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1. INTRODUCTION 

Matrix near-rings over general near-rings were introduced in [S]; more 
material appeared in [69]. Most of these results are concerned with the 
transfer of properties from the near-ring R to the matrix near-ring J&(R) 
or vice versa. Notable exceptions are the construction of certain examples 
in [6, 71, as well as the proof in [8, 3.121 that a certain bicentralizer near- 
ring is actually a matrix near-ring. 

In this paper we consider the question as to whether matrix near-rings 
have some significance in the structure theory of near-rings, and we find 
enough evidence of this to suggest that there is quite a bit more to be 
uncovered. Analogous to the ring case, we find that there is a near-vector 
space [l] lurking behind every 2-primitive near-ring with suitable fmite- 
ness conditions, and that such a near-vector space has a certain type of 
matrix near-ring, which is a generalization of that introduced in [S], 
associated with it. Moreover, it turns out that this setting forces the near- 
ring in question to be abelian, which is rather interesting in the sense that 
up to now very little in general near-ring theory has indicated that abelian- 
ness of the additive group has any special significance at all. 

Our starting point is the fundamental work of Betsch on 2-primitive 
(left) near-rings with minimal right ideals. The results which we shall be 
referring to appear in his paper [2]. However, for the convenience of the 
reader we shall cite them, as well as some other results we need, from 
Meldrum [4]; thus “M4.5” will refer to the result numbered 4.5 in [4]. Of 
particular relevance are the following two theorems which we quote in full 
from M4.5 and M4.12 (with the obvious left-right switch): 

THEOREM A. Let R be a 2-primitive zerosymmetric right near-ring which 
has a minimal left ideal K. Suppose G is an R-module of type 2. Then we 
have: 
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(1) G is R-isomorphic to R K. 

(2) There is an idempotent eE K\(O) such that (a) K= Re= Ke and 
(b) End, G and eRe are ismorphic semigroups. 

(3) Every nonzero element of K has rank 1. 

THEOREM B. Suppose R is 2-primitive on the R-module G. If R contains 
an idempotent e of rank 1 then R has a minimal left ideal or else we have 
e # 1 and Ann.(G\eG) = (0). 

It turns out that if one focuses on minimal left R-subgroups instead of 
on minimal left ideals, then both these theorems remain valid, except that 
one can dispense with the exceptional case in Theorem B (which, as the 
example in [7] shows, is not so exceptional after all). 

Terminology and notation not explained here may be looked up in [4]. 

2. PRIMITIVE NEAR-RINGS WITH MINIMAL SUBGROUPS 

Throughout this paper R will denote a zerosymmetric right near-ring 
with identity 1; all R-modules will be required to be unitary. 

An examination of the proof of Theorem A reveals that the only 
property of the left ideal K which is used is that it is also a left R-subgroup. 
The result we obtain by replacing “left ideal” by “left R-subgroup” in 
Theorem A will be referred to as Theorem A’; it gives us one part of the 
next result, which should be compared to Theorems A and B. 

THEOREM 2.1. Suppose R is 2-primitive on the R-module G. Then R has a 
minimal left R-subgroup if and only if R contains an idempotent e of rank 1. 

Proof. For the “if” part, suppose R contains an idempotent e of rank 
1 and let K := Re. We wish to show (a) that there is an element h E G such 
that Ann, hn K= (0). This will enable us to (b) construct an 
R-isomorphism r: K -+ G which will imply that K is minimal. 

(a) Since G is faithful and type 2, there exists g E G such that Kg = G. 
Now h := eg # 0 because Kg = Reg. So eh = h; also Kh = G. If D := Aut, G, 
then eG = hD u { 0 1 because e is of rank 1. We assert that Mh # 0 for any 
nonzero left R-subgroup M of K. To see this, note that, since Mc_ K = Re, 
we have M = Xe = (Xe)e for some Xs R. Again, since G is faithful and 
type 2, there exists g’ E G such that Mg’ = G, so mg’ = h for some m E M. 
But mg’ = (me) g’ = m(eg’), so m(eg’) # 0, i.e., m $ Ann,(eg’). However, eg’ 
is in the same orbit as h, which implies that Ann,(eg’) = Ann, h by M3.18, 
so m $ Ann, h. We have shown that no nonzero left R-subgroup M of K is 
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contained in Ann, h, and therefore Ann, h n K, being a left R-subgroup of 
K, is zero. 

(b) Define r: K + G by k H kh. Clearly, this is an epimorphism with 
Ker z = Ann, h n K = 0, i.e., an isomorphism. 

From Theorem A’ we know that End, G and eRe are isomorphic semi- 
groups; in fact we have the following result: 

COROLLARV 2.2. Let R be 2-primitive on G and suppose K is a minimal 
left R-subgroup and that e is an idempotent such that K = Re. Then (eRe, . ) 
is a group with zero, and the group eRe\(O) acts on Re by right multiplica- 
tion as a fix point free group of automorphisms. 

Proof Apply Theorem A’ and M3.35. 

COROLLARY 2.3. If R is 2-primitive then all minimal left R-subgroups 
and all minimal left ideals of R, when considered as R-modules, are 
R-isomorphic. 

Proof This follows from Theorems A and A’. 

COROLLARY 2.4. Assume that R is 2-primitive and contains a distributive 
idempotent e of rank 1. Then eRe is a near-field. 

Proof By Theorem 2.1, Re is a minimal left R-subgroup of R, and by 
Corollary 2.2 (eRe,.) is a group with zero. However, if e is distributive then 
(eRe, + ) is a group. This means that (eRe, +;) is a near-field. 

Since the additive group of a near-field is well known to be abelian, we 
have the following consequence: 

COROLLARY 2.5. Under the hypothesis of Corollary 2.4 (eRe, + ) is an 
abelian group. 

We can apply the above to derive a result of Maxson and Meldrum [3]: 

COROLLARY 2.6. A near-ring R is a near-field if R = M,(G), where A 
acts fix point free on G and G\(O) is an orbit. 

Proof Since M,(G) is 2-primitive on G, and 1 E M,(G) is a distributive 
idempotent of rank 1, by Corollary 2.4, M,(G) is a near-field. 

3. NEAR-RINGS WITH A COMPLETE SET OF DISTRIBUTIVE IDEMPOTENTS 

Suppose R contains a complete set of distributive idempotents, i.e., it con- 
tains a finite set (e,, . . . . e,, > of idempotents such that e, + . . . + e, = 1, 
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e,e, = 0 if i # j, each ei is of rank 1, and each ei is a distributive element of 
R. Let us agree to call such a near-ring a CDI-near-ring. If R is also 
2-primitive on the R-module G, and A := End, G, then, by the results of 
Section 2, we have 

(a) n R-isomorphisms cpi: G + Re,, as well as 
(b) n semigroup isomorphisms iji: A + e,Rei such that 

for all rER, gEG, cce.4. 

From cp,: G -+ Re, it follows that cpi(eiG) = ejRej, i.e., ‘pi is an isomorphism 
of the groups (e,G, +) and (e,Re,, +). However, the latter is the additive 
structure of a near-field and therefore abelian; hence (e,G, + ) is abelian. 
Now it is easy to see that 

G=e,G+ ... +e,G 

is a direct decomposition, and so G itself is abelian. Moreover, if @ is the 
sum of the isomorphisms cpi: e,G-,e,Re,, then 

@:G+e,Re,@ ... @e,,Re,,=: H 

is an isomorphism of groups, where 

Q(g)= cpl(el g)+ ... +cp,(e,g). 

This fact enables us to turn H into an R-module by defining 

r@(g) := W-g), 

which ensures that @ is an R-isomorphism. In this situation (see M4.2) 
there is a semigroup isomorphism Y: A + End, H, where 

Q(g) y(a) := vl(el g) Icll(a)+ ... + cp,(e,g) +Aa), 

such that 

@(rgcr) = r@(g) Y(u). 

So, provided it is not a ring, R is a dense subnear-ring of M,,,,(H) (see 
M3.35). 

In order to formulate the main theroems of this section we need a 
concept introduced by Andre [ 11. A near-vector space is a pair (G, A), 
where G is an abelian group and A is a group with zero of endomorphisms 
of G with the following properties: 
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(a) If a E A is nonzero it is a fix point free automorphism of (G, + ). 
(b) The automorphism - 1 is in A. 

(cl If 

is the quasi-kernel of G, then Q generates G as a group. 

If (G, A) is a near-vector space, it seems natural to call the elements of 
M4( G) near-linear transformations. 

We first prove 

LEMMA 3.1. (H, ‘Y(A)) is a near-vector space. 

ProoJ We begin by proving that - 1 is in Y(A). Recall that the multi- 
plicative group of a near-field has just one element of order 2, namely - 1, 
(unless 1 = - 1, in which case there is nothing to prove). From the 
isomorphisms $i: A -+ eirei it therefore follows that A has just one element 
of order 2, say a,,, and consequently 

To end the proof, we show that 

i(JJl eiRei c Q(H, VA )I =: Q 

and since the set on the left is a set of generators for H, so is Q. If P(u), 
!P(~)E ‘Y(A) and eirei #O then 

(eire,) WE) + Cecil VP) = (eirei) tii(@) + (eirei) It/i(B) 

= (eirei) cl/i(Y) 

= (eye,) Vu(y), 

where y is determined by 

$i(Y)= (eirei)-’ (eirei$i(a) + eirei$i(D)), 

because e,Re,\{O} is a multiplicative group. 

What we have proved up to this point amounts to the following 
theorem: 

THEOREM 3.2. A 2-primitive CDI-near-ring which is not a ring is abelian, 
symmetric (i.e., a( -b) = - ab), and isomorphic to a dense subnear-ring of a 
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near-ring of near-linear transformations of a finite dimensional near-vector 
space. 

Going the other way, we next establish 

THEOREM 3.3. Suppose (G, A) is a finite dimensional near-vector space. 
Then MA(G) is a CD&near-ring which is 2-primitive on G. 

Proof: Let {ur, . . . . u,} be a basis for Q(G, A). Then every element g E G 
is representable in a unique way as g = U, CI 1 + . . . + U,CI,, where cl; E A. 
Now define e, in MA(G) by ei(u,a, + ... +u,tl,) :=u,cI,, for i= l,..., n. 
Then the set (e,, ..,, e,} has the necessary properties to ensure that M,(G) 
is CDL That M,(G) is also 2-primitive on G follows from a well-known 
theorem (see M3.34). 

This theorem, together with the material preceeding Theorem 3.2, now 
gives the following two characterizations of finite dimensional near-vector 
spaces: 

THEOREM 3.4. Let G be a group and let A := D u {0}, where D is a fix 
point free group of automorphisms of G. 

(1) (G, A) is a finite dimensional near-vector space if and only if M,(G) 
is a CDI-near-ring. 

(2) (G, A) is a finite dimensional near-vector space if and only if there 
exist a finite number of near-fields, F1, . . . . F,, semigroup isomorphisms 
Ii/i: A + Fi, and a group isomorphism @p: G -+ F, @ ... OF,, such that tf 

@(g)=x,+ ..’ +x,, 

for all g E G and c( E A. 

The picture of a finite dimensional near-vector space that emerges con- 
trasts quite interestingly with that of a finite dimensional vector space. In 
the former case we have, in general, not one but a finite set of associated 
near-fields, all having isomorphic multiplicative semigroup structures, but 
not necessarily being isomorphic as near-fields. The second part of 
Theorem 3.4 should also be compared to what [ 1, Theorem 4.61 asserts for 
the finite dimensional case. 

We now turn to the near-ring perspective again. According to the 
previous theorem we can specify a finite dimensional near-vector space by 
taking n near-fields F,, . . . . F,, such that there are semigroup isomorphisms 
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9,: (F,,.) --) (F,, .) with Qijgjk = 9, for 1 ,< i, j, kd n. We then take G := 
Fl 0 . . . OF,, as the additive group of the near-vector space and any one 
of the semigroups (FjO, .) as the semigroup of endomorphisms by defining 

(x1 + . . + x,)cI := x1 9,,(a) + . + x,$&) 

for all xj E F, and all a E Fi,,. Our object is to study the near-ring 

R := M&G). 

More specifically, we would like to determine the smallest subnear-ring S 
of R which contains the complete set of distributive idempotents 
ie 1 , . . . . e,}, where ej is defined by e,(x, + ... +x,) :=x,, and which is 
2-primitive on G. Since S is supposed to be a-primitive, given any 
(b,, ...y b,,j)’ E G, (we are now adopting vector notation, letting transposes 
be indicated by primes), S must contain an element sj such that 
s,(O, . . . . 0, 1, 0, . . . . 0)’ = (b,, . . . . bnj)‘, where the 1 is in position j. Now if 
(xi, . . . . x,)’ E G then 

sjej(x,, . . . . XJ’ = Sj(0, ...) 0, Xj, Of ...9 0)' 

= s,(O, . ..) 0, 1, 0, . ..) 0)’ $,G’(Xj) 

= (b,, ...T bni)’ g&‘(xj) 

= (b,g,i(xj), b,a,(x,), “‘9 bn,9uj(xj))‘. 

It follows that c,“= i s,ej is in S; and the above calculation shows that it can 
adequately be denoted by the matrix (6,). In fact, every square matrix 
C := (c,), where cii E Fi, represents an element of S, with the action on G 
defined by 

It is not difficult to see that the subring of MF,JG) generated by the set of 
all these elements is indeed 2-primitive on G, so it equals S. Let us call it 
the near-ring of matrices determined by the near-fields F,, . . . . F,, and the 
matrix of isomorphisms (a,), and denote it by A$( (Fi), (9,)). Note that the 
choice of i,, does not figure in the definition of this near-ring. We formulate 
the preceeding observations in 

THEOREM 3.5. Suppose (G, A) is an n-dimensional near-vector space. 
Then M,(G) contains a subnear-ring S isomorphic to a near-ring of matrices 
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determined by n near-fields with isomorphic multiplicative semigroups. If S is 
not a ring, then S is dense in MA(G). 

The ring case does not occur when (G, A) is not a vector space, and so 
we have the next corollary. 

COROLLARY 3.6. Suppose (G, A) is a finite near-vector space which is not 
a vector space. Then M,(G) is isomorphic to a near-ring of matrices 
determined by a finite number of finite near$elds with isomorphic 
multiplicative semigroups. 

Let us close by considering the following simple 

EXAMPLE 3.7. Let F, = F, := R, the field of real numbers, let gl, be the 
identity function, and let 9,, be defined by 9,,(x) :=x3. Then the action of 
a matrix (c,) in A&( {Fij, (9,)) on F, 0 F2 = R2 is given by 

while the action of the semigroup of endomorphisms, which is of course 
isomorphic to the multiplicative semigroup of the reals, is given by 

where c(, is the endomorphism corresponding to the real number a. Clearly, 
the near-ring A2( {Fi}, (8,)) . IS not a ring, and it can be shown that it does 
not contain a single minimal left ideal, although it does, of course, have 
at least two minimal left R-subgroups corresponding to the complete set 
of idempotents 
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