q P Q=P Q+Q P$,
(iv) $P-Q$ has a group inverse if and only if $P=Q P Q$.

Proof. Since the results of parts (i) and (ii) are special cases of Theorem 2.2, it suffices to show part (iii) and part(iv). For this, we only need to note that $(P+Q)-(P+Q)^{2}(P+Q)^{D}=\frac{1}{2}(P+Q P Q-P Q-Q P)$ and that $(P-Q)-(P-Q)^{2}(P-Q)^{D}=P-Q P Q$, which can be obtained by direct calculations. This completes the proof.

Theorem 2.7. Let P and Q be the idempotents in Banach algebra \mathscr{A} and $P Q P=P Q$. Then

$$
\begin{aligned}
& (P+Q)^{g}=P+Q-2 Q P-\frac{3}{4} P Q+\frac{5}{4} Q P Q, \\
& (P-Q)^{D}=P-Q-P Q+Q P Q .
\end{aligned}
$$

Moreover, ind $(P-Q) \leqslant 2$ and $P-Q$ has a group inverse if and only if $P Q=Q P Q$.
Proof. Since the group inverse of $P+Q$ can by checked directly, its proof is omitted. It can be checked directly that the indicated $(P+Q)^{g}$ is the group inverse. Now let $M=P-Q-P Q+Q P Q$. By direct calculations we have that

$$
\begin{equation*}
M(P-Q) M=M,(P-Q)^{2} M=M, \tag{4}
\end{equation*}
$$

and that

$$
(P-Q)^{3} M=(P-Q)^{2}=(P-Q) M=M(P-Q)=P-P Q-Q P+Q .
$$

This implies that $(P-Q)^{D}=P-Q-P Q+Q P Q$ and that $\operatorname{ind}(P-Q) \leqslant 2$. In this case, from equation (4) and the definition of a group inverse, we know that $P-Q$ has a group inverse if and only if $(P-Q)^{2}(P-Q)^{D}=(P-Q)=(P-Q)^{D}=P-Q-P Q+Q P Q$. This completes the proof.

References

[1] A. Böttcher, I.M. Spitkovsky, Drazin inversion in the von Neumann algebra generated by two orthogonal projections, J. Math. Anal. Appl. 358 (2009) 403-409.
[2] A. Böttcher, I.M. Spitkovsky, On certain finite-dimensional algebras generated by two idempotents, Linear Algebra Appl. 435 (2011) 1823-1836.
[3] J.K. Baksalary, O.M. Baksalary, H. Özdemir, A note on linear combinations of commuting tripotent matrices, Linear Algebra Appl. 388 (2004) 45-51.
[4] J.K. Baksalary, O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000) 3-7.
[5] J.K. Baksalary, O.M. Baksalary, G.P.H. Styan, Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl. 54 (2002) 21-34.
[6] O.M. Baksalary, J. Benítez, Idempotency of linear combinations of three idempotent matrices, two of which are commuting, Linear Algebra Appl. 424 (2007) 320-337.
[7] J. Benítez, N. Thome, Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute, Linear Algebra Appl. 403 (2005) 414-418.
[8] O.M. Baksalary, Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra Appl. 388 (2004) 67-78.
[9] K.P.S. Bhaskara Rao, The Theory of Generalized Inverses Over Commutative Rings, Taylor and Francis, London and NewYork, 2002.
[10] C.J. Bu, J.M. Zhao, J.S. Zheng, Group inverse for a class 2×2 block matrices over skew fields, Appl. Math. Comput. 204 (2008) 45-49.
[11] S.R. Caradus, Operator Theory of the Generalized Inverse, Queen's Papers in Pure and Appl. Math., vol. 38, Queen's University, Kingston, Ontario, 1974, Science Press, New York, 2004.
[12] D.S. Cvetković-Ilić, C.Y. Deng, The Drazin invertibility of the difference and the sum of two idempotent operators, J. Comput. Appl. Math. 233 (2010) 1717-1722.
[13] D.S. Cvetković-Ilić, C.Y. Deng, Some results on the Drazin invertibility and idempotents, J. Math. Anal. Appl. 359 (2009) $731-738$.
[14] C.Y. Deng, The Drazin inverses of products and differences of orthogonal projections, J. Math. Anal. Appl. 335 (2007) 64-71.
[15] C.Y. Deng, The Drazin inverses of sum and difference of idempotents, Linear Algebra Appl. 430 (2009) 1282-1291.
[16] H. Du, X. Yao, C. Deng, Invertibility of linear combinations of two idempotents, Proc. Amer. Math. Soc. 134 (2006) $1451-1457$.
[17] J.J. Koliha, V. Rakočević, The nullity and rank of linear combinations of idempotent matrices, Linear Algebra Appl. 418 (2006) 11-14.
[18] J.J. Koliha, V. Rakočević, Stability theorems for linear combinations of idempotents, Integral Equations Operator Theory 58 (2007) 597-601.
[19] J.J. Koliha, V. Rakočević, I. Straškraba, The difference and sum of projectors, Linear Algebra Appl. 388 (2004) 279-288.
[20] X. Liu, L. Wu, Y. Yu, The group inverse of the combinations of two idempotent matrices, Linear Multilinear Algebra 59 (2011) 101-115.
[21] C.D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Rev. 17 (1975) 443 -464.
[22] H. Özdemir, A.Y. Özban, On idempotency of linear combinations of idempotent matrices, Appl. Math. Comput. 159 (2004) 439-448.
[23] M. Sarduvan, H. Özdemir, On linear combinations of two tripotent, idempotent, and involutive matrices, Appl. Math. Comput. 200 (2008) 401-406.
[24] S.F. Zhang, H.J. Zhong, Q.F. Jiang, Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl. 429 (2008) 2067-2075.

[^0]: This project is supported by Natural Science Found of China (10471124 and 11171066).

 * Corresponding author.

 E-mail address: shifangzhangfj@163.com (S. Zhang).

